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Abstract
The classical realized variance (RV) estimator is biased due to microstructure effects and asset price jumps. Robust

realized variance (RRV) estimators adjust for these biases, and make more efficient of use of the intraday data. This

article examines the benefits of using RRV estimators instead of the RV estimator, in the context of volatility

forecasting. The recently proposed Realized GARCH framework is used to generate daily forecasts of the

conditional variance for eight European stock indices. The out-of-sample comparisons indicate that the RRV

estimators improve upon the RV estimator on efficiency and bias criteria.
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1. INTRODUCTION 

 

 Forecasting volatility of financial assets has applications in portfolio design, option 

valuation and risk management. Since the volatility is unobservable (latent), it has to be 

estimated. The realized variance (RV) estimator, calculated as the sum of squared intradaily 

returns, provides an asymptotically consistent estimator of the latent integrated variance 

(Andersen et al. 2001; Andersen and Bollerslev 1998; Barndorff-Nielsen 2002; Barndorff-

Nielsen and Shephard 2002). In practice, the RV estimator is biased due to the microstructure 

effects, caused by bid-ask bounce, price rounding, among other reasons. As the sampling 

frequency is increased, the bias due to microstructure effects gets progressively worse (Bandi 

and Russell 2006; Bandi and Russell 2008; Zhou 1996). The early attempts to mitigate the 

microstructure bias in the RV measure were heuristic in nature. One popular approach is to select 

a lower sampling frequency, typically 5 to 30 minutes. The most commonly used realized 

estimator is the 5-minute RV, i.e., the sum of squared 5-minute returns. However, using a lower 

sampling frequency, also known as sparse sampling, has two drawbacks. First, it leads to a loss 

of a vast number of price observations. Discarding a large number of observations is undesirable 

as it reduces the efficiency of the RV estimate. Second, the RV estimator converges to the latent 

integrated variance only under the assumption of nearly infinite sampling. This asymptotic 

approximation becomes questionable with lower sampling frequencies. Another problem with 

the RV estimator is that in the presence of price jumps, it measures the true integrated variance 

plus a contribution equal to the cumulative squared jumps (Andersen et al. 2012; Barndorff-

Nielsen and Shephard 2004a; Barndorff-Nielsen and Shephard 2004b). Therefore, price jumps 

induce an upward bias in the RV estimator. 

 Recent literature has proposed alternative realized estimators that are robust to the bias 

caused due to microstructure noise and price jumps, and make efficient use of the available data. 

In this study, we use the RV as the benchmark realized estimator, and compare it with three 

robust realized variance (RRV) estimators: the two time scale realized variance (TSRV) 

estimator (Zhang et al. 2005), the realized kernel (RK) estimator (Barndorff-Nielsen et al. 2008) 

and the realized bipower variance (BV) estimator (Barndorff-Nielsen and Shephard 2004a). The 

TSRV and RK estimators are robust to the microstructure noise bias, whereas the BV estimator 

is robust to price jumps. Each of these realized estimators are used in the novel Realized 

GARCH framework of Hansen et al. (2012), to construct daily variance forecasts for eight 

European stock indices. We compare the out-of-sample performance of the RRV based models 

with that of the RV based model using bias and efficiency criteria. The sample period for this 

analysis extends from 1 January 2000 to 12 September 2014.  

 This article contributes to the existing literature in a number of ways. First, it is one the 

earliest implementation of the Realized GARCH model in the European stock markets. Other 

notable implementations include Hansen et al. (2012), Louzis et al. (2013) and Watanabe (2012), 

all of which are based on the U.S. equity market. Second, it contrasts the out-of-sample 

performance of various RRV estimators. Several studies report that incorporating realized 

estimators in volatility models provides large statistical and economic benefits across a range of 

forecasting applications (Christoffersen et al. 2012; Fleming et al. 2003; Koopman et al. 2005; 

Pong et al. 2004; Vortelinos 2013; Vortelinos and Thomakos 2012). Nonetheless, the literature 

that compares the forecasting benefits of robust realized variance estimators remains sparse. 

Third, it uses a data set with a reasonably large sample dimension in the context of realized 

volatility forecasting studies. The full sample period is around 14 years, comprising of eight 



European stock indices. Hence, the key results are likely to be widely applicable, and robust to 

data snooping bias. 

 

2. METHODOLOGY 

 

2.1 Realized variance estimators 

 We use the RV estimator as the benchmark, and three RRV estimators, namely, the 

TSRV estimator, the RK estimator and the BV estimator. Next, some notations are provided for 

defining the realized estimators. Let          denote the time-series of intraday prices. To 

standardize the notations we define a function         as                               
                            (1) 

where                  . The RV estimator (benchmark) is calculated as             (2) 

The highest sampling frequency is denoted by    1, i.e.,         provides the RV estimate using 

all intraday returns. The 5-minute RV (benchmark) is calculated using       , where   is the 

number of 5-minute intervals in the trading day.  The use of sparse sampling (5-minute returns) 

reduces the microstructure bias in the RV estimate; however, it leads to a loss of a large number 

of intraday price observations.  For instance, if price observations are available for each second, 

sampling at 5-minute intervals discards over 99% of the data. The TSRV and RK estimators 

make more efficient use of the available data, and provide separate adjustments for the 

microstructure noise bias.  

 The TSRV approach estimates the realized variance using two different sampling 

frequencies, a high-frequency RV estimate and a low-frequency RV estimate. Zhang et al. (2005) 

show that by taking a suitable linear combination of these two RV estimates, the TSRV estimator 

is able to cancel out the bias induced by the microstructure noise1.  The TSRV estimator also 

makes use of the subsampling approach, which makes a more efficient use of the available data. 

In this approach, the price process is sampled at a given frequency, using a variety of non-

overlapping sub-grids. A collection of the realized estimates is obtained using these subsamples, 

which are then averaged to yield the subsampled realized estimate. We use the full grid of all 

intraday returns for the high-frequency RV estimate, and subsampled 5-minute returns for the 

low frequency RV estimate. The TSRV is calculated as  

                              
                (3) 

where               and       . The first term in the bracket,  
                , is the 

subsampled 5-minute RV estimate. The second term,        , is the RV estimate that uses all 

intraday returns.  

 The second RRV estimator used in this study is the RK estimator of  Barndorff-Nielsen et 

al. (2008). The RK is robust to microstructure noise, and makes use of all the intraday data. 

                                                            

1
 Under the assumption that the microstructure noise process is independent of the true price 

process. 



Essentially, it adjusts the realized variance estimate for the serial correlation induced by the 

microstructure effects. The RK is measured as                               
    (4) 

where      is a kernel weight function and the optimal bandwidth parameter H is calculated 

using the procedure of Barndorff-Nielsen et al. (2009). Barndorff-Nielsen et al. (2008) compute 

the RK measure with several alternative kernels, namely, the Bartlett kernel, the cubic kernel, the 

Tukey-Hanning2 kernel and the Parzen kernel. We use the "non-flat-top" Parzen kernel function 

as it ensures a positive variance estimate, while allowing for dependence or endogeneity in the 

microstructure noise process (Barndorff-Nielsen et al. 2011). The Parzen kernel function is 

defined as                                                                                                    
 Finally, we use the BV estimator of Barndorff-Nielsen and Shephard (2004a), which is 

robust to price jumps. To avoid microstructure noise bias, the BV estimator is calculated using 5-

minute returns. Following Barndorff-Nielsen and Shephard (2004a), the BV is calculated as                       
                  (5) 

For 5-minute sampling frequency we use       , where   is the number of 5-minute intervals in 

the trading day. We use a subsampled BV estimate, BVS, which uses 5-minute returns with 1-

minute subsampling. The calculation of the BVS estimate is as follows. Suppose the BV estimate 

is calculated using the prices sampled at the time points 9:30, 9:35, 9:40 ..., etc. Another BV 

estimate is calculated using the prices at the time points 9:31, 9:36, 9:41 ..., etc. In this manner, 

for each day, five values of BV are computed using five non-overlapping subsamples. Since the 

start and end times of the subsamples may not coincide with those of the trading session, these 

BV estimates may omit a small number of observations of the trading day. To adjust for the loss 

of observations, the BV estimates are proportionally inflated to account for the missing part of 

the trading day. The BVS is then calculated as the average of these five BV estimates. Since, the 

RK and TSRV estimators make use of all available intraday observations; subsampled versions 

of these estimators are not included in the analysis. 

 

2.2 Forecasting Methodology 

 For each sample index, we generate daily (one-step-ahead) forecasts of the conditional 

variance using the Realized GARCH model. Following Louzis et al.(2013), we use an AR(1) 

specification for modeling the conditional mean of the Realized GARCH model2. The 

conditional mean equation is given by                                               (6) 

 

                                                            

2
 We tested three alternative conditional mean specifications: zero mean, constant mean and 

GARCH-in-mean.  The key results of this analysis remain robust under different specifications 

of the conditional mean.  



where                and    is the closing price on day t.  

 In a comparison of 330 ARCH-type models, Hansen and Lunde (2005) found that a 

model with higher lags (for the ARCH and GARCH terms) rarely provides better forecasting 

performance than the same model with fewer lags. Based on their findings, we restrict our 

Realized GARCH model to the simplest lag specification, i.e., we use the Realized GARCH(1,1) 

model. It is defined as 

 

                                                                                         (7) 

                                                                                  (8) 

 

Here,  ,  ,  ,   ,   ,   , ,  ,   ,    are the model parameters. Equation (7) models the 

conditional variance,    . Equation (8) is the measurement equation used for modeling the 

realized variance,   . For each sample index, we implement the Realized GARCH model with 

five realized estimators defined earlier, i.e.,    = RV, TSRV, RK, BV or BVS.      is the 

leverage function given by                       . The leverage function captures the 

asymmetric effect of negative return shocks on the volatility process. All models are estimated 

using the method of maximum likelihood. Following Hansen et al. (2012) and Frommel et al. 

(2014), we assume Gaussian specification for the log-likelihood functions. We use a rolling 

window of the most recent 2000 daily observations for the estimation of GARCH models. The 

estimate of the variance at the end of day t,      , is used as the one-step-ahead variance forecast,       , for the day t+1.  

 

2.3 Forecast evaluation 

 The evaluation of variance forecasts is non-trivial as the true integrated variance is latent 

and must be estimated. In this study, we use the RK as the estimate for true integrated variance. 

The choice is motivated by theoretical strengths of the RK estimator; it is robust to 

microstructure noise and makes efficient use of the intraday data.  Moreover, in a comparison of 

nineteen realized variance estimators, Gatheral and Oomen (2010) found that the RK is one of 

the best estimators in terms of efficiency and robustness to time varying parameters. We use bias 

and efficiency criteria for comparing the out-of-sample performance of the RRV based models 

with that of RV based model. The efficiency is measured using the mean squared error (MSE) 

and quasi likelihood (QLIKE) loss functions. As the true volatility is latent, the forecast error is 

calculated with respect to a proxy of true volatility. The estimation error in the volatility proxy 

may distort the ranking of competing volatility forecasts. Patton (2011) examined a class of loss 

functions for their robustness to the estimation error in the volatility proxy. Comparing nine 

widely used loss functions, he demonstrated that only the mean squared error (MSE) and quasi-

likelihood (QLIKE) loss functions are robust to an imperfection in the volatility proxy. Finally, 

we use the expected forecast error as measure of bias. These loss functions are defined as  

                                                                                                                              (9)                                                                                                                  (10) 

                                                                                                                           (11) 

 

 

 

 



3. DATA 

 

 The study uses daily and intradaily price data of eight European stock indices, for the 

period 1 January 2000 to 12 September 2014. All data are sourced from the Thomson Reuters 

DataScope Tick History (RDTH) database. Table 1 provides the list of sample indices and their 

descriptive statistics. As the number of trading days varies across different exchanges, the total 

number of daily observations T, in Table 1, differs across the sample indices. For each index, we 

generate N variance forecasts, where N = T- 2000.  

 

Table 1 Descriptive statistics  

Notes:  This table provides descriptive statistics for the time-series of daily returns and daily 

squared returns from 1 January 2000 to 12 September 2014. μ and    denote the mean and 

standard deviation, respectively. T is the total number of daily observations in the sample period. 

N is the number of variance forecasts generated for a particular index. 

 

4. RESULTS 

 

 Table 2-4 compare the out-of-sample performance of the RRV based models with that of 

the RV based model. Table 2 compares the forecasting performance of various models using the 

MSE criterion. For each index, the models are ranked from one to five, with one indicating the 

best model and five indicating the worst model in terms of the MSE loss criterion. The Mean 

Rank metric is the average of these eight ranks. The Ranked Best (Worst) metric is the number 

of times a forecasting model is ranked as the best (worst) model. In most comparisons, the RRV 

estimators provide better out-of-sample performance than that of the RV estimator. The RV 

based model has the highest MSE for five out of eight sample indices, and it is never ranked as 

the best model. In terms of the Mean Rank metric, RV is the worst estimator with a mean rank of 

4.5, whereas BVS is the best estimator with a mean rank of 1.875.  The RK and TSRV are 

ranked as second and third best estimators, with a mean rank of 2.625 and 2.750 respectively. 

The comparison between the BV and BVS estimators indicate that there is a considerable gain in 

efficiency due to subsampling. With the exception of the AEX index, the BVS estimator always 

performs better than the BV estimator. 

 Table 3 compares the forecasting performance of various models using the QLIKE loss 

criterion.  We can observe a similar pattern in the relative forecasting performance. The RRV 

estimators generally outperform the RV estimator.  The RV estimator ranks as the worst 

estimator for seven out of eight sample indices.  The BVS and RK are the best performing 

Ticker Index Country T N          

μ   μ   

FTSE FTSE 100 United Kingdom 3687 1687 0.000 1.193   1.422 4.175 

DAX DAX Germany 3721 1721 0.010 1.538 2.364 6.635 

CAC CAC 40 France 3740 1740 -0.008 1.481 2.194 5.655 

AEX AEX Netherlands 3739 1739 -0.013 1.469 2.158 6.167 

SMI SMI Switzerland 3676 1676 0.005 1.217 1.482 4.463 

IBEX IBEX 35 Spain 3705 1705 -0.002 1.500 2.250 5.813 

STOXX STOXX 50 Euro zone 3717 1717 -0.011 1.510 2.280 5.870 

FTMIB FTSE MIB Italy 3702 1702 -0.018 1.533   2.349 6.148 



estimators with mean ranks of 2.125 and 2.375 respectively. The BVS estimator outperforms the 

BV estimator for six out of eight indices. As earlier, this indicates that subsampling improves the 

forecasting performance. Among the RRV estimators, the TSRV estimator performs the worst 

with a mean rank 3.167. However, with the exception of the CAC index, it always outperforms 

the RV estimator.  

 

Table 2 Forecasting performance comparison using the MSE loss criterion 

Index RV TSRV BV BVS RK 

FTSE 3.510 3.440 3.500 3.490 3.430 

DAX 9.980 9.390 9.580 9.340 9.690 

CAC 7.750 7.490 7.770 7.480 7.590 

AEX 6.330 6.420 6.320 6.380 6.240 

SMI 3.410 3.210 3.370 3.230 3.600 

IBEX 7.240 7.200 7.150 7.080 7.210 

STOXX 15.580 14.980 15.160 14.530 14.760 

FTMIB 7.120 7.090 7.070 6.920 6.540 

Mean Rank 4.500 2.750 3.250 1.875 2.625 

Ranked Best 0 1 0 4 3 

Ranked Worst 5 1 1 0 1 

Notes: This table reports the MSE for the various forecasting models. Each row corresponds to a 

particular sample stock index, and the column headings indicate the realized variance estimator 

used in the Realized GARCH model. 

 

Table 3 Forecasting performance comparison using the QLIKE loss criterion 

Index RV TSRV BV BVS RK 

FTSE 0.863 0.858 0.861 0.859 0.853 

GDAXI 1.392 1.391 1.389 1.388 1.390 

CAC 1.505 1.510 1.503 1.505 1.506 

AEX 1.320 1.254 1.257 1.255 1.253 

SMI 0.941 0.939 0.931 0.928 0.934 

IBEX 1.779 1.772 1.773 1.770 1.773 

STOXX 1.509 1.497 1.488 1.504 1.471 

FTMIB 1.614 1.612 1.613 1.602 1.605 

Mean Rank 4.625 3.125 2.750 2.125 2.375 

Ranked Best 0 0 1 4 3 

Ranked Worst 7 1 0 0 0 

Notes: This table reports the QLIKE for the various forecasting models. Each row corresponds to 

a particular sample stock index, and the column headings indicate the realized variance estimator 

used in the Realized GARCH model. 

 

 Table 4 compares various forecasting models using the BIAS criteria. Overall, the RV 

estimator performs worst with a mean rank of 4.125. Moreover, the RV based forecasts have the 



highest bias for five out of eight sample indices. The BVS, RK and TSRV estimators perform the 

best, with mean ranks of 2.125, 2.5 and 2.625 respectively. With the exception of the SMI index, 

in all comparisons the BVS based forecasts are less biased than the BV based forecasts.  

 

Table 4 Forecasting performance comparison using the BIAS criterion 

Index RV TSRV BV BVS RK 

FTSE 0.198 0.050 0.242 0.183 0.029 

GDAXI 0.035 0.047 0.041 0.021 0.036 

CAC 0.121 0.094 0.112 0.077 0.105 

AEX 0.356 0.328 0.352 0.336 0.329 

SMI 0.246 0.258 0.237 0.251 0.341 

IBEX 0.416 0.385 0.397 0.366 0.416 

STOXX 0.366 0.265 0.337 0.333 0.236 

FTMIB 0.589 0.557 0.560 0.524 0.514 

Mean Rank 4.125 2.625 3.625 2.125 2.500 

Ranked Best 0 1 1 3 3 

Ranked Worst 5 1 1 0 1 

Notes: This table reports the BIAS for the various forecasting models. Each row corresponds to a 

particular sample stock index, and the column headings indicate the realized variance estimator 

used in the Realized GARCH model. 

 

5. CONCLUSION 

 

 This article examines the benefits of using RRV estimators instead of the RV estimator, 

in the context of volatility forecasting. We find that RRV estimators improve upon the RV 

estimator in terms of the bias and efficiency criteria. Among the RRV estimators, the BVS 

estimator generally provides the best out-of-sample of performance. This results is consistent 

with Andersen et al. (2007), who found that filtering the jump component from the realized 

variance estimates provides a significant improvement in the volatility forecasts. Additionally, 

we find that subsampling improves the forecasting performance of the sparse-sampled BV 

estimator, regardless of the choice of the forecast evaluation criterion. 
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