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Abstract

We exploit a regression-discontinuity design to estimate peer effects on

college students’ attendance, using data from a classroom experiment,

which required students who scored below a cut-off on the first midterm

exam to attend subsequent classes. Since within a small interval around

the cut-off, which side of the cut-off a student falls is randomly

determined, so is the proportion of a student’s classmates falling on one

side of the cut-off in the same interval. Using this proportion to

instrument peer attendance, we find that a one-point (out of ten) increase

in classmates’ average attendance score raises a student’s attendance score

by 0.7 points.
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1. Introduction 

 

Peer effect on student performance has important implications for designing college 

courses. In the absence of peer effects, grouping students by levels of ability is desirable, 

since administrators and instructors can then modify resources to fit each group’s ability. 

However, in the presence of positive peer effects, mixing poor-performing students with 

better-performing ones is more efficient provided that the arrangement does not harm the 

latter. Nevertheless, peer effects are difficult to identify due to problems such as self-

selection (students joining a peer group with similar ability) and reverse-causality 

(students affecting their peers). Recent quasi-experimental studies (Sacerdote 2001; 

Winston and Zimmerman 2003; Zimmerman 2003; Chen et al. 2014) employed random 

roommate assignment to resolve these problems. However, roommates may not be a peer 

group of potential academic influence in college especially if they do not take the same 

courses together (Stinebrickner and Stinebrickner 2006).  

This paper examines the impact of another kind of peer group, potentially of stronger 

academic influence – classmates – on a student’s educational outcomes. It also illustrates 

how a regression- discontinuity (RD) design can help achieve identification using data 

from a policy experiment conducted in a large economics course. The experiment 

required students who scored below a cut-off on the first midterm exam to attend all 

subsequent classes. The RD design is helpful in that within a small interval around the 

cut-off, students cannot perfectly manipulate their scores in order to score just above the 

cutoff; thus, which side of the cut-off a student falls is randomly determined (Lee and 

Lemieux 2010). The proportion of students falling on either side of the cut-off within the 

same interval is also randomly determined. Using this proportion as an instrumental 

variable (IV) for peer attendance, we find that a one-point increase (out of 10) in 

classmates' average attendance score raises a student’s attendance score by 0.7 points. 

 

2. Background 

The experiment was conducted in the course Principles of Microeconomics at the 

University of Minnesota in Fall 2010 with an enrolment of 232 students (Table 1). Each 

week, all students attended the same lectures but were assigned to seven different 

discussion sections that met once a week. Class attendance, which accounted for 10% of 

the final course grade (the total = 100 points), was recorded in the discussion sections on 

a weekly basis. In this setting, students assigned to the same discussion section naturally 

form the peer group of interest in our paper. 

Our policy, which required students who scored below 70% on the first midterm 

exam (which indicates risk of failing the course) should attend all subsequent discussion 

sessions, was announced at the beginning of the class. Given this policy, a student’s 

midterm score (z) switches on their treatment status D when it passes the cut-off (c =70) 

smoothly: 

D = 1(z < c),                        (1) 

Chen and Okediji (2014) show that this RD policy had a significantly positive impact on 

students’ attendance. The current paper further illustrates how it can also help identify 

peer effect on attendance. 



 

Table 1: Student Profiles in Principles of Microeconomics, Fall 2010 

 Observations/[Mean] %/[SD] 

Gender   

Female 167 72.0 

Male 65 28.0 

Year in college   

  High school 17 7.3 

  Freshman 82 35.3 

  Sophomore 59 25.4 

  Junior 44 19.0 

  Senior 30 12.9 

Major   

  Agriculture 10 4.3 

  Animal science 89 38.4 

  Design 14 6.0 

  Economics/Business 45 19.4 

  Engineering  8 3.5 

  Natural science 14 6.0 

  Social science 30 12.9 

  Undeclared 14 6.0 

  Missing 8 3.5 

Attendance score [9.05] [1.08] 

Mean peer attendance  [9.05] [0.39] 

Midterm I score [79.73] [12.78] 

Observations 232 100 

 

 

3. Identification 

Consider the commonly adopted linear-in-mean peer-effect specification: 

α  ȕ  Ȗ ε
i i i i

y y x−= + + + ,                 (2) 

where yi is an educational outcome of interest of student i in a group of size N; 
i

y− =

/( 1)
j

j i

y N
≠

−∑  is the leave-me-out mean of y for student i’s peers; xi is student i's own 

characteristics; ε is the error term. If equation “(2)” is correctly specified, ȕ is the 

parameter that represents the peer effect of interest. Yet standard ordinary least-squares 

(OLS) regression might lead to a biased estimate of ȕ if
i

y− is correlated with ε (e.g. due to 

reverse causality). To illustrate the problems, we expand
i

y− one step further, which 

reveals three sources of variation in the peer outcome
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y− : 
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The first source of variation is the mean outcome of the entire group y , which is hardly a 

concern since it is the same for each i. The second source is student i’s own outcome yi, 

which is the source of reverse causality. The third source is the mean peer characteristics

i
x− , the appearance of which in equation “(3)” suggests an identification strategy – a 

sufficiently large exogenous variation in
i

x−  (which is not affected by yi) can be exploited 

to create an IV for
i

y− . 

The RD policy under discussion generates such an exogenous variation. To the extent 

that students within a small interval around the policy cut-off cannot perfectly manipulate 

their scores to be just above the cutoff, which student eventually passes the cut-off is 

randomly determined. This implies that the proportion of students falling on one side of 

the cut-off within the same given interval is also randomly determined. Thus for student i, 

the proportion of treated peers /( 1)
i j

j i

D D N−
≠

= −∑ (which is part of
i

x− ) defined over a 

small interval around the cut-off serves as an IV for
i

y− (in practice, different interval 

widths should be used for robustness checks). Intuitively, suppose student i decides to 

attend classes more frequently after observing an increase in the overall attendance of the 

class. Part of this observed increase in peer attendance is exogenously induced by the 

policy, and this part of the policy-induced exogenous variation is exploited to create the 

candidate IV.  

4. Results 

  Before presenting the main results of this paper, we verify three conditions required 

for the proposed identification method to work. First, a formal density test (McCrary 

2008) verifies continuity of the forcing variable (i.e. midterm I scores z) at the cut-off (t 

=1.26), the fundamental condition for applying the RD approach (Hahn et al. 2001). 

Second, the policy significantly raised the attendance of poor-performing students’ within 

small (i.e. 15-, 10-, and 5-point) intervals around the cut-off c, thereby creating an 

exogenous variation in students’ attendance. Columns 1-3 of Table 2 adopt the standard 

parametric RD specification, controlling for a cubic function of midterm I scores z on 

either side of the cut-off, and they indicate that the policy raised the attendance score of 

poor-performing students’ by 2.6-3.3 points (out of 10), relative to that of better- 

performing students near the cut-off. Third, peer attendance is balanced across the cut-

off. Columns 4-6 of Table 2 adopt the same RD parametric specification as in columns 1-

3 but replace the outcome variable yi with the mean peer attendance
i

y− , and the results 

indicate a small and insignificant impact of the policy on
i

y− . This suggests that the 

discontinuity in yi at the cut-off (Fig. 1) is indeed due to the policy, rather than 

unbalanced peer attendance across the cut-off.1 

Table 3 presents the main results of estimating Equation “(2)”. Column (1) uses the 

OLS regression, controlling for gender, major, year in college, midterm I scores z and the 

mean peer midterm I score
i

z− . It indicates that one additional point in the mean peer 

                                                        
1 Table 2 in Chen and Okediji (2014) also indicates the balance of students’ own characteristics. 



 

attendance
i

y− is associated with a 0.57-point increase in one's own attendance score yi. To 

account for possible endogeneity in
i

y− , column (2) instruments
i

y− using the proportion 

of treated peer
i

D− computed based on all students as the IV, which yields a larger and 

marginally significant peer effect (ȕ = 1.18). However, Shea’s partial R2 for this IV is 

very low (= 0.059) in the first-stage regression (column 3), signifying a weak-IV problem 

(Bound et al. 1995). As alternatives, , 15i c
D− ±  (column 5) and , 10i c

D− ±  (column 7) both 

have strong predictive power for
i

y− in the first-stage regressions (Shea’s partial R2 = 0.21 

and 0.43, respectively), indicating no sign of weak-IV problems, while , 5i c
D− ± (column 9) 

has a very small predictive power for
i

y− (Shea’s partial R2 = 0.062), probably due to lack 

of variation in , 5i c
D− ± . Thus, the relative performance of these IVs suggests the model in 

column (6) as the preferred model. The result indicates a peer effect of 0.71 points per 

one-point increase in the average peer attendance score. Given the standard deviation 

(SD) of the mean peer attendance of 0.39 points (Table 1), the above result implies that a 

one-SD increase in the mean peer attendance raises a student's attendance score by 0.27 

SDs [= 0.71×(1/0.39)], quite a sizable impact. 

 To further assess how this 0.71-point increase in attendance score translates into a 

student's final course grade, we quantify the impact of attendance on the final course 

grade using a fuzzy-RD regression − a regression of students' final course grade on their 

attendance scores using the treatment status D as the IV for the latter. We find that a 1-

point increase in students' attendance is associated with a 5.9-point (out of 100) increase 

in their final course grade, an impact that is statistically significant at the 1% level.2 

Thus, a 0.7-point increase in attendance can lead to a 4.1-point (0.7×5.9) improvement in 

a student's final course grade. This is close enough to raise a student's final letter grade 

category by one level, that is, from a C+ (65) to a B-(70). 

 

Table 2: Impacts of RD Policy on Attendance Scores 

 (1) (2) (3)  (4) (5) (6) 

Variable Student i's own attendance score 

(yi) 

 Mean peer attendance score 

( i
y− ) 

Sample c ± 15 c ± 10 c ± 5  c ± 15 c ± 10 c ± 5 

        

Treatment status 2.588** 2.647** 3.348**  0.214 0.339 0.317 

(Di) (1.036) (0.984) (1.283)  (0.323) (0.298) (0.227) 

        

Observations 116 73 27  116 73 27 

R2 0.156 0.144 0.580  0.251 0.334 0.646 

Notes:  

All regressions specify a cubic function of midterm I scores on either side of the cutoff, 

controlling for gender, major, and year in college. 

Robust SEs in parentheses, clustered at bins with 3 midterm points. ∗∗p < .05. 

                                                        
2 Detailed results are not reported but available upon request.  



 

Figure 1: RD Policy Impacts on Individual and Peer Attendance 

6
7

8
9

1
0

A
tt

e
n
d
a

n
c
e
 S

c
o
re

s

40 50 60 70 80 90 100
Midterm Scores z

Fitted lines: individual Fitted lines: peer

Bin means: individual Bin means: peer

Note: discontinuity from 3rd-order polynomials on each side of the cut-off



 

Table 3: Peer Effects on Attendance 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

  Own 

attend- 

ance  

(yi)  

Own 

attend- 

ance  

(yi)   

Mean 

peer 

attend- 

ance 

(
i

y− ) 

Own 

attend- 

ance 

(yi)   

Mean 

peer 

attend- 

ance 

(
i

y− )  

Own 

attend- 

ance  

(yi) 

Mean  

peer  

attend- 

ance  

(
i

y− ) 

Own 

attend- 

ance 

(yi)  

Mean  

peer  

attend- 

ance  

(
i

y− ) 

Estimator OLS IV  1st-stage IV 1st-stage IV 1st-stage IV 1st-stage 

IV = proportion of treated peer 

within interval of:     

 

− 

full 

range 

 

− 

  

c ± 15 

 

− 

 

c ± 10  

 

− 

  

c ± 5 

 

− 

Mean peer attendance score  

(
i

y− ) 

0.567*** 1.175*  0.982*  0.712**  1.529  

(0.099) (0.695)  (0.548)  (0.358)  (0.985)  

          

Proportion of "treated" peer 

( , 15/10 /5i c
D− ± ) 

  0.867*** 

(0.262) 

 1.432*** 

(0.227) 

  0.672*** 

(0.128) 

 0.383*** 

(0.114) 

          

Weak-IV tests           

  F-statistic   9.74***   46.87***  170.56***  38.54*** 

  P-value    0.0066  0.0000  0.0000  0.0000 

  Shea’s partial R2   0.059  0.208  0.432  0.062 

          

Observations 227 224 224 224 224 224 224 223 223 

R2 0.223 − 0.626 − 0.685 − 0.774 − 0.624 

Notes:  

Robust SEs in parentheses, clustered at bins with 3 midterm points.  

All regressions control for gender, major, year in college, midterm I score and classmates' mean midterm I score.  ∗p < .10; ∗∗p < .05; ∗∗∗p < .01.  

 



 

5. Conclusion 

We propose a regression discontinuity approach to estimate peer effects on class 

attendance at the collegiate level by exploiting the notion of a regression discontinuity 

design as a locally randomized experiment. Using data from a classroom policy 

experiment in which students who scored below a cut-off on the first midterm exam were 

required to attend subsequent classes, we used the proportion of a student’s classmates 

falling on one side of the cut-off within a small interval around the cut-off as an 

instrument for peer attendance. We found that a one-point increase in classmates' average 

attendance score increases a student’s attendance score by 0.7 points. Such an impact can 

translate into a 4.1-point increase in a student's final course grade.
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