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1. Introduction

An increasing interest can be observed in the econometric literature, of studying mod-
els that allow for nonstationary volatility. The e¤ects of unconditional heteroskedasticity
on the usual unit root and stationarity tests have been studied by Cavaliere (2004),
Phillips and Xu (2006), Cavaliere and Taylor (2005, 2007, 2008) and Xu and Phillips
(2008). Stochastic volatility models have also been studied in the linear regression frame-
work (Hansen 1995, Boswijk 2001, Chung and Park 2007, Cavaliere and Taylor 2009).
Xu (2008) examined stable autoregressions around polynomial deterministic trends

with nonstationary volatility, and proposed test statistics for the coe¢cients of the model.
To derive these tests, Xu followed a variation of the procedures of Eicker (1963) andWhite
(1980), which requires a priori knowledge of the rate, 
n, that describes the (possibly)
explosive behavior of the nonstationary volatility of the errors. As a consequence, his
tests are based on a covariance matrix estimator which, in contrast to the Eicker-White
estimator, involves 
n. For the application of these tests, Xu also required that 
n _ n

k

with k 2 (�1; 1=2).
In this paper, I prove that even when the autoregression follows a polynomial trend

and the volatility is explosive, the heteroskedasticity robust test of White (1980), which
does not require any knowledge of 
n, remains asymptotically standard normal. The
result holds for any of the autoregressive coe¢cients or the coe¢cients of the polynomial
trend. A small Monte Carlo study shows that an application of a residual-based recursive-
design wild bootstrap procedure (RRWB) to White�s test statistic leads to signi�cant
improvements on the actual type I errors in small samples.

2. Theoretical Results

The model under study is of the form

yt =

pX

j=1

�jyt�j +

mX

i=0

�it
i + "t, 1 � t � n, p;m <1 . (1)

It is assumed that every root of the lag-polynomial �(L) = 1 �
�Pp

j=1 �jL
j
�
lies out-

side the unit circle, V ar ("t) < 1, "t = �t�t, where �ts are zero mean, iid, and �
2
t :=

V ar ("tjFt�1) = V ar (ytjFt�1) is a strictly positive (stochastic) volatility process, Ft�1
representing the information generated by all "i, �i+1, i < t, and, possibly, other processes
occurred up to time t� 1. Weak convergence with respect to the uniform metric on [0; 1]
is denoted by �=)�.
Assumption 1 (Boswijk 2005, Xu 2008):
(i) There exists a non-negative process � (�), with piecewise continuous sample paths,
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�2
�
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as n ! 1, for some non-random sequence f
ngn�1, where f�j = 1 if j = 0, f�j = ���j
if j � 1, and for every j � 0, W (j)(�) is a standard Brownian motion.



(ii) For some a > 0, E
�
j�tj4+a

�
< 1 and max1�t�nE

h
(
�1n �t)

4+a
i
< 1 uniformly

in n.
Assumption 2: �t and �t0 are independent for every t, t

0.

It can be easily proved that W (j)(�) and W (k)(�), j 6= k, are independent processes.

2.1 Asymptotic Inference

Let the (p+m+ 1)� (p+m+ 1) matrix bD = (bdi;j)1�i;j�p+m+1 be de�ned as

bD =
"
bD11

bD12

bD21
bD22

#
:=

 
nX
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XtX
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t

!�1 nX
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XtX
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nX
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XtX
0
t
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,

where Xt = [yt�1; : : : yt�p; 1; t; : : : ; t
m]0 and bD11 is (p�p). Let � = [�1; : : : �p; �0; : : : ; �m]0,

b�n :=
h
b�1;n; : : :b�p;n;b�0;n; : : : ;b�m;n

i0
its OLS estimate for a sample of n observations, and

b�n :=
h
b�1;n; : : :b�p;n

i0
be the estimated vector of the slope coe¢cients � = [�1; : : : �p]

0.

Under Assumptions 1 and 2, b�n is consistent, while the consistency of b�i;n requires,
in addition, that 
n = o

�
n(1+i)=2

�
(Xu 2008). If, additionally, 
n _ n

k, k 2 (�1; 1=2),
then

p
n(b�j;n � �j)=

q
bCX;j;j=)N(0; 1), where bCX;j;j is the (j; j) element of the matrix

bCX =
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and Y = diagf
p timesz }| {p

n;
p
n; : : : ;

p
n;
p
n
�1n ; n

3=2
�1n ; : : : ; n
(2m+1)=2
�1n g (Xu 2008, Corollary

3.1). In order for bCXjj to be feasible, 
n must be known. Note that bD 6= bCX=n when
m > 0 or 
n 9 1, because

1
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which holds only when Y =pnIp+m+1, Ip+m+1 being the (p+m+1)� (p+m+1) identity
matrix. Therefore, in general, tb�j;n :=

�
b�j;n � �j

�
=

q
bdj;j 6=

p
n(b�j;n � �j)=

q
bCX;j;j, 1 �

j � p, and tb�i;n := (b�i;n � �i)=
q
bdp+i+1;p+i+1 6=

p
n(b�i;n � �i)=

q
bCX;p+i+1;p+i+1, 0 � i � m.

Theorem 1: If Assumptions 1 and 2 hold then

(i) tb�j;n=)N(0; 1), 1 � j � p ;
(ii) under the null hypothesis H0: R� = r, where R is a k� p matrix of full row rank

and r 2 Rk, (Rb�n � r0)(R bD11R
0)�1(Rb�n � r)=)�2(k) ;

(iii) tb�i;n=)N(0; 1), 0 � i � m.
Remarks:

(i) The test statistics in Theorem 1 are feasible and do not require any knowledge of

n. Theorem 1(iii), however, can be used for conducting inference on the coe¢cient �i
only when b�i;n is consistent.
(ii) In fact, n bD is the Eicker-White asymptotic covariance matrix estimator. In the

context of our analysis, however, n bD does not necessarily converge.



2.2 Proof of Theorem 1

Xu (2008) showed that there exists a matrix G of the form

G =

�
Ip H
0 Im+1

�
, (2)

such that for eXt := GXt, under Assumptions 1 and 2, 

�2
n Y�1

Pn
t=1

eXt
eX 0
tY�1=)Q =

diagfQ1; Q2g and 
�4n Y�1
Pn

t=1
eXt
eX 0
tb"2tY�1=)U = diagfU1; U2g, where Q and U depend

on �(�), and Q1, U1 are p� p (proofs of Lemma 3.1 and Corollary 3.1, respectively). Let
A = diag fA11; A22g := Q�1UQ�1, where A11 is p�p. Lemma 3.1(ii) in Xu (2008) proves
that under Assumptions 1 and 2,
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hence,
Y (G0)�1 bDG�1Y =)A . (4)

Let �n := diagf
p
n
�1n ; n

3=2
�1n ; : : : ; n
(2m+1)=2
�1n g. Then,

Y =
�p
nIp 0

0 �n

�
) Y (G0)�1 =

� p
nIp 0

��nH 0 �n

�
. (5)

Applying (5) in (3) we obtain
p
n
�
b�n � �

�
=)MNp (0; A11). Applying now (5) in (4) we

have that n bD11=)A11, and Theorems 1(i) and (ii) follow directly.
Let, now, P (1; j) be the (p+m+1)� (p+m+1) permutation matrix for rows 1 and

j. Let also bF1;j;L be the lower triangular invertible matrix with strictly positive diagonal
elements, of the Cholesky decomposition of bF1;j := P (1; j) bDP (1; j), i.e. bF1;j = bF1;j;L bF 01;j;L.
Because P (1; j) = P (1; j)0 = P (1; j)�1, by virtue of (4) we have that

Y (G0)�1 bDG�1Y = Y (G0)�1 P (1; j) bF1;j;L bF 01;j;LP (1; j)G�1Y =)A . (6)

Combining (6) with (3) we conclude that

bF�11;j;LP (1; j)G0Y�1Y (G0)
�1
�
b�n � �

�
= bF�11;j;LP (1; j)

�
b�n � �

�
=)N(0; Ip+m+1). (7)

For j = p + 1 + i, 0 � i � m, the �rst element of the vector P (1; j)(b�n � �) is b�i;n.
Theorem 1(iii) follows from (7), because bF1;j;L is a lower triangular matrix and its upper
left element is indeed

p
dj;j.



3 Simulation Results

This section presents the results of Monte Carlo simulations, assessing the small-
sample performance of the tests provided by Theorem 1 and by the following RRWB
applied on these tests (see also Gonçalves and Kilian 2004, and Xu 2008):

Estimate model (1) by OLS and set b"t = yt � X 0
t
b�, 1 � t � n. Let fvtg1�t�n �

NIID(0; 1), b"�t = vtb"t, 1 � t � n, be the series of bootstrap errors, and fy�t g be de�ned
by setting for �p + 1 � t � 0, y�t = yt, and for 1 � t � n, y�t = X�0

t
b� + b"�t , where

X�
t =

�
y�t�1; : : : ; y

�
t�p; 1; t; : : : ; t

m
�0
. Finally, let b�� be the OLS estimate of b� for model

y�t = X
�0
t
b� + b"�t , and e"�t = y�t �X�0

t
b�� be the bootstrap residuals. The bootstrap analog

of bD is bD� := (
Pn

t=1X
�
tX

�0
t )

�1
�Pn

t=1X
�
tX

�0
t (e"�t )

2
�
(
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�
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�0
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The data generating process is the following: yt = �0 + �1t+ �2t
2 + �1yt�1 + �2yt�2 +

"t, 1 � t � n, y�1 = y0 = 0,where "t = �t�t, n 2 f50; 100; 250g and (�1; �2) 2
f(0:4; 0:2); (0:6; 0:3)g. We also set �0 = 2, �1 = �0:04 and �2 = 0:0002. Because
m > 0, tb�j;n and tb�i;n do not coincide with the corresponding statistics of Xu (2008).
The number of replications is 4000, and the number of bootstrap replications is 999.
The test statistics of Theorem 1(i) (asymptotic) and of the RRWB are used in order
to obtain the 90% equal tailed percentile-t con�dence intervals. Concerning f�tg, let
[ut; �t]

0�NIID (0; diagf0:16; 1g), 1 � t � n, z0 = 0 and for t � 1, zt = zt�1 + 0:5ut. We
consider cases where �t = jzt�1jk, k 2 f0:5; 1; 2; 3g, and �t = ezt�1. When �t = jzt�1jk, 
n
increases at a rate similar to nk=2. Therefore, b�i;n is consistent only if k < 1 + i. Chung
and Park (2007) examined the case �t = e

zt�1, but not in an autoregressive framework.

When �t = e
zt�1 , none of the estimators b�i;n is consistent. Nevertheless, Theorem 1 im-

plies that b�n remains consistent and inference on the autoregressive coe¢cients can be
conducted.

Table I: Actual type I errors for the 90% con�dence intervals based on the asymptotic
distribution and the RRWB for the autoregressive coe¢cients.

�1 = :4, �2 = :2 �1 = :6, �2 = :3
ASY WB ASY WB

�t �1 �2 �1 �2 n = 50 �1 �2 �1 �2p
jzt�1j :176 :153 :113 :121 :221 :169 :136 :125
jzt�1j :181 :158 :113 :125 :217 :177 :126 :132
jzt�1j2 :198 :176 :116 :133 :218 :190 :127 :137
jzt�1j3 :211 :192 :111 :134 :227 :207 :123 :141
ezt�1 :226 :196 :128 :140 :271 :211 :153 :143

�1 �2 �1 �2 n = 100 �1 �2 �1 �2p
jzt�1j :147 :128 :100 :096 :141 :124 :102 :103
jzt�1j :150 :133 :115 :118 :147 :134 :119 :121
jzt�1j2 :170 :158 :115 :119 :174 :150 :122 :120
jzt�1j3 :184 :180 :130 :138 :190 :173 :134 :140
ezt�1 :181 :170 :120 :126 :177 :156 :121 :123

�1 �2 �1 �2 n = 250 �1 �2 �1 �2p
jzt�1j :129 :123 :094 :099 :119 :113 :091 :093
jzt�1j :136 :127 :099 :101 :132 :127 :102 :105
jzt�1j2 :148 :140 :113 :109 :145 :140 :111 :113
jzt�1j3 :163 :151 :110 :117 :164 :153 :114 :115
ezt�1 :167 :160 :114 :114 :158 :147 :109 :108



Tables I and II report the results that correspond to the autoregressive coe¢cients and
the (consistently estimated) coe¢cients of the deterministic trend, respectively. When
n = 50 the test based on the asymptotic con�dence intervals (ASY) su¤ers from severe
size distortions. When symmetric bootstrap con�dence intervals (WB) are employed, size
distortions are signi�cantly reduced. As n increases, the type I errors of ASY decrease,
albeit at a slow rate.1 On the other hand, the rejection rates of WB for n = 250 are fairly
close to 10%.
Recall that bD and bCX=n do not coincide when m > 0 or 
n 9 1. A small simulation

study provides some evidence about the performance of the tests proposed in Xu (2008).
Note that these tests require knowledge of 
n. We set n = 1000, the number of replications

equal to 6000 and (�1; �2) 2 f(0:4; 0:2); (0:6; 0:3)g. When f�tg 2
nnp

jzt�1j
o
; fjzt�1jg

o
,

the rejection rates of the asymptotic procedure for all the regression coe¢cients are prac-
tically 0%. When �t = jzt�1j2, the rejection rates that correspond to the autoregressive
coe¢cients range from 11:58% to 12:35%. However, the rejection rates that correspond
to �2, which is the only consistently estimated coe¢cient of the deterministic trend, are
again practically 0%.

Table II: Actual type I errors for the 90% con�dence intervals based on the asymptotic
distribution and the RRWB for the deterministic trend coe¢cients.

�1 = :4, �2 = :2 �1 = :6, �2 = :3
ASY WB ASY WB

n �t �0 �1 �2 �0 �1 �2 �0 �1 �2 �0 �1 �2p
jzt�1j :186 :216 :227 :126 :136 :148 :263 :439 :420 :138 :237 :229

50 jzt�1j :221 :245 :143 :151 :423 :404 :220 :214
jzt�1j2 :248 :152 :404 :199p
jzt�1j :148 :144 :152 :099 :104 :107 :235 :221 :231 :120 :120 :126

100 jzt�1j :157 :162 :103 :108 :260 :272 :132 :135
jzt�1j2 :180 :115 :302 :154p
jzt�1j :130 :135 :134 :110 :112 :110 :204 :198 :200 :120 :118 :121

250 jzt�1j :137 :138 :102 :102 :203 :207 :122 :122
jzt�1j2 :148 :110 :223 :134

4. Conclusions

This paper examined the problem of inference in stable autoregressions, around poly-
nomial deterministic trends, under nonstationary volatility. It was shown that the Eicker-
White heteroskedasticity robust t�statistics are asymptotically standard normal. The
corresponding tests are always feasible and do not require any knowledge of the asymp-
totic rate of the nonstationary volatility, 
n. These tests can be directly applied to
conduct inference on the autoregressive coe¢cients and on any coe¢cient of the deter-
ministic trend given that the corresponding OLS estimator is consistent. A small Monte
Carlo study demonstrated the good performance of the residual-based recursive-design
wild bootstrap procedure in terms of accuracy of the actual type I errors, even in small

1For example, using 6000 replications with n = 5000, the actual type I error was 12:6% for H0:
�1 = 0:6, when (�1; �2) = (0:6; 0:3) and �t = e

zt�1 .



samples. As the persistence of the autoregressive process increases, larger samples are
required for the convergence of the rejection rates to their asymptotic value.
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