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1 Introduction

In the real world, people exert a great deal of effort to put aside their rivalries and win
a prize. This includes electoral competition, litigation, rent-seeking, patent races, sporting
competition, competition in entrance examination, military combat, etc. These situations
are referred to as contests, and there is a large and growing literature on the theory of
contests and its application from the seminal contributions by Tullock (1980).1

Among the literature on contests, Pérez-Castrillo and Verdier (1992), Baye et al. (1994),
and Cornes and Hartley (2005) explore the existence and uniqueness of the Nash equilibrium
in the Tullock contest in which n(≥ 2) individual players compete against each other to win
a prize and player i’s contest success function is defined as pi = xr

i/
∑n

j=1 x
r
j where xi is the

player i’s effort level and r(> 0) characterizes the returns to scale of the technology (each
player’s production function) of the contest. Specifically, Pérez-Castrillo and Verdier (1992)
find that, when the technology exhibits constant (r = 1) or decreasing returns of scale (r < 1)
or the restricted increasing returns of scale (r ≤ n

n−1
), there exists a unique symmetric Nash

equilibrium, while there exist multiple asymmetric equilibria when the technology is with the
increasing returns of scale (r > n

n−1
). In the simplified Tullock contest with n = 2, Shogren

and Baik (1991) show that when r = 3, there is no Nash equilibrium. Baye et al. (1994)
further find that there exists the symmetric mixed-strategy equilibrium when r > 2 as well
as the symmetric pure-strategy equilibrium existing when r ≤ 2. Cornes and Hartley (2005)
consider the case in which the players are heterogeneous, and find that the increasing returns
of the scale of the technology complicates payoff-maximization problems for the players in
the contest and hence typically there exist multiple equilibria.

Note that the above studies investigate the impact of the returns to scale of the technol-
ogy on the characterization of the Nash equilibrium in the contest among individual players.
On the other hand, Baik (2008) and Epstein and Mealem (2009) consider the group contest
in which each group consists of several players (group members) and the groups compete
against each other to win a group-specific public-good prize, given different returns to scale
of the technology, respectively. Baik (2008) assumes the linear technology for players’ pro-
duction function, i.e., constant returns of scale of the technology, and examines the Nash
equilibrium in the group contest where the players within each group may have different
valuations on the prize. He shows that full free-riding exists at equilibrium, i.e., the highest-
valuation players in each group expend efforts and the others in that group do nothing.
Unlike Baik (2008), Epstein and Mealem (2009) adopt decreasing returns of scale in the
players’ production function in the group contest, and obtain different results. In their equi-
librium, all the players in each group exert efforts proportionally to their valuations and thus
free-riding is decreased relative to in Baik (2008). Then, a natural question to ask should
be about the characterization of the equilibrium in the group contest when the technology
exhibits increasing returns to scale. However, this question has not yet been investigated.
In this paper, we try to answer this.

The paper proceeds as follows. In Section 2, we develop our model and analyze it in
Section 3. Finally, Section 4 concludes.

1For details, see Corchón (2007), Garfinkel and Skaperdas (2007), and Konrad (2009).



2 The model

We adopt the group contest model of Baik (2008). Let us consider a contest in which
n groups vie for winning a group-specific public-good prize, where n ≥ 2. Group i consists
of mi risk-neutral players who exert effort to win the prize, where mi ≥ 2. We denote the
valuation player k in group i puts on the prize by vik and assume the following.
Assumption 1. vi1 ≥ vi2 ≥ · · · ≥ vimi

> 0 ∀ i = 1, . . . , n.
Let eik represent the nonnegative effort level exerted by player k in group i. Through an

increasing function f(·), the effort of player k in group i is transformed into his individual
performance in the contest. As in Szidarovszky and Okuguchi (1997), we name f(·) players’
‘production function for the contest’. Denoting the performance of player k in group i by
xik, we define it as follows:

xik := f(eik) = eαik (1)

where α > 0. Each player’s performance increases with his effort level, i.e., dxik

deik
> 0. The rate

of increase in the individual performance depends on the value of α. If α = 1, the production
function exhibits constant returns to scale (CRS): each player’s performance increases with
its effort level at a constant rate. If α < 1, it exhibits decreasing returns to scale (DRS) and
the performance increases at a decreasing rate, while, if α > 1, it exhibits increasing returns
to scale (IRS) and the performance increases at an increasing rate.

We assume that all the players have a common effort-cost function with a constant
marginal cost: c(eik) = eik. Although we assume that the cost function is linear and the
players’ marginal costs for expending effort are identical, these are not a restriction.2

Individual performances of the players within each group are mapped onto the perfor-
mance of that group through a group impact function F (·). Denoting the performance of
group i by Xi, we define it as follows:

Xi := F (xi1, xi2, · · · , ximi
) =

mi
∑

l=1

xil, (2)

which implies that individual performances of the players within a group are perfect substi-
tutes and the contest becomes the perfect-substitute group contest in Baik (2008).3

Let pi denote the probability that group i wins the prize. The winning probability of
each group depends on the performance of that group and the other groups’ performances

2Consider an alternative model in which player k in group i has its valuation Vik and effort-cost function
cik · eβik where cik and β > 0. If we reformulate this model such that player k in group i has the valuation

vik := Vik

cik
and the effort-cost function e

β
ik, then the reformulated model with β = 1 is isomorphic to our

original model. Besides, if we redefine yik := e
β
ik as the effort-cost function and accordingly xik := y

α
β

ik as the
production function for the contest as in Epstein and Mealem (2009), then the above-reformulated model is
transformed into the one in which each player exerts its effort yik and has the production function y

γ
ik and

the effort-cost function yik, where γ = α
β
. This transformed model is also isomorphic to the original one.

3According to the functional form of F (·), there appear different types of group contests. For example,
if F (·) = min {xi1, xi2, ...ximi

}, it becomes the weakest-link group contest in Lee (2012). And, if F (·) =
max {xi1, xi2, ...ximi

}, it becomes the best-shot group contest in Chowdhury et al. (2013).



as well. That is, the contest success function for group i is defined as follows:

pi(X1, X2, ..., Xn), (3)

which satisfies the regularity conditions for the contest success function. Assumption 2
specifies them.
Assumption 2. 0 ≤ pi ≤ 1,

∑n

i=1 pi = 1, pi(0, . . . , 0) = 1
n
, ∂pi

∂Xi
≥ 0, ∂2pi

∂X2

i

≤ 0, ∂pi
∂Xj

≤ 0,
∂2pi
∂X2

j

≥ 0, ∂pi
∂Xi

> 0 and ∂2pi
∂X2

i

< 0 for some Xj > 0, ∂pi
∂Xj

< 0 and ∂2pi
∂X2

j

> 0 for Xi > 0, where

i 6= j.
Let πik represent the payoff for player k in group i. The payoff function for player k in

group i is then defined as follows:

πik = vikpi(X1, ..., Xn)− eik. (4)

Note that Xi = F (xi1, xi2, . . . , ximi
) = F (f(ei1), f(ei2), . . . , f(eimi

)) = F (eαi1, e
α
i2, . . . , e

α
imi

) =
∑mi

l=1 e
α
il.

We assume that all the players in the contest choose their effort levels independently and
simultaneously. All of the above is common knowledge among the players, and we employ
Nash equilibrium as our solution concept.

3 Analysis of the model

3.1 α = 1: the CRS production function

When α = 1, group i’s performance is defined as Xi =
∑mi

l=1 xil =
∑mi

l=1 eil. Then player
k in group i chooses eik that maximizes its expected payoff

πik = vikpi(Xi, X−i)− eik, (5)

where X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn).
Let ebik denote the “imaginary” best-response of player k in group i, which means the

best response of player k when he is a unique player in group i, given effort levels of all the
players in the other groups. Namely, ebik is the effort level that maximizes

πb
ik = vikpi(eik, X−i)− eik. (6)

Thus, ebik satisfies the following first-order condition for maximizing πb
ik:

vik
∂pi
∂eik

− 1 ≤ 0.4 (7)

4The second-order condition for maximizing is satisfied.



By Assumption 1 and 2, the first-order condition means that

ebi1(X−i) ≥ ebi2(X−i) ≥ · · · ≥ ebimi
(X−i) for all X−i. (8)

Now let eBik denote the best-response of player k in group i to the effort levels of all the
other players in the contest. By using ebik defined above, we have the following best response
of player k in group i:

eBik(e−ik, X−i) =

{

ebik(X−i)−
∑mi

l 6=k eil for ebik(X−i) >
∑mi

l 6=k eil
0 for ebik(X−i) ≤

∑mi

l 6=k eil,
(9)

where e−ik = (ei1, . . . , eik−1, eik+1, . . . , eimi
).

From the best responses of the players in the contest, we obtain the pure-strategy Nash
equilibrium of the game. Letting a (

∑n

j=1 mj)−tuple vector of effort levels, (e∗11, . . . , e
∗
1m1

, . . . , e∗n1, . . . , e
∗
nmn

),
represent a Nash equilibrium of the game, Proposition 1 describes the equilibrium, which is
found in Baik (2008).

Proposition 1 (Baik, 2008) The following strategy profiles constitute the Nash equilibria of
the game.

(a) For group i with vi1 > vi2, its players play the strategies: e∗i1 = ebi1(X
∗
−i) and e∗il = 0 for

l = 2, . . . ,mi.

(b) For group j with vj1 = vjt > vjt+1 for some t, its players use strategies such that
∑t

l=1 e
∗
jl = ebj1(X

∗
−j) and e∗jl = 0 for l = t+ 1, . . . ,mj, where 2 ≤ t ≤ mj.

Proposition 1 implies that, in equilibrium, the highest-valuation player(s) in each group
would be active, i.e., exert positive effort, and the rest of the players in that group free ride
on the active player(s).

3.2 α < 1: the DRS production function

When α < 1, the performance of group i is defined as Xi =
∑mi

l=1 xil =
∑mi

l=1 e
α
il, and

player k in group i seeks to maximize its expected payoff

πik = vikpi(Xi, X−i)− eik (10)

with respect to eik. Then eBik satisfies the first-order condition for maximizing πik is:

vik
∂pi
∂Xi

αeα−1
ik − 1 = 0 ⇔

∂pi
∂Xi

α =
e1−α
ik

vik
. (11)

The second-order condition for maximizing πik is:

vikα

(

∂2pi
∂X2

i

αe
2(α−1)
ik + (α− 1)

∂pi
∂Xi

eα−2
ik

)

< 0 (12)



, which is satisfied for any eik > 0 since the two terms within the bracket have negative
signs by Assumption 2 and α < 1. This means that the interior maximizer eBik satisfying the
first-order condition (11) is the global maximizer.

Let a (
∑n

j=1 mj)−tuple vector of positive effort levels, (e∗11, . . . , e
∗
1m1

, . . . , e∗n1, . . . , e
∗
nmn

),
represent a Nash equilibrium. Then, at the equilibrium, the first-order condition (11) must
be satisfied for all i = 1, . . . , n and k = 1, . . . ,mi, which implies that

e∗i1
1−α

vi1
=

e∗i2
1−α

vi2
= · · · =

e∗imi

1−α

vimi

> 0 ∀ i = 1, 2, . . . , n. (13)

By Assumption 1, we then have the following:

e∗i1 ≥ e∗i2 ≥ · · · ≥ e∗imi
> 0 ∀ i = 1, 2, . . . , n. (14)

Proposition 2 summarize the equilibrium of the game, which are specified in Epstein
and Mealem (2009).

Proposition 2 (Epstein and Mealem, 2009) The following strategy profile constitutes the
Nash equilibria of the game.

(a) Each player plays the strategy: e∗ik = eBik(e
∗
−ik, X

∗
−i) > 0.

(b) e∗ik ≥ e∗ik+1 where 1 ≤ k ≤ mi − 1.

Proposition 2 means that all the players exert positive efforts in equilibrium and within
each group, the higher valuation the player has, the greater effort he exerts. There doesn’t
exist the full free-ride problem shown in the previous case where α = 1.

3.3 α > 1: the IRS production function

The performance of group i is defined as Xi =
∑mi

l=1 xil =
∑mi

l=1 e
α
il, and player k in group

i seeks to maximize its expected payoff

πik = vikpi(Xi, X−i)− eik (15)

with respect to eik. Then, the first-order condition for maximizing πik is given as follows and
eBik satisfies this:

vik
∂pi
∂Xi

αeα−1
ik − 1 = 0 ⇔

∂pi
∂Xi

α =
1

vike
α−1
ik

. (16)

The second-order condition for the maximization is as follows:

vikα

(

∂2pi
∂X2

i

αe
2(α−1)
ik + (α− 1)

∂pi
∂Xi

eα−2
ik

)

< 0 (17)

, which is not necessarily satisfied for any eik > 0 since the first term within the bracket
has a negative sign but the second one has a positive sign. The second-order condition is



satisfied only under the following condition:

α− 1

α

∂pi
∂Xi

−∂2pi
∂X2

i

< eαik, (18)

which means that the interior maximizer eBik, satisfying the first-order condition (16) and
the second-order condition (17), is the local maximizer for sure, but not necessarily global
maximizer.

Let a (
∑n

j=1 mj)−tuple vector of positive effort levels, (e∗11, . . . , e
∗
1m1

, . . . , e∗n1, . . . , e
∗
nmn

),
represent a Nash equilibrium in which the first-order and second-order conditions are satisfied
for all i = 1, ..., n and k = 1, ...,mi. Then, at this equilibrium, the first-order condition (16)
implies that

vi1e
∗
i1
α−1 = vi2e

∗
i2
α−1 = · · · = vimi

e∗imi

α−1 ∀ i = 1, 2, . . . , n. (19)

By Assumption 1, we then have

0 < e∗i1 ≤ e∗i2 ≤ · · · ≤ e∗imi
∀ i = 1, 2, . . . , n. (20)

Inequalities (20) mean that all the players exert positive efforts in equilibrium and within
each group, the lower valuation the player has, the more effort he exerts. This is opposite
to the result in the previous case where α < 1. Then, dose this type of equilibrium really
exist?

Here we have to note that the second-order condition (17) is satisfied only under the
certain condition (18), not for any arbitrary eik > 0. This implies that a strategy profile, sat-
isfying the first-order condition (16) and the second-order condition (18) for all i = 1, . . . , n
and k = 1, . . . ,mi, may not constitute a Nash equilibrium, because the second-order con-
dition (18) does not ensure that each player’s strategy, i.e., its interior maximizer in that
strategy profile, is the global maximizer. Namely, for a player, its interior solution satisfying
the first-order condition may be maximizing its payoff locally, not globally. And, in this case,
there may exist an incentive for the player to change its strategy from its interior solution
to the corner solution, given the other players’ strategies. For this reason, the set of interior
solutions satisfying all the first-order conditions may not be a Nash equilibrium, even though
they meet all the second-order conditions for the (local) maximum. Hence, when α > 1, we
must be careful in determining whether a strategy profile obtained from the first-order and
second-order conditions constitutes a Nash equilibrium or not. In order to understand this
more specifically, we consider the following simple example in which two groups compete
against each other, each group consists of two members, and the members within each group
have the valuations on the prize, k ≥ 1 and 1, respectively.5 We use the Tullock-form contest
success function for our specific analysis, i.e., pi(X1, X2) =

Xi

X1+X2

.

5I thank the anonymous referee and the associate editor for the insightful suggestion on this example.



3.3.1 The symmetric two-group-two-member case

Using the parameters n = 2, m1 = m2 = 2, v11 = v21 = k, v12 = v22 = 1, and the contest
success function pi(X1, X2) =

Xi

X1+X2

for i = 1, 2, we obtain the following symmetric interior
solutions which satisfy the first-order condition (16) for all players:

e∗11 = e∗21 =
αk

4(1 + k
α

α−1 )
and e∗12 = e∗22 =

αk
α

α−1

4(1 + k
α

α−1 )
. (21)

Note that e∗i2 ≥ e∗i1 > 0 because α > 1 and k ≥ 1. The second-order condition (18),
required for the above solutions to be interior maximizers, is given:

k <

(

1

α− 1

)
α−1

α

, (22)

which requires the sufficient condition α < 2 because k ≥ 1. At the strategy profile
(e∗11, e

∗
12, e

∗
21, e

∗
22), the players’ expected payoffs are

π∗
11 = π∗

21 =
k

4

(

2−
α

1 + k
α

α−1

)

and π∗
12 = π∗

22 =
1

4

(

2−
αk

α
α−1

1 + k
α

α−1

)

. (23)

We now examine whether the strategy profile (e∗11, e
∗
12, e

∗
21, e

∗
22) constitutes a Nash equi-

librium. For that strategy profile to be the Nash equilibrium, there shouldn’t be any incentive
for any player to deviate from it. In other words, each player shouldn’t have any incentive
to change its strategy from its interior maximizer in (21) to its boundaries, 0 or ∞, given
the other players’ strategies. First, we consider the non-deviation condition for player 1 (the
high-valuation player) in each group. Denoting πd

i1(ei1) by the expected payoff for player 1
in group i obtained when he changes its strategy from e∗i1 to ei1 = 0 or ∞, we have

πd
i1(ei1 = 0) =

k
2α−1

α−1

2k
α

α−1 + 1
and πd

i1(ei1 = ∞) = −∞. (24)

Comparing πd
i1(ei1 = 0) in (24) and π∗

i1 in (23), we obtain the following non-deviation
condition for player 1 in each group:

π∗
i1 − πd

i1(ei1 = 0) ≥ 0 ⇔ k ≤

(

2− α

2(α− 1)

)
α−1

α

, (25)

which requires the sufficient condition α < 4
3
because k ≥ 1.

By the same way, we derive the non-deviation condition for player 2 in each group. This
is given as follows:

π∗
i2 − πd

i2(ei1 = 0) ≥ 0 ⇔ k ≥

(

2(α− 1)

2− α

)
α−1

α

, (26)



which are trivially satisfied from the sufficient condition α < 4
3
above.

Combining the second-order condition (22) and the non-deviation conditions (24) and
(25), we obtain the following equilibrium condition for the strategy profile (e∗11, e

∗
12, e

∗
21, e

∗
22)

to constitute a Nash equilibrium:

α <
4

3
and k ≤

(

2− α

2(α− 1)

)
α−1

α

. (27)

Lemma 3 summarizes the results for the two-group-two-member case.

Lemma 3 (The symmetric two-group-two-member case) When α < 4
3
and k ≤

(

2−α
2(α−1)

)
α−1

α

,

the following strategy profile constitutes the Nash equilibria of the game.

(a)

(

e∗11 =
αk

4(1+k
α

α−1 )
, e∗12 =

αk
α

α−1

4(1+k
α

α−1 )
, e∗21 =

αk

4(1+k
α

α−1 )
, e∗22 =

αk
α

α−1

4(1+k
α

α−1 )

)

.

(b) e∗11 = e∗21 ≤ e∗12 = e∗22: the low-valuation players exert more efforts.

Note that, at this equilibrium, all the players exert positive efforts and thus there is
no free-riding issue within each group. Along with this equilibrium, we guess that there
exists another type of equilibrium in which only a player in each group puts positive effort
and the other in that group puts nothing, i.e., the full free-riding problem occurs. Since,
in our model, each group’s performance is defined as the sum of individual performances of
the players within that group, which implies that the individual performances are perfect
substitutes within the group, the low-valuation player in each group is likely to free ride
on the high-valuation player in that group. Thus, we predict the existence of the Nash
equilibrium in which only the high-valuation player in each group puts some positive effort
and the low-valuation player does nothing. Furthermore, we also expect the existence of
other possible equilibria in which the active player in each group is not necessarily the high-
valuation player, depending on the values of the parameters. To investigate the existence of
these equilibria, we consider the following numerical examples.

3.3.2 Numerical examples and another type of equilibria

Example 1. n = 2, m1 = m2 = 2, k = 1.1, α = 1.2
Given these parameters, the equilibrium conditions in (27) are met and, therefore, there
exists the Nash equilibrium presented in Lemma 3. Putting the parameters into (a) in
Lemma 3, we get the following symmetric numerical solutions satisfying the first-order and
the second-order conditions for maximizing each players’ payoffs:

(e∗11 = 0.119066476, e∗12 = 0.19175775, e∗21 = 0.119066476, e∗22 = 0.19175775).

The numerical plots of each player’s expected payoff for given the other players’ effort
levels above, e.g., the graph π11(e11) for e12 = 0.19175775, e21 = 0.119066476, and e22 =
0.19175775, reveal that ei1 = 0.119066476 and ei2 = 0.19175775 give each players the highest



expected payoffs, respectively, i.e., they are genuinely the global maximizers. Therefore,
the above player’s effort levels obtained from the first-order conditions constitutes a Nash
equilibrium. Again, at this equilibrium, the low-valuation player in each group exerts more
than the high-valuation player in that group.

In addition to this equilibrium, we have checked the existence of another type of equilibria
in which only a player in each group puts positive effort and the other in that group puts
nothing. Actually, in this example, those equilibria exist as well:

(e∗11 = 0.33, e∗12 = 0, e∗21 = 0.33, e∗22 = 0),

(e∗11 = 0, e∗12 = 0.30, e∗21 = 0, e∗22 = 0.30),

(e∗11 = 0.328923166, e∗12 = 0, e∗21 = 0, e∗22 = 0.29902106),

(e∗11 = 0, e∗12 = 0.29902106, e∗21 = 0.328923166, e∗22 = 0).

Example 2. n = 2, m1 = m2 = 2, k = 1.25, α = 1.2
Given these parameters, the equilibrium conditions in (27) are not satisfied and, thus, the
equilibrium in Lemma 3 does not exist. Specifically, putting these parameters into (a) in
Lemma 3, we have the following symmetric numerical solutions satisfying the first-order and
the second-order conditions for maximizing each players’ payoffs:

(e∗11 = 0.077886517, e∗12 = 0.237690786, e∗21 = 0.077886517, e∗22 = 0.237690786).

At this strategy profile, the high-valuation player in each group obtains its expected
payoff πi1 = 0.5471134831, while he gets higher expected payoff πd

i1 = 0.5525731340 when he
reduces her effort level from e∗i1 = 0.077886517 to ei1 = 0. This means that e∗i1 = 0.077886517
results in the local maximum for given the other players’ effort levels above. In fact, the
numerical plot of his expected payoff reveals that e∗i1 = 0.077886517 is only a local maximizer
and the global maximum is obtained at ei1 = 0. Therefore, the above players’ effort levels
computed from the first-order and the second conditions is not a Nash equilibrium. However,
as in Example 1, we find other equilibria in which only a player within each group exerts
effort and the other does noting:

(e∗11 = 0.375, e∗12 = 0, e∗21 = 0.375, e∗22 = 0),

(e∗11 = 0, e∗12 = 0.3, e∗21 = 0, e∗22 = 0.3),

(e∗11 = 0.368357461, e∗12 = 0, e∗21 = 0, e∗22 = 0.294685969),

(e∗11 = 0, e∗12 = 0.294685969, e∗21 = 0.368357461, e∗22 = 0).

Example 3. n = 2, m1 = m2 = 2, k = 1.75, α = 1.2
Given these parameters, the equilibrium conditions in (27) are not satisfied. Thus, the
equilibrium in Lemma 3 does not exist. In this example, we find that there exists only a
unique symmetric Nash equilibrium where the high-valuation players in each group exert



efforts and the low-valuation players free ride:

(e∗11 = 0.525, e∗12 = 0, e∗21 = 0.525, e∗22 = 0).

So far we have analyzed the symmetric two-group-two-member case and considered its
several numerical examples. Through this exercise, we have gained a basic understanding of
the existence and the structure of the Nash equilibrium in the group contest with the IRS
production function, although our analysis does not provide complete information about the
equilibrium in the general setting with n(≥ 2) asymmetric groups. Proposition 4 summarizes
it.

Proposition 4 When α > 1, the following strategy profile may constitute the Nash equilibria
of the game.

• The equilibrium derived from the first-order conditions for maximizing each players’
payoffs

(a) Each player plays the strategy: e∗ik = eBik(e
∗
−ik, X

∗
−i) > 0.

(b) e∗ik ≤ e∗ik+1 where 1 ≤ k ≤ mi − 1.

• The equilibrium in which the highest-valuation player in each group exerts positive
effort and the others in that group free ride on the active player

(a) Each players play the strategies: e∗i1 = ebi1(X
∗
−i) and e∗il = 0 for l = 2, . . . ,mi.

(b) (e∗11, 0, . . . , 0, e
∗
21, 0, . . . , 0, · · · , e

∗
n1, 0, . . . , 0).

• Equilibrium in which the kith-highest-valuation player in each group i exerts positive
effort and the others in that group free ride on the active player, other than k1 = k2 =
· · · = kn = 1

(a) Each players play the strategies: e∗iki = ebiki(X
∗
−i) and e∗il = 0 for l = 1, 2, . . . , ki −

1, ki + 1, . . . ,mi.

(b) (0, . . . , 0, e∗1k1 , 0, . . . , 0, · · · , 0, . . . , 0, e
∗
nkn

, 0, . . . , 0).

4 Conclusion

In the group contest, the production function for the contest has an important role
in shaping the nature of the equilibrium. The constant returns to scale in the production
function brings us the equilibrium in which the full free-ride problem occurs, i.e., only the
highest-valuation players in each group are active. On the other hand, the full free-ride
problem does not occur in case of the decreasing returns to scale in the production function:
the higher valuation the player has, the more effort he exerts. Lastly, when the production



function exhibits increasing returns to scale, there exist possibly different types of multiple
equilibria in which: 1) the lower valuation the player has, the more effort he exerts, 2) only
the highest-valuation players in each group are active, and 3) in each group, there is a unique
active player whose valuation is not the highest within that group.
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