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Abstract
This study investigates cointegration among daily corn cash prices from seven Midwestern states for January 2006 ∼

March 2011, using both time invariant and time varying models. Changing cointegration is captured by time varying

models, especially for the second half of the sample. The result identifies time periods for which a time invariant or

time varying model is appropriate for further policy analysis.
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1. Introduction

Cointegration has been widely adopted to model long-run economic relationships, typically

through a time invariant (TI) vector error correction model (VECM)1. For example, financial

and commodity price analysis is an area with many empirical studies that determine cointe-

gration among different series as a model specification step before conducting further policy

analysis such as causality identification and forecasting. However, it may be too restrictive to

assume TI parameters because economic relationships tend to change over time. This could

become more obvious for studies using a large sample size or a long time span and may cause

failure to identify cointegration even among well-postulated economic relationships, which

is likely to lead to uninformative or even misleading policy implications.

Considering the possibility that economic relationships, and thus model parameters, are

time varying (TV), the introduction of structural breaks or other forms of nonlinearities in

cointegration is one way to estimate a model, especially when instability is caused by abrupt

shocks. Separate from incorporating structural breaks, two recently developed TV models

suggest promising ways to model cointegration that possibly changes over the whole time

period under consideration, especially when mutations of cointegration among associated

variables are gradual and smooth. This pattern is common among changes of commodity

prices. One model by Bierens and Martins (2010), BM-TVCM, treats the TV cointegration

vector(s) in a VECM as expansions in terms of Chebyshev time polynomials, the other model

by Koop et al. (2011), KLS-TVCM, takes a Bayesian perspective and divides parameters of

a VECM into different blocks to determine whether each of them is TV. These two methods

are applied to daily corn cash prices from seven Midwestern states — Iowa, Illinois, Indiana,

Ohio, Minnesota, Nebraska, and Kansas — for January 2006 ∼ March 2011 to investigate TV
cointegration that possibly inhabits the different series. As a comparison, a TI model also is

considered as the benchmark. The empirical result identifies time periods for which a time

invariant or time varying model is appropriate. It could be of interest to market participants

by expanding their knowledge set of price dynamics among regional cash markets and sever

1Abbreviations: TI - time invariant; TV - time varying; BM - Bierens and Martins; KLS - Koop, Leon-

Gonzalez, and Strachan; TVCM - time varying cointegration model; VECM - vector error correction model.



as the starting point for further policy analysis.

Combined applications of TV and TI models and comparisons of empirical results based

on different models, in a broader sense, shed light on price analysis of other agricultural

commodities such as wheat and soybean. Investigations of resource and financial markets are

natural extensions as well. It is important for researchers to explore policy implications based

on appropriate approaches to cointegration modeling. For example, the result in the current

study suggests that TV or TI modeling of cointegration should match specific sample periods

for further policy analysis such as causality tests, impulse responses, variance decompositions,

and price forecasts. Further, the sensitivity of policy implications to cointegration modeling,

TV or TI, could be investigated. Because heavy computing is involved in applications of TV

models, TI models might be empirically taken as approximations to TV models for policy

analysis when variations in cointegration over time are minor to moderate. TV cointegration

that inhabits economic variables for certain periods of a sample also indicates that a closer

examination of these periods for driving forces of variations in cointegration is worthwhile

provided with necessary data.

The reminder of this study is organized as follows. Section 2 describes the data used for

analysis. Section 3 reports cointegration tests based on the BM-TVCM and KLS-TVCM. A

TI-VECM also is estimated. Section 4 discusses the results and Section 5 concludes.

2. Data

The data are obtained from GeoGrain Inc. They make daily calls to a large number of

market locations and record and verify associated prices. As a result, they comprise an

unbalanced panel of daily corn cash prices because different market locations have different

dates for which data can be missing. Those missing observations are caused by failures to

reach a market to get data. The complete raw data include over 4,000 markets (see Figure

1). More than 3.5 million daily prices are observed in total. The first observation in the raw

data is recorded on September 1, 2015 and the last one on March 24, 2011. So, the raw data

cover a 7-year period. Before January 3, 2006, data missing ratios are high across markets,

this study thus focuses on the sample extending from January 3, 2006 to March 24, 2011.



However, the problem of missing observations still exists across markets.
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Figure 1: All Markets

To select markets with large numbers of observations and low data missing ratios, Figure

2 illustrates the 182 markets used in this study. The percentage of missing observations

across these markets ranges from 0.3% to 5.2%. These sporadic and idiosyncratic missing

prices are approximated by cubic spline interpolation with reasonable results which can be

seen from plots of each individual price series of the 182 markets that are omitted here for

brevity. Other markets are eliminated and not considered in the current study due to high

data missing ratios and/or data missing patterns for which cubic spline interpolation does not

produce reasonable approximations. Please note that on days such as holidays, for example

weekends, where prices are not available in all markets, the associated missing observations

are omitted and a smooth continuity of prices is assumed (Goodwin and Piggott, 2001). As

a result, the 182 markets considered cover seven states, which are Iowa, Illinois, Indiana,

Ohio, Minnesota, Nebraska, and Kansas. They represent seven of eight largest corn harvest

states in the U.S. (South Dakota not considered in the current study is the sixth largest corn

harvest state) and contribute to 67.4% of the national harvest acres (National Agricultural

Statistics Service, 2010). They thus are the most important and relevant states for corn cash



price analysis. Other states are not considered because individual markets in these states

are all eliminated with the aforementioned market selection procedure.
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Figure 2: The 182 Cash Markets

The final data set analyzed covers a six-year period from January 3, 2006 to March 24,

2011, totaling 1316 observations for each of the 182 markets. A balanced panel is constructed

to focus on regionwide cointegration; for each state, its price is calculated as the average of

the prices of observed markets in it2. As a result, I have seven state-level daily price series for

Iowa, Illinois, Indiana, Ohio, Minnesota, Nebraska, and Kansas. For the rest of this study,

prices (cents per bushel) are converted to their natural logarithms. Descriptive information

of the price series of each state is exhibited in Table 1 and Figure 3. As one might expect,

these series are close to each other and are slightly left-skewed and platykurtic.

2There are other ways to aggregate the data. For example, it may be interesting to aggregate the data

based on the distance of a cash market to the Illinois River, where many corn futures contract delivery points

locate. Further, it is also interesting to include specific individual cash price series in a model and investigate

their spatial features rather than examine the aggregated data. These topics are beyond the scope of this

study and thus not considered.



Table 1: Summary Statistics for All Price Series

State Nob Mean Med Min Max Std Skew Kurt

IA 1316 5.851 5.845 5.112 6.559 0.336 -0.254 2.838

IL 1316 5.889 5.869 5.230 6.561 0.309 -0.064 2.773

IN 1316 5.916 5.898 5.230 6.587 0.313 -0.139 2.834

OH 1316 5.893 5.876 5.207 6.577 0.317 -0.139 2.839

MN 1316 5.830 5.821 5.097 6.542 0.339 -0.242 2.820

NE 1316 5.866 5.853 5.150 6.555 0.313 -0.182 2.815

KS 1316 5.901 5.887 5.253 6.586 0.299 -0.004 2.680

To test for non-stationarity, two tests are used that set the null hypothesis of a unit

root: the augmented Dickey-Fuller test (Dickey and Fuller, 1981) and the Phillips-Perron

test (Phillips and Perron, 1988). Because failure to reject the null of a unit root does

not imply that a unit root exists, unit root tests may not behave well in telling apart unit

roots and weakly-stationary alternatives. Hence, the Kwiatkowski-Phillips-Schmidt-Shin test

(Kwiatkowski et al., 1992), with the null hypothesis of stationarity, also is applied. These

three tests are implemented for both price levels and their first differences. The results

omitted here for brevity show that the price series are stationary in differences but not in

levels.

3. Cointegration Tests

3.1. The TI-VECM

Before investigating cointegration with TV models, it is first determined using Johansen’s

trace and maximum eigenvalue tests (Johansen, 1988, 1991) based on a TI-VECM: ∆Yt =

γ0+αβ
′

Yt−1+
∑p−1

j=1 Γj∆Yt−j+εt for t = 1, . . . , T , where T is the number of observations, p is

the number of lags selected by the Bayesian information criterion, Yt = (YIA,t, YIL,t, YIN,t, YOH,t,

YMN,t, YNE,t, YKS,t)
′

is a vector that contains price series of Iowa, Illinois, Indiana, Ohio,

Minnesota, Nebraska, and Kansas at time t, and β = (βIA, βIL, βIN , βOH , βMN , βNE, βKS)
′
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Figure 3: Price Series of Each State

is a vector that contains cointegration coefficients associated with different series3. Given

that the cointegration rank is one, the estimated result of β, (0.632,-0.762,1.000,-0.580,-

0.187,-0.629,0.520)
′

, will be used to provide a comparison with those based on TV models.

Further, the application of Hansen and Johansen’s recursive cointegration method (Hansen

and Johansen, 1999) reveals that the identified cointegration rank of one is stable. Figure

4 shows the normalized trace test statistics calculated at each data point between March 9,

2006 (point 46) and March 24, 2011 (point 1,316). The first 45 data points ranging from

January 3, 2006 to March 8, 2006 are used as the base period. As shown in Figure 4, the test

statistics are scaled by the 5% critical values. Therefore, we can reject the null hypothesis

at a data point if its corresponding entry in the figure is greater than 1. It is obvious that

we have at least one and almost never more than one cointegration vector, especially for the

R-representation.

3β is a vector because the cointegration rank is found to be one with Johansen’s trace and maximum

eigenvalue tests (Johansen, 1988, 1991). Numerical results of the tests are available upon request.
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Figure 4: Recursive cointegration analysis: plots of trace test statistics (H(0), H(1), . . . ,

H(7) correspond to null hypotheses of the cointegration rank being 0, 1, . . . , 7)

3.2. The BM-TVCM

The first TV model considered is the BM-TVCM. Before reporting the corresponding em-

pirical results, a brief introduction of this model is given as follows. Consider a k-variate

TV-VECM with Gaussian errors: ∆Yt = γ0+αβ
′

tYt−1+
∑p−1

j=1 Γj∆Yt−j + εt for t = 1, . . . , T ,

where εt ∼ i.i.d. Nk(0,Ω). The BM-TVCM tests the null hypothesis of TI cointegration,

β
′

t = β, against the alternative of TV cointegration for rank r ∈ [1, k − 1] by modeling the
TV cointegration vectors via expansions in terms of Chebyshev time polynomials defined

as: P0,T (t) = 1 and Pi,T =
√
2 cos(iπ(t − 0.5)/T ) for t = 1, . . . , T and i = 1, 2, 3, . . .. The

model can be rewritten as: ∆Yt = γ0+α(
∑m

i=0 ξiPi,T (t))
′

Yt−1+
∑p−1

j=1 Γj∆Yt−j+ εt, which is:

∆Yt = γ0+αξ
′

Y
(m)
t−1 +ΓXt+ εt, where ξ

′

= (ξ
′

0, ξ
′

1, . . . , ξ
′

m) is an r× (m+1)k matrix of rank
r, Γ = (Γ1, . . . ,Γp−1) is a k × k(p − 1) matrix, Y (m)t−1 = (Y

′

t−1, P1,T (t)Y
′

t−1, . . . , Pm,T (t)Y
′

t−1)
′

,

Xt = (∆Y
′

t−1, . . . ,∆Y
′

t−p+1)
′

, and m can be selected based on the Hannan-Quinn infor-

mation criterion (Hannan and Quinn, 1979). The null hypothesis thus corresponds to



ξ
′

= (β
′

, Or×km), which implies that ξ
′

Y
(m)
t−1 = β

′

Y
(0)
t−1, where Y

(0)
t−1 ≡ Yt−1. And the likelihood

ratio test of the null hypothesis against the alternative given m and r is represented as:

LRtvc = −2(l̂T (r, 0)− l̂T (r,m)), where l̂T (r, 0) and l̂T (r,m) are log-likelihoods of the VECM
in cases m = 0 and m > 1, respectively. Let λ̂m,1 > λ̂m,2 > · · · > λ̂m,r > · · · > λ̂m,(m+1)k,

where λ̂m,k+1 = · · · = λ̂m,(m+1)k ≡ 0, be the ordered solutions to the generalized eigen-

value problem defined by Bierens and Martins (2010), the test statistics is represented as:

LRtvcT = T
∑r

j=1 ln((1− λ̂0,j)/(1− λ̂m,j)). Under proper assumptions, LRtvcT is asymptotically

χ2mkr distributed given m > 1 and r > 1.

In empirical applications, p-values of the BM-TVCM test for different combinations of the

Chebyshev polynomial orderm ∈ [1, dmax(T/10)e] = [1, 132] and the VECM order p ∈ [2, 20]
based on r = 1 are first calculated and strong evidence of TV cointegration relationships

among the seven price series are identified, i.e., the null hypothesis of TI cointegration is

rejected. The plots of the TV cointegration coefficients βIA,t, βIL,t, βIN,t, βOH,t, βMN,t,

βNE,t, and βKS,t are thus presented in Figure 5, for which the Chebyshev polynomial order

m = 2 is selected according to the Hannan-Quinn criterion (Hannan and Quinn, 1979) and

the VECM order is fixed at p = 2 as in the TI case. It is obvious from Figure 5 that these

coefficients vary over time. Further, relative variations of the coefficients against each other

are more obvious over time for the second half of the sample.

3.3. The KLS-TVCM

The second TV model considered is the KLS-TVCM. Again, a brief introduction of this

model is provided before proceeding to empirical results. Consider a k-variate TV-VECM:

∆Yt = γt + αtβ
′

tYt−1 +
∑p−1

j=1 Γj,t∆Yt−j + εt for t = 1, . . . , T , where εt are independent

Nk(0,Ωt). The parameters are divided into three blocks: the VECM coefficients block

{γt, αt,Γ1,t, . . . ,Γp−1,t}, the error covariance block {Ωt}, and the cointegration block {β∗t}4.
The parameters in At = {γt, α∗t ,Γ1,t, . . . ,Γp−1,t} =

{
γt, αtκ

−1
t ,Γ1,t, . . . ,Γp−1,t

}
follow a state

4βt is specified to be semi-orthogonal and identified with β
′

tβt = Ir imposed accordingly. βt = β
∗

t (κt)
−1,

where κt = (β
∗
′

t β
∗

t )
1/2. β∗t is thus the unrestricted matrix of cointegrating vectors with no imposed identifi-

cation.



Figure 5: Plots of TV Cointegration Coefficients based on the BM-TVCM

equation specified as: at = at−1+ζt, where at = vec(At), ζt ∼ N(0, Q), a1 ∼ N(0, 2Va1), Va1 is
the identity matrix except for diagonal elements corresponding to α∗t whose values are (1−ρ2),
and Q−1 ∼ Wishart(dim(at) + 2, (0.0001I)−1). The TV error covariance Ωt is transformed
via a triangular reduction specified as: Ωt = Λ

−1
t ΣtΣ

′

t(Λ
−1
t )

−1, where Σt = diag(σ1,t, . . . , σk,t)

and Λt is a lower triangular matrix with ones on the diagonal and lower diagonal elements

λij,t. The evolution in Σt is modeled as: ht = ht−1 + ut, where ht = (ln(σ1,t), . . . , ln(σk,t))
′

,

ut ∼ N(0,W ), h1 ∼ N(0, 2Ik), and W
−1 ∼ Wishart(k + 2, (0.0001I)−1), and that in

Λt is modeled as: λt = λt−1 + ξt, where λt = (λ21,t, λ31,t, λ32,t, . . . , λn1,t, λn2,t, λn(n−1),t)
′

,

ξt ∼ N(0, C), λ1 ∼ N(0, 2Ik(k−1)/2), and C
−1 ∼ Wishart(k(k − 1) + 2, (0.0001I)−1). The

state equation for β∗t is defined as: b
∗

t = ρb∗t−1 + ηt, where b
∗

t = vec(β∗t ), ηt ∼ N(0, Ikr),

r is the usual cointegration rank, b∗1 ∼ N(0, Ikr/(1 − ρ2)), and ρ is a scalar that controls
the dispersion of the state equation with its absolute value being smaller than 1 and prior



being uniform over ρ ∈ [0.999, 1)5. MCMC draws follow Durbin and Koopman (2002) for the
VECM coefficients block, Primiceri (2005) for the error covariance block, Koop et al. (2010)

for the cointegration block, and a Metropolis-within-Gibbs step as in Koop et al. (2011) for

ρ. In empirical applications, variants of the KLS-TVCM are compared based on Geweke’s

predictive likelihood (Geweke, 1996). Specifically, whether each of the three blocks is TV is

considered for r = 0, 1, . . . , k6.

Setting p to 2 as in the TI case, the number of replications to 3000, and the number

of replications to be discarded to 1000, the model that results in the highest predictive

likelihood for the last 100 observations is the one with a TV cointegration block and a TV

error covariance block, but a TI-VECM coefficients block under r = 1. Therefore, it does not

seem to be important to have coefficients controlling the short-run dynamics to vary over time

(Koop et al., 2011). This finding is consistent with that by Koop et al. (2011), although

different empirical applications are pursued. The distance between the TV cointegration

space and the space spanned by H1=(0.632,-0.762,1.000,-0.580,-0.187,-0.629,0.520)
′

, which

is estimated using the TI-VECM, is thus plotted in Figure 6 based on the selected model. It

is evident that the cointegration space is TV because the distance shown in Figure 6 changes

over time (Koop et al., 2008), especially for the second half of the sample.

4. Discussion

If transportation costs are stationary, the law of one price (LOP) implies that efficient trade

and arbitrage activities should result in equalization of prices for a homogeneous commodity

in spatially separated markets such that price differentials never exceed transaction costs

(Kuiper et al., 1999). In other words, for p markets operating under pure competition (i.e.,

5It is possible to change the scalar ρ to a diagonal matrix diag(ρ
1
, ρ
2
, . . . , ρr)⊗ Ik and adjust the model

properly to allow different vectors to move at different speeds by setting ρi 6= ρj for i, j = 1, 2, . . . , r and

i 6= j if it is believed that some vectors in β∗t evolve faster than others (Koop et al., 2011). With limited

prior knowledge about interrelationships of regional markets, this modification is not adopted.
6For r = 0, whether each of the VAR coefficients block {γt,Γ1,t, . . . ,Γp−1,t} and the error covariance

block {Ωt} is TV is considered.



Figure 6: The Posterior Median and the 25th and 75th Percentiles of the Distance between

the Cointegration Space and the Space Spanned by

H1=(0.632,-0.762,1.000,-0.580,-0.187,-0.629,0.520)
′

with only stationary costs of transport between market pairs), p− 1 cointegration vector(s)
among p price series should be observed (Kuiper et al., 1999).

The result of one cointegrating vector among the seven series is inconsistent with this

hypothesis for two reasons. First, the pure competition assumption of the LOP may be

violated. As described in Section 2, the price of each state is calculated as the average of

the prices of observed markets in it. Some markets in different states are owned by the same

firm and do not have an arms-length competitive relationship. Moreover, a relatively high

ratio of markets operated by large firms, which usually play price leadership roles, for some

states could lead to imperfect competition among the seven states under study. Second,

transportation costs may be nonstationary. As a result, even if the perfect competition

assumption holds, the p− 1 cointegration vector(s) among p price series implied by the LOP
may not hold (Bessler et al., 2003). In the absence of perfect competition, however, certain



cointegration relationships are possible through other factors such as government policies,

similar influences of climate on harvest (Awokuse, 2007), and practices of price leadership

(Bessler et al., 2003).

Based on the two TV models, changing cointegration over time is more obvious in the

second half of the sample as compared to the first half. This result indicates that a TI model

may be appropriate for further policy analysis for the first half of the sample while a TV

perspective should be taken for the second half.

5. Conclusion

This study investigates cointegration among daily corn cash prices from seven Midwestern

states for January 2006 ∼March 2011 through a time invariant vector error correction model
and two time varying models. It is found that the time varying models capture changing

cointegration that inhabits the price series under the same cointegration rank discovered

using the time invariant model, especially for the second half of the sample. With the data

used in the current work, future policy involved studies such as Granger causality tests,

impulse response functions, and variance decompositions based on different models are of

interest.
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