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Abstract
We investigate whether there can exist an optimal estimation window for financial risk measures. Accordingly, we

propose a procedure that achieves optimal estimation window by minimizing estimation bias. Using results from a

Monte Carlo simulation for Value at Risk and Expected Shortfall in distinct scenarios, we conclude that the optimal

length for the estimation window is not random but has very clear patterns. Our findings can contribute to the

literature, as studies have typically neglected the estimation window choice or relied on arbitrary choices.
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1. Introduction 

 

 Estimating risk measures is now a standard approach in the financial field. A risk 

manager should consider the available information in order to forecast for the next period. 

Although many studies focus on both the introduction and comparison of estimation 

techniques, the role of information amounts is still rather neglected. If little information is 

considered for forecasting the next period, there is a possibility that market fundamentals will 

be ignored with too much reliance on short term adjustments, which tend to be volatile. 

However, if too much past information is used, current facts that could improve forecasting are 

given low importance. Thus, correctly balancing such a trade-off is crucial for correct risk 

measurement.  

Accordingly, the following question naturally arises: is there an optimal amount of past 

information to use in forecasting risk measures? It is difficult to know, as there are many 

variables in the entire process. Nevertheless, evidence can be obtained. In that sense, the 

objective of this note is to show that the optimal amount is not random, thus opening the way 

for studies seeking to compare and obtain the number of past data in the same vein that occurs 

for distinct quantile levels or forecasting horizons. To that end, we present a procedure based 

on minimizing estimation bias. Results from Monte Carlo simulations sustain our conclusions. 

 

2. Proposed procedure and simulation details 

 

In this study, we focus on the risk measures most often used by both academic 

researchers and industry practitioners: Value at Risk (VaR) and Expected Shortfall (ES). Let 

X be the random payoff of a financial position with distribution function F. At the significance 

level � ∈ ሺͲ,ͳሻ, VaR represents the lost on X that is only overcome with probability �, in other 

words, the quantile of F, i.e., ��ܴ� = − inf  {� ∶ ሺ�ሻܨ ൒ �} = −��ሺ�ሻ¹. Despite its 

simplicity and wide use, VaR does not consider potential losses beyond the quantile level and 

lacks theoretical properties². ES does not suffer from such drawbacks³, as it is the expected 

value of a loss once it overcomes the VaR, i.e., ܵܧ� = �|�]ܧ− < −��ܴ�].   
These risk measures are typically estimated using the last N observations. Thus, let ��ܴ̂ே� and ̂ܵܧே�, respectively, be estimated VaR and ES at the significance level α based on the 

last N observations. A risk manager has the set of possible choices for N in the form of � ={�ଵ, �ଶ, ⋯ , �௞}, with �ଵ < �ଶ < ⋯ < �௞. More specifically, the choice is for a �௜ , � =ͳ,ʹ, ⋯ , � between two extreme options, such as �௠௜௡ ൑ �௜ ൑ �௠��. Most researchers and risk 

managers consider – for example, for daily estimation – estimation windows from one to eight 

years, i.e., ʹͷͲ ൑ �௜ ൑ ʹͲͲͲ. With that in mind, we propose to consider that the optimal 

choice for the estimation window is the one that minimizes the bias from the true risk measure 

value. In this note, formulations (1) and (2) mathematically define it for VaR and ES, 

respectively.  

 �௢௣�௜௠�௟ = inf ቆ�௜ ∈ argminே�∈� |��ܴ̂ே�� − ��ܴ�|ቇ                                                  (1) 

 �௢௣�௜௠�௟ = inf ቆargminே�∈� ��ே̂ܵܧ| −  ቇ                                                                (2)|�ܵܧ

 

This minimization procedure is based on absolute deviation, but other functional forms, 

such as least squares, can be used. Nevertheless, readers can note that for this specific case, 

both approaches would tend to give the same solution. Moreover, absolute deviation is linked 
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more to distance, which is the definition of bias, beyond the fact that it does not leverage 

discrepancies. We consider the infimum for the case of ties because of parsimony, as one can 

use less data to obtain the same results. 

As true ��ܴ� and ܵܧ� are not observable, it is impossible to solve the problem for 

empirical data, but it is possible to consider simulated data where one knows the true value for 

risk measures. If one solves (1) or (2) for j samples with the same data generation process and 

no clear optimum exists, then �� = {�௢௣�௜௠�௟ଵ , ⋯ , �௢௣�௜௠�௟௝ }~�ሺ�௠௜௡, �௠��ሻ. In other words, 

the optimal estimation windows would assume any value between the minimum and maximum 

candidates with uniform (or, at least, very similar) probability.  

To verify whether there is any pattern distinct from the uniformity for optimal values 

for N, we perform a Monte Carlo simulation study. To that end, we consider that returns X, 

drawn from AR (1) – GARCH (1,1) models4, conform (3). 

 �� = Ͳ.ͷͲ��−ଵ+��, �� = ���� , ଶ��                                                                                                       ,�ݐ~��  = �ଶሺͳ − Ͳ.ͳͲ − Ͳ.8ͷሻ + Ͳ.ͳͲ��−ଵଶ + Ͳ.8ͷ��ଶ.                                                    (3)                                                                 

 

Where, ��, ��ଶ, �� and �� are for period T, respectively, return, conditional variance, 

innovation on the expectation and a v degrees of freedom student white noise with ܧ[��] = Ͳ 

and ܧ[ሺ��ሻଶ] = ͳ. �ଶ is the unconditional variance. We consider four scenarios to contemplate 

the presence (� = ͸) or not ((� = ∞, i.e., Normal distribution) of extreme returns, as well as 

periods of low (� = Ͳ.Ͳͳʹͷ) and high (� = Ͳ.Ͳʹʹ) volatility. The parameters have been 

chosen to match those obtained for daily returns of the S&P 500 index before and during the 

sub-prime crisis5. Under this specification the true values for the risk measures are ��ܴ�� =−ሺͲ.ͷͲ��−ଵ + ��ܵܧ ଵሺ�ሻሻ and−�ݐ�� = − ቀͲ.ͷͲ��−ଵ + ��(�−ଵ ∫ ଴�ݏሻdݏଵሺ−�ݐ )ቁ. We choose �௠௜௡ = ʹͷͲ and �௠�� = ʹͲͲͲ, around one and eight years, as this is the range of values that 

is typically is used in studies about risk estimation.  

We simulate 10,000 samples with length 2001 (�௠�� plus 1 observation for the 

forecasting) for each scenario, and compute VaR and ES considering the Historical Simulation 

(HS) method. This non-parametric empirical method does not have assumptions about data and 

is the most commonly used in both academic studies and the financial industry6. Let E be the 

empirical distribution of returns {�}ଶ଴଴଴−ே+ଵଶ଴଴଴ , then HS estimators are ��ܴ̂ே� = �ே̂ܵܧ ଵሺ�ሻ and−ܧ− = −ሺ��ሻ−ଵ ∑ ቀ{�}ଶ଴଴଴−ே+ଵଶ଴଴଴ ∗ �{�}మబబబ−�+భమబబబ <−���̂�� ቁே௜=ଵ , where �௣ is the indicator 

function that assumes value 1 if p is true and 0 otherwise. We compute, for each sample ��ܴ̂ே�  

and ̂ܵܧே� for �௠௜௡ = ʹͷͲ, �௠�� = ʹ,ͲͲͲ and �௢௣�௜௠�௟ (solving (1) with ��ܴଶ଴଴ଵ�  and (2) with ܵܧଶ଴଴ଵ�  as true values, respectively for VaR and ES. We consider 1% and 5% as values for α. 

 

3. Simulation results 

 

The results from our Monte Carlo simulation are presented in Table 1 and Figs. 1 to 4. 

The results from Table 1 indicate that the HS estimator produces relevant bias and variability, 

overestimating risk, especially in periods that are more turbulent. The exception is for Normal 

innovations with low volatility, which underestimates risk. Such deficiencies are in accordance 

with the points raised by Pritsker (2006). Nevertheless, considering the optimal estimation 

window reduces both bias and variability. 

More specifically on the optimal estimation window, the results in Figs. 1 to 4 indicate 

that a common pattern is identified in most scenarios and significance levels. The optimal 

estimation window has more probability of occurring between 250 and 500 days (around 1 and 

2 years), with some significant probability, except for the Normal distribution with low 
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volatility around the maximum possible of 2,000 days (8 years)7. In some cases, as for scenarios 

of high volatility, there is also relevant probability for estimation windows between 750 and 

1,000 days (3 and 4 years). In such cases, discrepancy is small most likely because estimation 

consistency is partially lost on turbulent periods. In all situations, the empirical distribution of 

the optimal lengths differs significantly from a Uniform distribution8. It is worth mentioning 

that the results are relatively homogenous for both VaR and ES at 1% and 5% significance 

levels.  

Such results are in partial discordance with studies that argue in favor of larger 

estimation windows to improve risk forecasting, as Kuester et al. (2006) and Alexander and 

Sheedy (2008) for VaR, as well as Wong et al. (2012) and Righi and Ceretta (2015) for ES. 

This outcome can be linked to the fact that these types of studies typically rely on an arbitrary 

amount of past data, and even when more candidates for the estimation window are used, the 

comparison is very limited to specific lengths (and not to an entire interval of possible lengths 

as we do in our simulation exercise) and there is no consensus. Of course, we are not saying 

here that this is the optimal solution for everyone who uses empirical risk estimation, but it is 

very strong evidence that an optimal estimation window can exist. This phenomenon is not 

well investigated in the current literature. 

 

4. Conclusion 

 

In this note, we conduct a Monte Carlo simulation to show that the optimal amount of 

past information in risk measures forecasting is not random and can directly affect the quality 

of forecasting. To that end, we propose a procedure that chooses the optimal estimation 

window by minimizing estimation bias. Our results, which are obtained for VaR and ES under 

distinct scenarios and quantiles, indicate that the optimal estimation windows are not uniformly 

distributed, and that most probability is for the interval between 1 and 2 years (for daily 

forecasting). Our focus here is not to say what the optimum is, because we only consider one 

estimation model (HS) and a limited number of possibilities, but indicate that such an optimum 

can exist. The literature must start to pursue it rather than place trust in very arbitrary choices. 

 

 
¹ See Duffie and Pan (1997)  for a review on VaR. 

² VaR is not coherent in the sense of Artzner et al. (1999) as it does not have the subadditivity property that 

guaranteed risk diversification. 

³ ES is coherent, as explained in Acerbi and Tasche (2002). 
4This data generation process is often considered for finance because it contemplates stylized facts of daily 

financial returns, such as volatility clusters and heavy tails. 
5This is a choice of the authors because this index is one of the most representative and is usually considered in 

simulation studies (see Christoffersen and Gonçalves (2005) for instance). 
6Pérignon and Smith (2010) indicate that 76% of financial institutions that disclose their VaR methodology use 

HS for estimation. 
7Perhaps if a larger value for �௠��  is considered, such probability around 2,000 could be dispersed. 
8We conduct usual chi-squared tests for the null hypothesis of Uniform distribution. 
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Fig. 1. Histograms and densities of VaR and ES optimal N obtained through Monte Carlo 

simulation under Normal GARCH with low volatility. 
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Fig. 2. Histograms and densities of VaR and ES optimal N obtained through Monte Carlo 

simulation under Normal GARCH with high volatility. 
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Fig. 3. Histograms and densities of VaR and ES optimal N obtained through Monte Carlo 

simulation under Student’s t GARCH with low volatility. 
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Fig. 4. Histograms and densities of VaR and ES optimal N obtained through Monte Carlo 

simulation under Student’s t GARCH with high volatility. 
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Table 1 . Bias, Root Mean Squared Error and optimal N obtained in the Monte Carlo 

Simulations. 

Normal GARCH 

 Low Volatility High Volatility 

 Bias (%) RMSE (%) Mean �� Bias (%) RMSE (%) Mean �� ��ܴ̂ଶ5଴ଵ%   -0.0492 0.1464 250 0.5755 0.3596 250 ��ܴ̂ଶ଴଴଴ଵ%   -0.0581 0.1722 2000 0.5855 0.3008 2000 ��ܴ̂ை௣�௜௠�௟ଵ%   -0.0413 0.1201 847 0.4689 0.2739 816 ��ܴ̂ଶ5଴5%   -0.0952 0.1754 250 0.7767 0.3566 250 ��ܴ̂ଶ଴଴଴5%   -0.1784 0.1486 2000 0.6074 0.3077 2000 ��ܴ̂ை௣�௜௠�௟5% %ଶ5଴ଵ̂ܵܧ 943 0.2836 0.5816 563 0.1262 0.0975-   %ଶ଴଴଴ଵ̂ܵܧ 250 0.3625 0.4910 250 0.2002 0.0491-   %ை௣�௜௠�௟ଵ̂ܵܧ 2000 0.3188 0.6155 2000 0.1899 0.0023   ଶ5଴5%̂ܵܧ 655 0.2757 0.4187 865 0.1194 0.0215-   ଶ଴଴଴5%̂ܵܧ 250 0.3517 0.6457 250 0.1843 0.0584-   ை௣�௜௠�௟5%̂ܵܧ 2000 0.3029 0.6208 2000 0.1646 0.0922-     -0.0580 0.1221 786 0.5246 0.2778 882 

Student’s t GARCH 

 Low Volatility High Volatility 

 Bias (%) RMSE (%) Mean �� Bias (%) RMSE (%) Mean �� ��ܴ̂ଶ5଴ଵ%   0.7535 1.4633 250 0.7383 1.2357 250 ��ܴ̂ଶ଴଴଴ଵ%   0.9379 2.3075 2000 1.4199 2.8599 2000 ��ܴ̂ை௣�௜௠�௟ଵ%   0.3937 0.7748 941 0.4142 0.6474 770 ��ܴ̂ଶ5଴5%   0.4386 1.1167 250 0.6868 1.0167 250 ��ܴ̂ଶ଴଴଴5%   0.2087 0.7295 2000 0.8489 1.4105 2000 ��ܴ̂ை௣�௜௠�௟5% %ଶ5଴ଵ̂ܵܧ 711 0.4742 0.3372 920 0.4097 0.1301   %ଶ଴଴଴ଵ̂ܵܧ 250 1.1969 0.6567 250 1.6805 0.8477   %ை௣�௜௠�௟ଵ̂ܵܧ 2000 3.5519 1.8530 2000 3.2037 1.4043   ଶ5଴5%̂ܵܧ 768 0.7581 0.4279 904 1.0453 0.5327   ଶ଴଴଴5%̂ܵܧ 250 1.1448 0.7337 250 1.3607 0.6738   ை௣�௜௠�௟5%̂ܵܧ 2000 2.4114 1.3449 2000 1.7613 0.7537     0.3361 0.6915 947 0.4085 0.6030 759 

 


