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Abstract
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1 Introduction

This paper is a contribution to the literature on comparative statics in the general equi-
librium framework of exchange economies with finitely many agents and finitely many goods.

The underlying features of the exchange economy are as follows. There are N agents
each having standard preferences over L + 1 consumption goods. Agents are endowed with
positive vectors of consumption goods. A Walrasian equilibrium is given by a vector of
strictly positive prices and an allocation consisting of non-negative vector of consumption
goods such that (a) at the given prices, every agent maximizes her preferences subject to
her budget constraint; and (b) the market for each good clears.

For the comparative statics analysis, our interest is in changes of the equilibrium price
vectors as a result of changes in the endowment vector of any agent. With this in mind,
we keep the number of agents, number of goods and agents’ preferences fixed. Given the
preferences, we can focus on the aggregate excess demand function which is a function of the
price vector and profile of agents’ endowment vectors. Therefore, a Walrasian equilibrium
price is a zero of the aggregate excess demand function. By virtue of Walras Law, it will
suffice to focus on market clearing for only L goods.

It is possible to specify the exchange economy by a parameterized aggregate excess de-
mand function, with the endowment vectors being the parameters. A very plausible con-
jecture in the comparative statics literature states that changes in equilibrium prices are
negatively related to changes in the aggregate equilibrium consumption of goods (see Nach-
bar (2002) and Nachbar (2004)). It is well-known in the literature (since Hicks (1939)) that
this conjecture does not hold true in general, even in the simplest exchange economy with
only one agent. Therefore, additional restrictions on the fundamentals of the economy are
required for the conjecture to hold. Another natural conjecture worth noting, is that the
prices of goods that are in excess demand after some perturbation of the parameters go up
relative to the prices of goods that are in excess supply (see Quah (2001)). These conjectures
appear to be intuitive and have empirical foundations. Also, they conform to the canonical
partial equilibrium comparative statics predictions that are introduced in basic economics
courses. Therefore, in order for a general equilibrium model to provide a positive theory of
market prices, it must be possible to prove that these standard conjectures hold under mild
assumptions. In view of the above, in this paper we formalize and investigate the following
conjecture: “if the endowment of any good increases and the excess demand for the same
good falls, all else being equal, then the relative prices of the other goods go up”.

The literature on general equilibrium comparative statics focuses on global as well as local
analysis. As to the global analysis, there are two distinct approaches. The first approach
establishes that an increase in the excess demand for a given commodity results in an increase
in the relative price of that commodity. It relies on a type of behavior of the aggregate
excess demand function which holds true if either the weak axiom of revealed preference
(WARP henceforth) or the gross substitution property (GS henceforth) are assumed (see, e.
g., McKenzie (2002)). The second approach is centered around lattice-theoretic techniques.
Given the assumption of strong gross substitution (SGS henceforth), or gross substitution
coupled with differentiability, equilibrium prices are shown to be fixed points of a certain
increasing function. Here, equilibrium is shown to exist using Tarski’s fixed point theorem,



and monotone comparative statics is employed to conclude that an upward shift in the excess
demand function causes both the minimal and maximal equilibrium price vectors to increase
(see Mas-Colell et al. (1995, Exercises 17.F.16 and 17.G.3)). As for local analysis, WARP-
like conditions or the GS property impose restrictions on the inverse of the Jacobian matrix
of the excess demand function, and then the implicit function theorem is invoked (see, e.g.,
Mas-Colell et al. (1995)).

Thus, the main features of the canonical approach to general equilibrium comparative
statics can be summarized as follows: the analysis based on the implicit function theorem
yields local results, not global, and requires the equilibrium price vectors to be regular.
On the other hand, both global and local analysis rely on WARP, the SGS or GS prop-
erties, which are strong assumptions. Indeed, in view of the Debreu-Mantel-Sonnenschein
indeterminacy results (see Debreu (1974), Mantel (1974), Mantel (1976), and Sonnenschein
(1973)), it is not surprising that general equilibrium comparative statics requires very specific
assumptions on the aggregate excess demand function.

Our approach to comparative statics is as follows. First, we normalize the price vector
by setting the price of one of the goods to be equal to one and call it the numéraire good.
Additional structure is placed on the partial derivatives of the excess demand function with
respect to prices of the non - numéraire goods. Indeed, we assume that the Jacobian matrix of
the aggregate excess demand function is symmetric (undoubtedly a strong assumption) and
negative semidefinite everywhere on the domain. The assumption of symmetry is required for
the existence of a potential function. Given our assumptions, the aggregate excess demand
function admits a concave and supermodular potential function. Therefore, it turns out
that the set of (normalized) market-clearing prices coincides with set of maximizers of the
potential function. Hence, on the one hand, comparative statics analysis of equilibrium prices
boils down to an application of monotone comparative statics methods to the maximization
problem whose objective function is a potential function; on the other hand, it turns out
that the set of equilibrium prices is a convex lattice (see Corollary 1). Notice that we can
perform comparative statics for the set of equilibrium prices as a whole. In fact, to compare
two different sets of equilibrium prices we use the notion of strong set order. The notion
of strong set order reveals more information on the change of equilibrium prices than the
information we could obtain by restricting attention only to changes in the minimal and
maximal equilibrium price selections.

Also, our approach enables us to perform global comparative statics analysis even in
those settings where the implicit function theorem cannot be used. This is so because our
assumptions can accommodate singular matrices and we do not require the aggregate excess
demand function to be differentiable with respect to the endowment vectors. Moreover,
WARP neither implies nor is implied by our assumptions. Besides, it is worth pointing out
that we slightly relax the assumption of gross substitution.

This is not the first attempt to use monotone comparative statics techniques in general
equilibrium theory. In fact, Milgrom and Shannon (1994) apply these techniques to a general
equilibrium model with gross substitutes. They consider a game derived from the underlying
economy where gross substitution property implies that such a game exhibits strategic com-
plementarities. The gross substitution property allows them to apply monotone comparative
statics results for pure strategies Nash equilibria (equilibrium prices). While they assume
gross substitution (GS), we assume weak gross substitution, which is a milder condition than



GS.
It is worth clarifying and expanding on our choice of price normalization and the partial

order on the set of prices. As Nachbar (2002) clarifies, a “good” price normalization should
possess the following characteristics. Firstly, it must be possible to prove the desired compar-
ative statics conjectures / outcomes under minimal conditions. Secondly, the normalization
must give an easy and sensible way of interpreting the equilibrium price changes. It should
be such that changes in normalized equilibrium prices have a natural interpretation in terms
of changes in the relative prices (i.e., if the normalized price of a good falls, then its relative
prices should also fall).

As for the price normalization chosen in this paper, we simply pick a commodity and
set its price equal to one (numéraire good). We would like to argue that our normalization
exhibits the desired features outlined above. Moreover, our analysis by no means depends
on the choice of numéraire. To substantiate our claim, consider the following remarks. Our
price normalization implies that (a) the set of prices is a lattice with respect to the canonical
component-wise order; and (b) the price domain of the excess demand function is an open
and convex set. The first property enables us to use lattice theoretic methods for comparative
statics. The second property ensures the existence of a potential function for the aggregate
excess demand. Using the potential function, we can carry out monotone comparative statics
of equilibrium prices in a straightforward manner. By construction, with our normalization,
normalized prices are relative prices; hence, changes in normalized equilibrium prices coincide
with changes in relative prices. This implies that our normalization yields a very easy
interpretation of equilibrium price changes. Furthermore, the main result of our paper
(Proposition 1) is robust against the choice of the numéraire good. In fact, change in the
numéraire would be equivalent to relabeling the consumption goods and applying the same
assumptions of Proposition 1 to the relabeled goods. Then, it would still be possible to
prove, verbatim, that the set of normalized equilibrium prices is monotone non-decreasing
in the endowment of the numéraire good.

In the special case of uniqueness of equilibria, our main result (Proposition 1) yields
the following corollary: under the assumptions therein stated, every relative price is non-
decreasing in the endowment of the numéraire good. Thus, under the assumption that the
non-numéraire goods are normal, we not only show that our conjecture under investigation
holds true, but we also obtain a natural interpretation of comparative statics changes in equi-
librium prices (see Remark 3). Incidentally, notice that normal demand is a fairly standard
assumption in the literature on general equilibrium comparative statics. 1

The paper is organized as follows. In section 2, we gather lattice-theoretic concepts. In
section 3, we introduce the excess demand function, the assumptions of the model, and show
the equivalence between general equilibrium comparative statics and comparative statics for
a properly defined maximization problem. Also, we establish a result about the structure
of the set of equilibrium prices and we prove our main comparative statics theorem about
equilibrium prices. Finally, in section 4, we point out open questions and we outline avenues
for further research.

1For example, Nachbar (2002) argues that if all goods are normal, then under his normalization the sign
pattern of the changes in normalized prices has the intended interpretation in terms of changes of relative
prices. Also, for the role played by the assumption that goods are normal, see for example, Proposition
17.G.3 and the subsequent discussion in Mas-Colell et al. (1995).



2 Setting and preliminaries

We shall remind the reader few fundamental lattice-theoretic notions and theorems from
the theory of monotone comparative statics which will be used in this paper. For further
details, see Milgrom and Shannon (1994).

Let (X,≥) be a partially ordered set. The set X could be considered as a choice set,
or the set of endogenous variables (prices). Given x and y both in X, let x ∨ y denote the
least upper bound of x and y in X, if it exists. Similarly, let x∧ y denote the greatest lower
bound of x and y in X, if it exists. (X,≥) is a lattice if for every pair of elements x and
y in X, x ∨ y and x ∧ y exist as elements of X. Monotone comparative statics requires an
order both on the parameter space and on the set of endogenous variables. The following
definitions are useful in our analysis.

Definition 1. Let (X,≥) be a lattice, and let Z and Y be subset of X. One says that Y is
greater than Z in the sense of the strong set order, denoted by Y ≥s Z, if for every z ∈ Z

and y ∈ Y , z ∧ y ∈ Z and z ∨ y ∈ Y .

Remark 1. If Z and Y are singletons, then notice that {y} ≥s {z} if and only if y ≥ z.

Now consider another partially ordered set, (Ω,≥), where Ω could be thought of as the
parameter space (or space of economies).

Definition 2. Let X be a lattice. One says that a correspondence M : Ω ↠ X is monotone
non-decreasing if, given ω and ω̃ in Ω,

ω̃ ≥ ω ⇒ M (ω̃) ≥s M (ω) .

Definition 3. Given a lattice X and a partially ordered set Ω, f : X×Ω → R is said to have
increasing differences in (x, ω) if for x̂ ≥ x, f (x̂, ω) − f (x, ω) is monotone non-decreasing
in ω.

Definition 4. Given a lattice X, f : X → R is supermodular if

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y)

for all x, y ∈ X.

Definition 5. Given a lattice X, f : X → R is quasi- supermodular if

(i) f(x) ≥ f(x ∧ y) ⇒ f(x ∨ y) ≥ f(y)

(ii) f(x) > f(x ∧ y) ⇒ f(x ∨ y) > f(y)

for all x, y ∈ X.

Definition 6. Given a lattice X, and a partially ordered set Ω, f : X ×Ω → R satisfies the
single crossing property in (x, ω) if for x > y and ω > ω′, 2

(i) f(x, ω′) > f(y, ω′) ⇒ f(x, ω) > f(y, ω)

(ii) f(x, ω′) ≥ f(y, ω′) ⇒ f(x, ω) ≥ f(y, ω).
2Given any partially ordered set (X,≥), and for any two elements a, b ∈ X, a > b means a ≥ b and a ̸= b.



The following comparative statics result is a version of Topkis (1978, Theorem 6.1) and is
stated in Milgrom and Shannon (1994, Theorem 5):

Theorem 1. Let X be a lattice, Ω a partially ordered set, and f : X × Ω → R. If f

is supermodular in x and has increasing differences in (x, ω), then argmaxx∈X f (x, ω) is
monotone non-decreasing.

The following result described in Topkis (1978, Section 7, p. 319), and stated in Milgrom
and Shannon (1994, Theorem 6), is a very useful characterization of supermodularity and
increasing differences:

Theorem 2. Let X be an open subset of Rn and Ω be an open subset of Rm and let f :
X × Ω → R be twice continuously differentiable. Then, (i) f has increasing differences if
and only if

∂2f

∂xi∂ωj

≥ 0 for i = 1, · · · , n; j = 1, · · · ,m;

(ii) f is supermodular in x if and only if

∂2f

∂xi∂xj

≥ 0 for i ̸= j.

It is clear from definitions 3-6, that any supermodular function is also quasi-supermodular.
Moreover, any function which has increasing differences also satisfies the single crossing
property (see Milgrom and Shannon (1994)). Remarkably, Theorem 1 was generalized by
Milgrom and Shannon (1994, Theorem 4), as follows:

Theorem 3. Let X be a lattice, Ω a partially ordered set, and f : X × Ω → R. Then

argmax
x∈X

f (x, ω)

is monotone non-decreasing if f is quasi-supermodular in x and satisfies the single crossing
property in (x, ω).

The following theorem is due to Milgrom and Shannon (1994, Corollary 2). In the next
section we will invoke it to study the structure of the set of equilibrium prices.

Theorem 4. Let f : X × Ω → R. If S is a sub-lattice of X and f is quasi-supermodular,
then argmaxx∈S f (x, ω) is a sub-lattice of S.

3 General equilibrium comparative statics

There are N consumers and L + 1 consumption goods in the exchange economy, and the
price of the goods are denoted by the vector (x1, · · · , xL, xL+1). We let prices be strictly
positive and normalize the price of one of the goods, which is regarded as numéraire good
(for instance, the last good xL+1), to be one. Our results would still hold for any other choice



of the numéraire good. With this normalization, the set of prices can be identified with R
L
++.

Hence, X = R
L
++ is a lattice with respect to the canonical component-wise order defined on

R
L.
Let Ω ⊂ R

(L+1)N
++ denote the profile of consumer endowments. Ω will be viewed as the set

of economies. ω ∈ Ω represents a vector of endowments. In what follows, ωn
l ∈ R++ denotes

the endowment of any good l for the generic consumer n.
Given Scarf’s counter-examples of unstable economies with at least three commodities

(see Scarf (1960)), it is impossible that every ω belonging to R
(L+1)N
++ gives rise to an excess

demand function which is a gradient field satisfying the assumptions below (see Assumption

1). In view of this, we assume that the set of economies is a strict subset of R
(L+1)N
++ .

Moreover, given that assumption 1 may be quite stringent, we do not require the set of
economies Ω to be open. The aggregate excess demand function of the underlying economy
is the map: Z : X × Ω → R

L with the generic component denoted by Zi. Competitive
equilibrium in this exchange economy is formalized as follows.
Definition 7. Given an economy ω ∈ Ω, x∗ ∈ X is said to be an equilibrium price if
Z (x∗, ω) = 0.

The aggregate excess demand function satisfies the following assumption.

Assumption 1. For every ω ∈ Ω, Z (·, ω) = Zω : X → R
L is continuously differentiable

and satisfies the following properties: the Jacobian matrix of Zω, DxZ (x, ω), is symmetric,
negative semidefinite and satisfies the weak gross substitution property, i.e.,

∂Z i
ω

∂xj

≥ 0 for i, j = 1, · · · , L, i ̸= j.

Remark 2. Existence of equilibrium is not an issue in this model. We could add a suitable
boundary condition to ensure that the set of equilibrium prices is non-empty.

We apply the following theorem (Apostol (1969, Theorem 10.9)) to show the existence
of a potential function for the map Zω : X → R

L. Note that if f : Rn → R
n is a gradient

field, then f = ∇ ϕ for some potential function ϕ : Rn → R.

Theorem 5. Let f = (f1, · · · , fn) be a continuously differentiable vector field on an open
convex set S in R

n. Then f is a gradient field on S if and only if we have

Dkfj(x) = Djfk(x)

for each x in S and all k, j = 1, 2, · · · , n.

Lemma 1. Let the excess demand function Z : X × Ω → R
L satisfy assumption 1. Then,

there exists a potential function f : X × Ω → R such that

∇xf (x, ω) ≡ Z (x, ω) .

Moreover, the smooth function f (·, ω) = fω : X → R is concave for each ω ∈ Ω.



Proof. The set X = R
L
++ is open and convex and Zω : X → R

L is continuously differentiable.
Given assumption 1, for all x ∈ X

∂Z i
ω

∂xj

=
∂Zj

ω

∂xi

= for i, j = 1, · · · , L, i ̸= j.

Therefore, all of the conditions of Theorem 5 are met. Hence, there exists a function f :
X × Ω → R such that

∇xf (x, ω) ≡ Z (x, ω) . (1)

Further, DxZ (x, ω) is the Hessian matrix of f (·, ω) = fω : X → R. By assumption 1, the
Hessian matrix of fω is negative semidefinite. Therefore, the function fω : X → R is concave
for each ω ∈ Ω.

The following analysis revolves around the argmaxx∈X f (x, ω), where f is any potential
function for Zω : X → R

L. Hence, it is important to establish that our approach does not
depend on the particular potential function which is selected. To this end, we prove the
following claim.

Claim 1. The set argmaxx∈X f (x, ω) is invariant under the choice of the potential function.

Proof. Let g : X × Ω → R be another potential function for Zω. Define the function
(g − f) : X × Ω → R and observe that

∇x [g (x, ω)− f (x, ω)] = ∇x g (x, ω)−∇x f (x, ω)

≡ Z (x, ω)− Z (x, ω) ≡ 0.

This implies that g (x, ω)− f (x, ω) depends only on ω. Therefore we can write

g (x, ω)− f (x, ω) = θ(ω).

for some function θ : Ω → R. In other words,

g (x, ω) = f (x, ω) + θ(ω).

Therefore, it should be clear that for any ω ∈ Ω,

argmax
x∈X

g (x, ω) = argmax
x∈X

f (x, ω) .

We are now ready to state an instrumental lemma.

Lemma 2. Suppose that Assumption 1 holds. Let f : X × Ω → R be a potential function
for Zω. Then, given any ω ∈ Ω, x∗ ∈ X is an equilibrium price if and only if

x∗ ∈ argmax
x∈X

f (x, ω) .



Proof. Fix any ω ∈ Ω. Assume first that x∗ is a maximizer of fω : X → R. Then, by
the first order necessary condition,

∇x f (x∗, ω) = 0,

which implies
Z (x∗, ω) = ∇xf (x∗, ω) = 0.

Therefore, x∗ is an equilibrium price.

Next, fix any ω ∈ Ω and assume that x∗ is an equilibrium price, given ω. Then,

Z (x∗, ω) = ∇xf (x∗, ω) = 0.

Observe that by Lemma 1, the potential function fω is concave and differentiable.
Consider any arbitrary x ∈ X. Then, the concavity of f implies

f(x, ω)− f (x∗, ω) ≤ ∇xf (x∗, ω) · (x− x∗) = 0 · (x− x∗) = 0.

Therefore,
f(x, ω) ≤ f (x∗, ω) .

Because x was arbitrarily chosen, this shows that x∗ is a maximizer of the potential
function f , given ω.

The equivalence established in Lemma 2 enables us to study comparative statics of equilib-
rium prices by simply looking at how the solution set of an optimization problem changes
with the parameters.

Before we state and prove a general equilibrium comparative statics result, a few more
remarks are in order. Given any x and x̂ in X, a path from x to x̂ is a continuous,
piece-wise smooth function φ : [0, 1] → X such that φ (0) = x and φ (1) = x̂. Denoting
(

dφ1(t)
dt

, . . . ,
dφL(t)

dt

)

by dφ(t)
dt

, it is possible to define the line integral of Zω along any path φ

as follows:

∫

φ

Zω =

∫ 1

0

Z (φ (t) , ω) ·
dφ (t)

dt
dt. (2)

Since the excess demand function Zω admits a potential function and the set X is an open
and connected subset of RL, Zω satisfies the path independence property. That is, for any x

and x̂ in X, and any two paths φ0 and φ1 from x to x̂,

∫

φ0

Zω =

∫

φ1

Zω

(see, e.g., Apostol (1969, Theorem 10.5)). Using (2) and the fundamental theorem of calculus,
it is easy to verify that for any x and x̂ in X, and for every path φ : [0, 1] → X from x to x̂,
we have that



∫

φ

Zω =

∫ 1

0

∇xf (φ (t) , ω) ·
dφ (t)

dt
dt =

∫ 1

0

∂f (φ (t) , ω)

∂t
dt = f (x̂, ω)− f (x, ω) . (3)

Incidentally, it’s easy to see that f (x̂, ω)−f (x, ω) is independent of the choice of the potential
function f . We posit that Zi is non-decreasing in ωn

l . Essentially, this amounts to assuming
that the consumer at hand’s demand for non - numéraire goods is normal.

Proposition 1. Suppose that Assumption 1 holds. Assume, further, that Zi is non–decreasing
in ωn

l , for every i = 1, . . . , L. Then, the set of (normalized) equilibrium prices is monotone
non–decreasing in ωn

l .

Proof. By weak gross substitution, ∂Zi
ω

∂xj
≥ 0 for i, j = 1, . . . , L, i ̸= j. By definition of

potential function f , this implies that ∂2f

∂xj∂xi
= ∂2f

∂xi∂xj
≥ 0, for i ̸= j. Thus, by part (ii) of

Theorem 2, fω : X → R is supermodular. Now, pick any x and x̂ in X such that x̂ ≥ x. By
(2) and (3), and by path independence, we have that

f (x̂, ω)− f (x, ω) =

∫ 1

0

Z (φ (t) , ω) ·
dφ (t)

dt
dt, (4)

where the above equality holds, in particular, for the straight path φ, from x to x̂, given by
φ (t) = tx̂+ (1− t) x. But for such a path, clearly dφ(t)

dt
= x̂− x ≥ 0.

Therefore, because by assumption Zi is non-decreasing in ωn
l , (4) readily implies that

f (x̂, ω)− f (x, ω) is monotone non-decreasing in ωn
l . Thus, by Definition 3, f has increasing

differences in (x, ωn
l ). Hence, all of the sufficient conditions of Theorem 1 are met. Therefore,

argmaxx∈X f (x, ω) is monotone non-decreasing in ωn
l and, by virtue of Lemma 2, so is the

set of equilibrium prices.

Here is another interesting implication of Lemma 2 which pertains to the structure of the
set of equilibrium prices.

Corollary 1. Suppose that Assumption 1 holds. Then, for every ω ∈ Ω the set of (normal-
ized) equilibrium prices is a convex lattice.

Proof. Observe that by Lemma 2, given any ω ∈ Ω, the set of equilibrium prices coincides
with the set argmaxx∈X f(x, ω). Hence, it will suffice to prove that the latter is a convex
lattice. The proof consists of three steps.

Step 1 fω : X → R is concave (see Lemma 1), and X is convex. Therefore, the set
argmaxx∈X f(x, ω) is convex.

Step 2 As for the lattice structure of the set argmaxx∈X f(x, ω), we know that fω : X →
R is supermodular in x (see proof of Proposition 1), and thus it is also quasi-supermodular.

Step 3 Theorem 4 yields the desired result.

Remark 3. Since we stick to the canonical component-wise order in R
L, as a corollary

of Proposition 1, one has that if equilibrium is unique, as ωn
l goes up then every relative

price either stays the same or increases (see Remark 1). Hence, we obtain a very easy
interpretation of the comparative statics changes.



4 Concluding remarks

In the present paper the following questions have been left unanswered for future research.
Firstly, what are the economies that generate an aggregate excess demand function satisfying
Assumption 1? So, what type of economies do our results (Proposition 1 and Corollary 1)
apply to? To address these questions, one should spell out from the outset hypotheses on
preferences and endowments that give rise to an excess demand function which is a gradient
vector field. In the special case of two-consumer, two-commodity economies, it should not
be difficult to construct an economy whose excess demand for, say, the first good admits a
potential function on an arbitrarily large compact subset of the non-negative real numbers.
This is an easy consequence of Dierker (1974, Theorem 6.1).
Also, is it possible to find a map (that is not necessarily a potential function) whose set of
critical points coincides with the set of equilibrium prices? The interest in this question lies
in the fact that the existence of such a map would enable the analyst to drop the assumption
that the Jacobian of Z is symmetric.
Finally, it would be worth improving upon Proposition 1 to extend our main theorem to
a broader class of economies. A tentative road map on how to achieve this goal is as
follows: one could formalize conditions on Z, milder than weak gross substitution and the
assumption that Zi is non–decreasing in ωn

l , that result in the potential function f being
quasi-supermodular and satisfying the single crossing property. Then, using Theorem 3
above it should be possible to prove the same result as Proposition 1.
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