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Abstract
This letter reveals using simulation studies that regularization parameter selection via cross-validation (CV) in penalized

regressions (e.g., Lasso) is valid even if the regressors are weakly dependent. In CV procedure, the time series

structure of the data set is broken, meaning that there may occur a fatal problem unless the sample is i.i.d.; the

estimation accuracy in the training step could be worse due to corruption of data continuity, which may furthermore

lead to a bad choice of the regularization parameter. Even in such a situation, we find that CV works well as long as

the sample size grows. These findings encourage us to apply the selection procedure via CV to macroeconomic

empirical analyses with dependent regressors.
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1 Introduction

In recent macroeconometrics and forecasting works, the estimation of a large number

of parameters by a penalized regression, such as Lasso by Tibshirani (1996), has attracted

much attention (see Fan et al. (2011) and Uematsu and Tanaka (2015), for example). As is

well-known, the choice of a regularization parameter, λ , is essential in penalized regres-

sion, since the value of λ determines the sparsity of the estimated vector of coefficients; a

larger (smaller) value of λ leads to more sparse (not sparse) estimates. One of the method-

ologies commonly used for choosing λ is the k-fold cross-validation (CV) (see Breheny and

Huang (2011), for example). This procedure is as follows. The sample is partitioned into k

subsamples. A subsample is retained as the validation data for testing the model, and the

remaining k−1 subsamples are used as the training data. The CV procedure is repeated k

times, with each of the subsamples used exactly once as the validation data. In this process,

the time series structure of the data set is broken, meaning that there may occur a fatal prob-

lem unless the sample is i.i.d.; the estimation accuracy in the training step could be worse

due to corruption of data continuity, which may furthermore lead to a bad choice of λ . See

Figure 1 that illustrates the case k = 5. To the best of our knowledge, there are few studies on

CV for penalized regressions with dependent data. This is the motivation of this letter; we

show using simulation studies that regularization parameter selection via CV in penalized

regressions is valid even if the regressors are weakly dependent time series.

Let us consider the estimation of an h-step ahead forecasting regression model, yt+h =
α +β ′xt +ut , by penalized regression. The estimator of the regression coefficients, (α̂ , β̂ ′)′,
is then defined as a solution to the minimization problem of objective function Q(α ,β ),
where

QT (α,β ) =
T

∑
t=1

(

yt+h −α −β ′xt

)2
+

p

∑
j=1

pλ (|β j|). (1)

Here, pλ (v) for v ∈ [0,∞) is a penalty function indexed by the pre-determined regularization

parameter λ (= λT ) > 0. The penalty function pλ can be the L1-penalty (Lasso) by Tibshi-

rani (1996), the smoothly clipped absolute deviation (SCAD) penalty by Fan and Li (2001),

or the minimax concave penalty (MCP) by Zhang (2010). From a theoretical point of view,

λ → 0 must be satisfied. Further, this convergence rate must appropriately be endowed to

achieve the two statistically desirable properties, oracle inequality for prediction and oracle

property for the estimator; see Fan et al. (2011) and Uematsu and Tanaka (2015). However,

it is not necessarily clear what actual value should be assigned in practice. We thus check

the validity of the choice of λ with CV using Monte Carlo simulation, in terms of these two

theoretical viewpoints.

The remainder of this letter is organized as follows. Section 2 gives the model and its

parameter configuration. Section 3 presents the result of Monte Carlo simulation. Section 4

concludes.



Figure 1: When jth subsample is taken as a validation data, the model is estimated by using

the sample made of the other remaining subsamples. The estimation could be suffered due

to corruption of time series structure unless j = 1 or 5. Even when j = 1, moreover, the

estimation is made by using the “future observations” from the validation subsample.

2 Preliminary

2.1 Model and estimator

We investigate the validity of using CV in terms of h-step ahead forecasting and estima-

tion of the coefficients of the model with dependent regressors:

yt+h = α +β ′xt +ut , (2)

xt = µ +Φxt−1 + vt , (3)

where (α ,β ′)′ ∈R×R
p is a parameter vector of interest, xt ∈R

p is a pre-specified stationary

VAR(1) regressor with variance Σx, and (ut ,vt) ∈ R×R
p is an i.i.d. Gaussian error process

with mean zero and variance Σu,v. We consider a large dimensional sparse parameter vector,

β , which is assumed to be split into two subvectors βA ∈ R
q and βB ∈ R

p−q; βA consists of

q nonzero entries, but βB = 0. Note that p ≥ T is allowed while q < T must be satisfied. Re-

garding the estimation of the coefficient vector of (2), we adopt a penalized least squares to

get the sparse estimate of β . Namely, we find the estimate (α̂, β̂ ′)′ by minimizing objective

function QT (α,β ) in (1) with pλ being either Lasso, SCAD, or MCP.



Here we briefly introduce these penalty functions for the sake of completeness. Let θ
denote a positive variable. The L1-penalty (Lasso) is given by pλ (θ) = λθ , and we then

obtain p′λ (θ) = λ and p′′λ (θ) = 0. The SCAD penalty is defined by

pλ (θ) =























λθ if θ ≤ λ

γλθ −0.5(v2 +λ 2)

γ −1
if λ < θ ≤ γλ

λ 2(γ2 −1)

2(γ −1)
if θ > γλ

Its derivative is

p′λ (θ) = λ

{

1(θ ≤ λ )+
(γλ −θ)+
(γ −1)λ

1(θ > λ )

}

for some γ > 2. Then we have p′′λ (θ) =−(γ −1)−11{θ ∈ (λ ,γλ )}. The MCP is defined by

pλ (θ) =











λθ −
θ 2

2γ
if θ ≤ γλ

1

2
γλ 2 if θ > γλ

Its derivative is p′λ (θ) = γ−1(γλ −θ)+ for some γ ≥ 1. Thus, we have p′′λ (θ) =−γ−11{θ <
γλ}.

2.2 Parameter configuration

In our simulation study, we set µ = 0 for simplicity and assume Φ to be diagonal to

clarify the magnitude of dependence in xt . Moreover, we denote by σ2
u and σ2

v Ip the variance

of ut and the covariance matrix of vt , respectively. The parameters and error terms are

specified as follows:

α = ca, β = cι̃ , Φ =

(

φAIq 0

0 φBIp−q

)

,

Σx =

(

σ2
AIq 0

0 σ2
BIp−q

)

, Σu,v =

(

σ2
u 0

0 σ2
v Ip

)

,

where ι̃ = (ι ′,0, . . . ,0)′ ∈ R
p with ι = (1, . . . ,1)′ ∈ R

q, c2 = Sσ2
u/(ι

′Σxι) with S being the

signal-to-noise ratio (SNR) of model (2) and σ2
j = σ2

u/(1− φ 2
j ) for j = A,B. Note that

the multiplier c is introduced to make the SNR be constant for each model configuration.

Specifically, we set the values a = 0, σ2
u = 1, σ2

v = 0.3, and S = 4. The dimension and the

number of included nonzero variables are fixed at p = 200 and q = 10, respectively. In this

situation, we consider the cases h = 1, T = 100,200, and φ = φA = φB = 0,0.3,0.6,0.9.

The optimization is executed by the coordinate descent algorithm in ncvreg of R, proposed

by Breheny and Huang (2011). The values of λ are determined by 10-fold CV while we

preset the tuning parameter γ = 3.7 for SCAD and γ = 3 for MCP. We also consider the

cases h = 2,3,4, T = 500, and 5-fold CV in our preliminary simulation. However, these are

omitted to save space since the results are essentially the same. These results are available

upon request.



3 Results of Simulation Studies

3.1 Results observed from tables

Table 1 gives five criteria to measure the validity of choosing λ by CV. “Mean” and

“S.D.” are the mean and standard deviation of the selected λ based on 1,000 replications.

“MSE” is the mean squared error of h-step ahead forecast ŷt+h computed by

1

1000

1000

∑
r=1

(

y
(r)
T+h − ŷ

(r)
T+h

)2

,

where ŷ
(r)
T+h = α̂ + β̂ ′x

(r)
T with (α̂ , β̂ ′)′ estimated by the penalized regression of y

(r)
t+h on x

(r)
t .

“SC-A” and “SC-B” refer to the sign consistency of β̂A and β̂B, describing the success rates

P
(

sgn(β̂A) = sgn(βA)
)

and P
(

sgn(β̂B) = sgn(βB)
)

, respectively. Note that sgn(βA) ̸= 0

and sgn(βB) = 0 by the definitions. Of course, higher values of these rates are desirable.

Specifically, SCAD and MCP are expected to have SC-A and SC-B that approach one as T

grows; it is well-known that they have the oracle property under regularity conditions with

an appropriate choice of λ while Lasso does not have.

First, we consider the case where T = 100. Overall, we find that Means and S.D.s are

essentially the same for each φ and penalization method, except for the S.D.s of SCAD and

MCP. We also find that MSE worsens in proportion to the value of φ . Likewise, SC-A is the

smallest when φ = 0.9. These findings are not surprising because finite sample performance

of the estimator with strongly dependent regressors tends to be distorted in general when T

is small. However, SC-B does not seem to depend on φ . Next, we turn to the case where

T = 200 and compare it to the previous case. We first see that S.D.s uniformly decrease. A

more interesting fact is that Means decrease for each penalization method; this corresponds

to the asymptotic theory that requires λ → 0 as T → ∞ to obtain the oracle inequality and

oracle property. Thus, the selection of λ by CV seems valid to achieve these desirable

properties in a practical sense. Moreover, MSEs drastically improve for every penalization

method. All MSEs tend to one regardless of the magnitude of φ . On the other hand, the

behavior of SCs is different; Lasso fails to distinguish zeros from the nonzero coefficients

even if T becomes larger, while the other penalties, SCAD and MCP, succeed in model

selection even in highly dependent cases. Again, these findings are consistent with the

theory that holds under the appropriate convergence rate of λ , implying that CV selects an

appropriate λ in a practical sense.

3.2 Results observed from figures

This subsection focuses on the forecasting accuracy by observing Figures 2–4, which

display scatterplots of the MSE (y-axis) against the selected λ (x-axis) for three regulariza-

tion methods. Each figure consists of eight small pictures; the upper and lower rows show

T = 100 and 200, and from left to right, φ = 0, 0.3, 0.6, and 0.9, respectively. If the plots

are densely distributed around the line MSE = 1, it indicates good forecasting accuracy. In

addition, a horizontally wide distribution hints at the robustness for λ . The value of λ does



Table 1: Finite sample performance of the penalized regression.

T 100 200

φ 0 0.3 0.6 0.9 0 0.3 0.6 0.9

Lasso

Mean 0.105 0.102 0.094 0.092 0.090 0.089 0.082 0.062

S.D. 0.035 0.033 0.031 0.037 0.019 0.019 0.017 0.013

MSE 1.771 1.807 1.860 1.893 1.288 1.262 1.259 1.362

SC-A 99.8% 99.7% 98.3% 70.2% 100.0% 100.0% 100.0% 99.2%

SC-B 83.0% 83.2% 84.2% 88.7% 84.1% 84.3% 84.2% 85.8%

SCAD

Mean 0.133 0.133 0.136 0.158 0.134 0.132 0.128 0.095

S.D. 0.016 0.017 0.032 0.065 0.015 0.015 0.015 0.016

MSE 1.336 1.321 1.598 2.430 1.082 1.082 1.094 1.212

SC-A 99.9% 99.7% 96.3% 40.7% 100.0% 100.0% 100.0% 97.5%

SC-B 90.9% 91.5% 93.1% 95.0% 95.5% 95.5% 95.9% 95.8%

MCP

Mean 0.177 0.176 0.174 0.180 0.165 0.165 0.160 0.117

S.D. 0.024 0.023 0.044 0.069 0.020 0.020 0.020 0.022

MSE 1.326 1.330 1.586 2.595 1.089 1.085 1.099 1.234

SC-A 99.6% 99.4% 92.9% 33.3% 100.0% 100.0% 100.0% 95.3%

SC-B 96.4% 96.6% 97.0% 96.9% 98.4% 98.4% 98.6% 98.0%
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Figure 2: LASSO: Upper T = 100 and lower T = 200. From left to right, φ = 0, 0.3, 0.6,

and 0.9, respectively.

not seem to affect the value of MSE. These features may be well understood by observing

the lines; a green dashed line indicates 50%, blue dotted lines show 25% and 75%, and red

dash-dot lines denote 5% and 95% regression quantiles, respectively. A black solid line
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Figure 3: SCAD: Upper T = 100 and lower T = 200. From left to right, φ = 0, 0.3, 0.6,

and 0.9, respectively.
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Figure 4: MCP: Upper T = 100 and lower T = 200. From left to right, φ = 0, 0.3, 0.6, and

0.9, respectively.

designates 1. Note that these lines make sense only on areas where the data exist. Looking

at these lines, we can confirm that they lie in lower positions in the case of T = 200 as

compared to in the case of T = 100. This implies that CV works well in choosing λ as long

as the sample size is larger even if the model has dependence.

4 Conclusion

In this letter, we have explored how well regularization parameter selection with CV

works in penalized regressions with dependent regressors by Monte Carlo study. We have

found from our simulation results that the selection using 10-fold CV performs well in

terms of MSE and sign consistency as in the independent case. These findings encourage

us to apply the selection procedure via CV to macroeconomic empirical analyses where

regressors must be dependent.



Acknowledgements

Uematsu acknowledges financial supports from a Grant-in-Aid for JSPS Fellows, 26-1905.

Tanaka acknowledges financial support from Joint Usage and Research Center, Institute of

Economic Research, Hitotsubashi University.

References

[1] Breheny, P. and J. Huang (2011) “Coordinate descent algorithm for nonconvex penal-

ized regression, with applications to biological feature selection” Annals of Applied

Statistics 5, 232–253.

[2] Fan, J. and R. Li (2001) “Variable selection via nonconcave penalized likelihood and

its oracle properties” Journal of the American Statistical Association 96, 1348–1360.

[3] Fan, J., J. Lv and L. Qi (2011) “Sparse high-dimensional models in economics” Annual

Review of Economics 3, 291–317.

[4] Tibshirani, R. (1996) “Regression shrinkage and selection via the lasso”Journal of the

Royal Statistical Society Series B 58, 267–288.

[5] Uematsu, Y. and S. Tanaka (2015) “Macroeconomic forecasting and variable se-

lection with a very large number of predictors: A penalized regression approach”

arXiv:1508.04217v1.

[6] Zhang, C. H. (2010) “Nearly unbiased variable selection under minimax concave

penalty” Annals of Statistics 38, 894–942.


