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Abstract
In this note, we offer a new metric to measure the distance between the partitions of a given finite set. We compare

the proposed metric with the ones in the literature through examples.
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1 Introduction

Modeling knowledge with partitions is very common and almost unique in game theory and
information economics. In this construction each individual is endowed with a partition of
the set of possible states which can be interpreted as the knowledge of the people. One
interpretation of such model is that a partition, or in particular the cells of a partition,
represents the state of the mind (See, for example Zamir 2008) for the individual. The aim
of this note is to offer a metric that measures partitions in the light of this interpretation.
According to the proposed metric the distance between two partitions is the weighted average
of the non-empty symmetric differences of each cell that contain each element of the set by
excluding double counting.

Although it is possible to use this metric as an index for other purposes such as cluster
analysis, categorization theory or even data mining given the common usage of partitions in
these areas (See Wagner and Wagner 2007 for a thorough coverage), our primary motivation
is to measure partitions for game theory or decision theory with the interpretation given
above.

The rest of the paper is organized in the following way: next section gives the rele-
vant notations and definitions, and introduces the proposed metric. After that we compare
some important distance measures defined in the literature with the proposed one through
examples.

2 Notations and the metric

Let Ω be a finite set with n members. We say that a collection P = {P (ω)}ω∈Ω of sets is a
partition of Ω, and call the P (ω) the atoms of the partition, if

P (ω) ∩ P (ω′) = ∅ for ω 6= ω′, and
⋃

ω

P (ω) = Ω.

In the interpretation, Ω is the set of all possible states ω that is relevant for the situation at
hand. When some state ω0 is realized a player’s knowledge will be represented by the atom
P that contains ω0. Any member ω in P is indistinguishable from ω0 from the viewpoint of
the player.

Let P be the set of all partitions of Ω. Consider two arbitrary members P and Q of this
set. We can interpret each partition as the mental state of each player. Define the symmetric
difference of two arbitrary sets A and B, denoted by A∆B, as

A∆B := (A \B) ∪ (B \ A).

Now consider the collection S of symmetric differences given by,

S := {P (ωi)∆Q(ωi) 6= ∅ : P (ωi) ∈ P, Q(ωi) ∈ Q, i = 1, . . . , n} = {S(ωi)}
n
i=1.

The collection S contain symmetric differences of atoms in each partition that contain ω. It



is not difficult to see that

P (ωi)∆Q(ωi) = P (ωj)∆Q(ωj) for some i 6= j.

Note that S contains only one of those such repetitive sets and this precludes double counting.

Definition 1. Define ρ : P × P → R

ρ(P ,Q) :=
n

∑

i=1

ri
(

n

si

) −
∑

ri∈D

ri
(

n

si

)

where si is the cardinality of the atom S(ωi) that contains ωi in S and ri is 0 if si = 0,
otherwise 1. D is the set of items that show more than one. We can write in a compact form
by excluding double counting

ρ(P ,Q) :=
∑

S(ω)∈S

r
(

n

s

)

where | S(ω) |= s, r is the total number of atoms in S with cardinality s, and ri is the
cardinality of sets in S with i element.

To make sense out of the definition consider the following example.

Example 1. Let Ω = {ω1, ω2, ω3} with two partitions P = {{ω1, ω3}, {ω2}} and Q =
{{ω1, ω2}, {ω3}}. Then S = {S(ω1), S(ω2), S(ω3)} = {{ω2, ω3}, {ω1}, {ω1}}. Note that
S(ω2) = S(ω3) even though ω2 6= ω3. The distance ρ(P ,Q) is then 2/3.

Proposition 1. The function ρ is a metric on the set P of all partitions for a given Ω.

Proof. (1) ρ(P ,Q) = 0 implies r = 0 for each atom in S. In other words collection of
symmetric differences contain empty sets. That is P (ω)∆Q(ω) = ∅ which implies P (ω) =
Q(ω). Hence every omega is assigned in the same atoms in both P and Q. Thus, P = Q.

Conversely, it is immediate to conclude that P = Q implies ρ(P ,Q) = 0.

(2) Since symmetric differences in sets are by definition satisfy symmetry, we have ρ(P ,Q) =
ρ(Q,P).

(3) To finish the proof we need to show for arbitrary P ,Q and R

ρ(P ,Q) ≤ ρ(P ,R) + ρ(R,Q)

We prove the claim by induction on | Ω |= n. The claim is trivial when n = 1.

Suppose now the claim is true for some n i.e., | Ω |= n. Consider now the set Ω ∪ {ω0}
so that the cardinality is n+ 1. Consider arbitrary partitions P , Q and R of Ω ∪ {ω0}.
These partitions can be obtained by partitions P ′,Q′ and R′ of Ω, by including ω0 to
them, respectively.



There are two possibilities for adding a new element to a given partition. It can either
be added as a singleton - the atom contains only the new element - or it can be included
into one of the existing atoms. With the abuse of notation, let us denote the former
case X ⊕ x and the latter case X ⊎ x for an arbitrary partition X and an arbitrary new
element x.

(3.1) Suppose we obtain each partition by adding ω0 separately. That is

P := P ′ ⊕ ω0, Q := Q′ ⊕ ω0, R := R′ ⊕ ω0

So by induction hypothesis we have

ρ(P ′,Q′) ≤ ρ(P ′,R′) + ρ(R′,Q′).

Equivalently,

n
∑

i=1

ri
(

n

si

) −
∑

ri∈D

ri
(

n

si

) ≤
n

∑

i=1

r̃i
(

n

s̃i

) −
∑

r̃i∈D̃

r̃i
(

n

s̃i

) +
n

∑

i=1

r̂i
(

n

ŝi

) −
∑

r̂i∈D̂

r̂i
(

n

ŝi

)

Then since S(ω0) = ∅ - rn+1 = 0 - in every collection of symmetric differences, and
the other S(ωi) would not change, the above equation implies

n
∑

i=1

ri
(

n+ 1

si

) −
∑

ri∈D

ri
(

n+ 1

si

) ≤
n

∑

i=1

r̃i
(

n+ 1

s̃i

) −
∑

r̃i∈D̃

r̃i
(

n+ 1

s̃i

)

+
n

∑

i=1

r̂i
(

n+ 1

ŝi

) −
∑

r̂i∈D̂

r̂i
(

n+ 1

ŝi

)

which is equivalent to

ρ(P ,Q) ≤ ρ(P ,R) + ρ(R,Q)

(3.2) Consider now ω0 is included one of the existing atoms of the given partitions, say
P ′. That is

P := P ′ ⊎ ω0, Q := Q′ ⊕ ω0, R := R′ ⊕ ω0

Now suppose P ′(ωi) is the atom that contains ω0 in P . So the only difference
between P ′ and P is that the atom P ′(ωi) includes ω0 in addition to other elements.
Then symmetric difference P ′(ωi)∆Q′(ωi) = S(ωi) will include ω0 which causes
change in the left-hand side of the triangle inequality. Also, S(ω0) may cause a
change. However there will be identical changes in left hand side of the triangle
inequality through a change in P ′(ωi)∆R′(ωi)S̃(ωi). This is also true for S̃(ω0).



Finally, the last component will not change because Q and R contain ω0 as an
atom so symmetric differences will not change and Ŝ(ω0) = ∅. As in the previous
case the conclusion follows.

Note that with similar argument we can show similar cases where ω0 is added
two partitions as a singleton and added into the remaining one as part of the
existing atoms. Formally, by the symmetry of arguments, this case implies the
same conclusion for the following cases.

P := P ′ ⊕ ω0, Q := Q′ ⊎ ω0, R := R′ ⊕ ω0,

P := P ′ ⊕ ω0, Q := Q′ ⊕ ω0, R := R′ ⊎ ω0.

(3.3) Consider now another case where ω0 is included only in one partition, say P , as a
separate atom. That is

P := P ′ ⊕ ω0, Q := Q′ ⊎ ω0, R := R′ ⊎ ω0.

Now suppose Q′(ωi) and R′(ωj) are the atoms including ω0 in Q and R, respec-
tively. This will cause a change in P ′(ωi)∆Q′(ωi) = S(ωi) and symmetric dif-
ferences of every component in these atoms. So left hand side of the triangle
inequality will change, however, symmetrical changes will happen on the right
hand side because of symmetrical differences of atoms of P and R. If we include
symmetric differences of atoms of Q and R the result follows.

(3.4) Note that the last case in which ω0 added to existing atoms of P ′, Q′ and R′

follows the same logic with initial case where ω0 added as a separate atom to each
of the partitions.

The list covers all possible cases and the claim follows by induction.

The logic of the above proof is that adding a new element to create new partitions would
create similar effects on the each side of the inequality. The only change then is to have
one more element in the denominator of the formula, but this means only rescaling without
effecting the direction of the inequality.

The metric is weighting the total number of the atoms of S with the same cardinality.
Since each atom is a subset of Ω, we use the probability of obtaining that particular atom
as our weight. Intuitively, the symmetric difference measures how far apart the sets are1

and gives us subsets of the original set Ω. We weighted each subset with the probability of
obtaining it from Ω.

3 Comparison with other metrics

The distance measures for partitions proposed in the literature are mostly distance indices
which can be categorized into three groups2: indices constructed with combinatoric approach,

1In a game theoretic context this refers to distance between knowledge of agents when the true state is

ω.
2Note that this classification is not common nor uniform.



indices constructed with informational approach and metrics that rely on tools from prob-
ability (or, measure theoretic metrics). Roughly speaking, the indices in the former group
have been constructed by counting the number of pairs that agree in different partitions
such as Mirkin and Chernyi (1970) and William (1971) or by counting the number of pairs
that disagree in different partitions such as Arabie and Boorman (1973). Note that indices
constructed by counting the agreed pairs such as Rand index are not a metric since the
distance between two identical partitions is 1 according to them. Counting disagreed pairs,
however, solves this problem and establishes a metric.

The construction of the indices in the second group is based on Shannon (1948) entropy
such as De Mántras (1991) and Simovici and Jaroszewicz (2003). The logic behind these
indices is to make a random variable by using partition structure to employ entropy which
is introduced for a random variable distribution. The desired random variable is obtained
by taking the ratio of cardinality of each atom to the cardinality of the original set.

The metrics in the last group are more common in economic theory. One of the earliest
example of such (semi) metric is due to Boylan (1971). The (semi) metric is defined on sub-
sigma-algebras and it allows to measure differences between information structures. Allen
(1983), Stinchcombe (1990) and Monderer and Samet (1996) use this metric to measure
informational differences and to topologize abstract space of information. Recently, Mohlin
(2015) proposed another metric for the same purpose. This metric weights symmetric dif-
ferences of each cell with their intersection.

We now compare our metric with the ones in the last group. The main reason for this is
that the metrics in the last group have wide usage in economic theory or are proposed for
economic theory in mind. The metrics in the other groups are designed for cluster analysis or
data mining purposes and measuring distances with these metrics generally produce counter-
intuitive results in the context of game theory or decision theory. Also, metric proposed by
Mohlin (2015) have a very close relation with the metrics in the first two groups. So assessing
one of them would give enough idea about the implications of the other.

Before proceeding let us first give the definitions of these two metrics.

Definition 2 (Boylan (1971)). Let (Ω,B, µ) be a probability space. The function ρb given by

ρb(P ,Q) := sup
P∈P

inf
Q∈Q

µ(P∆Q) + sup
Q∈Q

inf
P∈P

µ(P∆Q)

defined on sub-sigma-algebras of B is a semi-metric.

Definition 3 (Mohlin (2015)). Let (Ω,B, µ) be a probability space. The function ρm given
by

ρm(P ,Q) :=
∑

P (ω)∈P

∑

Q(ω)∈Q

µ
(

P (ω) ∩ µ(Q(ω)
)

µ
(

P (ω)∆Q(ω)
)

defined on P is a metric.

In the following example consider µ as the cardinality of each set at hand3.

3With some tedious calculations, it is possible to show that no measure µ with Boylan metric allows the

symmetry property we wanted.



Example 2. Consider again Ω = {ω1, ω2, ω3} with the partitions P = {{ω1, ω3}, {ω2}},
Q = {{ω1}, {ω2}, {ω3}} and R = {{ω1, ω2, ω3}}. Intuitively moving from P to Q and to R
should have the same distance because of the symmetry of the situation. That is, moving
from P to Q means distinguishing one more thing and moving from P to Q means mixing
up one more thing so that the distance from moving P to Q and to R should be the same.
The following table summarizes the distance for each of the metrics.

Metric P ,Q P ,R R,Q
ρ 2/3 2/3 1
ρb 2 3 4
ρm 2 4 2

Table I: Distances according to different metrics

Observe that the equality ρm(P ,Q) = ρm(R,Q) is highly counterintuitive.

Note that the results given above can be checked for different partitions and different
finite sets as well. The reason that we propose our metric is to measure informational
differences as intuitively as possible. Also our measure offers a unique way of measurement.
The other two metrics are sensitive to the measure µ. It is also difficult to make sense out
of these metrics if we allow two different measures µ and µ′ for different individuals. So in
that sense, it is difficult to use these metrics with heterogeneous or multiple priors.

4 Conclusion

This paper proposed a metric for partitions. Although it can be useful in data mining and
clustering analysis, our hope is that it can be applied primarily to game theoretic and decision
theoretic situations. One possible set up where this metric is useful would be information
design problems in which a principal sets up an information structure to obtain a certain
outcome. If the information design is a costly task then the metric proposed in this paper
can be used to measure the cost of alternative designs.
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