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Abstract
The purpose of this article is to develop a new bivariate density estimation method based on the decomposition of joint

density into pointwise mutual information and marginal densities. The pointwise mutual information and product of

marginal densities are estimated by bivariate kernel density estimators with shuffled data. Our method is defined as a

product of the marginal densities and pointwise mutual information. Monte-Carlo simulations indicate that this

estimation method provides good finite sample performance for weak dependent data.
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1. Introduction 

Recently, the analysis of nonlinear dependence in multivariate data has become important. Because 

nonlinear dependence cannot be detected using a correlation coefficient, other measures have been 

proposed (Dionisio et al. 2004, and Tjøstheim and Hufthammer 2013). A previous study has used 

pointwise mutual information as a method for measuring nonlinear dependence (Takada 2012). 

Because pointwise mutual information is uniquely determined by the joint density function, a method 

for estimating pointwise mutual information indirectly through density estimation has been proposed 

(Moon et al. 1995, and Takada 2012). In contrast with this previous approach, we propose a method 

for estimating the joint density from an estimate of pointwise mutual information. Pointwise mutual 

information is a specific type of density ratio. Previous studies have proposed several techniques for 

density ratio estimation (Kelsall and Diggle 1995, Hazelton and Davies 2009, Davies et al. 2011 and 

Fernando et al. 2014). The error of the density ratio estimator can be decreased by using these 

techniques when the density ratio function is flat (Kelsall and Diggle 1995). Therefore, our approach 

may estimate the density function more efficiently than does the previous method when the shape of 

the target density function is complex and the shape of the corresponding pointwise mutual 

information function is relatively simple. However, our approach has not yet been studied. 

The purpose of the present study is to develop a new bivariate density estimation method based on 

the decomposition of joint density into pointwise mutual information and marginal densities. 

The proposed method is calculated as follows. First, pointwise mutual information is estimated by 

two bivariate kernel density estimators with shuffled data. Second, the marginal densities are estimated 

by two univariate kernel density estimators or one bivariate kernel density estimator using shuffled 

data. The proposed method is thus defined as a product of the marginal densities and pointwise mutual 

information. Additionally, this modified estimation method may not yield extremely high error in 

specific cases.  

Monte Carlo simulations indicate that this method provides good finite sample performance for 

weak dependent data. Therefore the proposed method, is efficient for the analysis of noisy, weak 

dependent bivariate data. 

The remainder of this paper is organized as follows. Section 2 reviews the existing methods for 

estimating pointwise mutual information. Because pointwise mutual information is defined as the ratio 

of two bivariate density functions, this section also reviews the conventional techniques for density 

ratio estimation. Section 3 describes our proposed approach. Section 4 compares the performance of 

the proposed method with that of ordinal kernel density estimation. Finally, section 5 provides some 

concluding remarks. 

2. Pointwise Mutual Information 

Our approach is based on the concept of pointwise mutual information. In this section, we review the 

definition of pointwise mutual information and the existing methods for estimating it. 



 

 

Let ܺ and ܻ be random variables of a probability space. The pointwise mutual information of ܺ, ܻ 

at ሺܺ, ܻሻ is defined as follows: 

���ሺݔ, ሻݕ = log ݂,ሺݔ, ሻݔሻ݂ሺݕ ݂ሺݕሻ , (1) 

where ݂,ሺݔ, ,ݔሻ is the joint density function of ܺ and ܻ at the point ሺݕ  ሻ areݕሻ and ݂ሺݔሻ, and ݂ሺݕ

the marginal densities of ܺ at ݔ and ܻ at ݕ, respectively. Pointwise mutual information is a method 

for measuring the dependence of variables. This method is used for collocation extraction in natural 

language processing (Bouma 2009), as well as for tail dependence analysis of multivariate time-series 

data in finance (Takada 2012).  

Several methods for estimating the pointwise mutual information of continuous random variables 

have been considered. Takada (2012) compared three estimators of pointwise mutual information: the 

products of the univariate density estimate (UD), marginal density estimate (MD), and bivariate 

density estimate in shuffled sequence (SD). According to Takada (2012), the UD and MD are both 

natural estimators directly following from the definition of pointwise mutual information. The UD 

method is described below. First, the joint density ݂,ሺݔ,  ሻ is estimated by a bivariate kernel densityݕ

estimator. Second, the marginal densities  ݂ሺݔሻ, ݂ሺݕሻ are estimated by univariate density estimators. 

Third, the ratio between these densities is computed. Hence, the UD estimator is defined as follows: 

���̂ሺݔ, ሻݕ = log ݂̂,ሺݔ,  ሻ . (2)ݕሻ݂̂ሺݔሻ݂̂ሺݕ

The MD method uses a numerical integration of the joint density estimate ݂̂,ሺݔ,  ሻ to obtain theݕ

marginal densities ݂̂ሺݔሻ = ∫ ݂̂,ሺݔ, ሻݕand ݂̂ሺ ݔ� ሻݕ = ∫ ݂̂,ሺݔ,  Therefore, the MD method . ݔ� ሻݕ

is defined as follows: 

���̂ெሺݔ, ሻݕ = log ݂̂,ሺݔ, ∫ሻݕ ݂̂,ሺݔ, ∫ ݕ� ሻݕ ݂̂,ሺݔ,  (3) . ݔ�ሻݕ

UD has been indirectly used for average mutual information estimation (Moon et al. 1995). 

However, when estimating densities for which two random variables are independent, these methods 

tend to produce biases which mistakenly detect nonexistent dependence (Takada 2012). The SD 

method, has been proposed as an alternative to UD and MD (Takada, 2012). This method shuffles the 

sequence of data to avoid bias. The SD method replaces the product of marginal densities ݂̂ሺݔሻ݂̂ሺݕሻ 

with  ݂̂�ℎ��,ሺݔ, ,ݔሻ, where   ݂̂�ℎ��,ሺݕ ሻ is obtained by randomly shuffling the sequence of the ܺ� to make ܺ�ℎ�ݕ , ܻ be independent. Hence, the SD estimator is defined as follows: 

���̂� = ݂̂,ሺݔ, ,ݔሻ݂̂�ℎ��,ሺݕ  ሻ. (4)ݕ



 

 

The SD method is based on the definition of independence. A previous study has reported that this 

method can avoid bias when the shuffled density is estimated by an adaptive kernel density estimator. 

 

3. Pointwise mutual information estimation as a density ratio estimation 

In this section, we review the previous research on density ratio estimation. Density ratio estimation 

has previously been used for the estimation of relative risk in geographical epidemiology or spatial 

statistics (Silverman 1978, Kelsall and Diggle 1995, Kelsall and Diggle 1998, Clark and Lawson 2004, 

Hazelton and Davies 2009, Davies et al. 2011, and Fernando et al. 2014). The estimation of pointwise 

mutual information is a type of (logarithm of) density ratio estimation. Therefore, we can apply several 

techniques from this field to pointwise mutual information estimation. 

The literature we review here concerns two bandwidth selection approaches for density ratio 

estimation, especially as they relate to our proposed estimator. The first approach is the cross-

validation approach, and the second approach involves using a common bandwidth for the numerator 

and denominator. These approaches can be applied simultaneously. 

Kelsall and Diggle (1995) proposed a bandwidth selection method using least-square cross-

validation with the Taylor series expansion of the logarithm of density ratio estimation. Kelsall and 

Diggle (1998) then examined other types of cross-validation methods: likelihood cross-validation, 

least-square cross-validation, and weighted least-square cross-validation. Kelsall and Diggle (1998) 

reported that likelihood cross-validation is the best approach. 

Using a common bandwidth for the numerator and denominator of the density ratio helps decrease 

variance (Kelsall and Diggle 1995). When the shapes of the densities of the numerator and 

denominator are similar and a common bandwidth is used, the biases of the estimators are cancelled 

out. Therefore, a larger bandwidth can be used to decrease the variance of the density ratio estimator. 

However, these results have not yet been applied for pointwise mutual information estimation. 

Because pointwise mutual information estimation is a variant of density ratio estimation, we apply 

these findings to our proposed estimation method. 

4. Proposed Estimation Method 

Our proposed method is based on the following decomposition formula. The bivariate density function 

is decomposed into three terms: two marginal density functions and an exponential of the pointwise 

mutual information function. ݂ሺݔ, ሻݕ = ݂ሺݔሻ݂ሺݕሻ exp(���ሺݔ,  ሻ). (5)ݕ

These terms are estimated separately and merged as a product, which may theoretically be used to 

construct an estimation method based on Eq. (5). However, this estimation method tends to be unstable 

in practice. When the target joint density is dissimilar to the product of the marginal densities, the 



 

 

consequential ratio estimate tends to be unstable, because the denominator part of the pointwise mutual 

information tends to be very small. This problem was observed in a simple numerical experiment. 

To avoid this issue, we modify Eq. (5) to set an upper bound for its ratio term. The joint density of ܺ and ܻ can be expressed as follows:  

݂,ሺݔ, ሻݕ = �−ଵ [{� ݂ሺݔሻ ݂ሺݕሻ + ሺͳ − �ሻ ݂,ሺݔ, {ሻݕ ݂,ሺݔ, �ሻݕ ݂ሺݔሻ ݂ሺݕሻ + ሺͳ − �ሻ ݂,ሺݔ, −ሻݕ ሺͳ − �ሻ ݂,ሺݔ,  ,[ሻݕ
(6) 

where �  is a parameter that takes a value between 0 and 1.  Based on Eq. (6), we obtained the 

proposed estimator, defined as follows: ݂̃, = ݃̂,ሺݔ, ሻݕ { ݂ ݂̂ሺݔ, ሻݕ + ݂̂,ℎభ ሺݔ, {ሻݕ − ݂̂,ℎభ ሺݔ,  ሻ. (7)ݕ

where ݃̂,ሺݔ,  ሻ is the density ratio estimate ofݕ

݂,ሺݔ, �ሻݕ ݂ሺݔሻ ݂ሺݕሻ + ሺͳ − �ሻ ݂,ሺݔ,  ሻ , (8)ݕ

The input data for ݃̂, is the original data ܺ, ܻ for the numerator. For the denominator, if � =  ͳ/ʹ, 

a combination of the original data and the shuffled data (ܺ, ܺ�ℎ�), ሺܻ, ܻሻ may be used. 

Two types of estimator for the term ݂ ݂̂ሺݔ,  ”,ሻ are available. The first is the “product methodݕ
defined as follows:  

݂ ݂̂ሺݔ, ሻݕ = ݂̂ሺݔሻ ݂ሺݕሻ. (9) 

The second is the “shuffle method,” defined as follows:  

݂ ݂̂ሺݔ, ሻݕ =  ݂̂�ℎ��,ሺݔ,  ሻ . (10)ݕ

The proposed estimator is defined as follows: ݂̃,ሺݔ, ሻݕ = �−ଵ [{� ݂ ݂̂ሺݔ, ሻݕ + ሺͳ − �ሻ ݂,ℎభ ሺݔ, {ሻݕ ݃,ℎమ ሺݔ, ሻݕ − ሺͳ − �ሻ ݂,ℎభ ሺݔ,  ሻ]. (11)ݕ

The term ݂,ℎభ is computed by bivariate density estimation using the original data. The smoothing 

parameter for this estimator is selected by the direct plugin method discussed by Sheather and Jones 

[1991]. 

Three types bandwidth selection method are employed for ݃,ሺݔ,  .ሻ: LikCV, LSCV, and WLSCVݕ

The loss functions are defined as follows: 



 

 

��� = ͳ� ∑ log �̂�,�
�=ଵ − ͳʹ� ∑ log �̂ௗ,�ଶ

�=ଵ , (12) 

��� = ͳ� ∑(ͳ − �̂�,�)ଶ
�=ଵ − ͳʹ� ∑ �̂ௗ,�ଶଶ

�=ଵ , (13) 

��ௐ� = ͳ� ∑ (ͳ − �̂�,�)ଶ�̂�,�ሺͳ − �̂�,�ሻ
�=ଵ − ͳʹ� ∑ �̂ௗ,�ଶ�̂ௗ,�(ͳ − �̂ௗ,�)ଶ

�=ଵ , (14) 

where �̂�,� is the cross-validated estimate of the probability that the i-th sample was generated from 

the density of the numerator side, defined as follows:  

�̂�,� = ݂̂,−�ሺܺ�, �ܻሻ݂̂′,′ሺ �ܺ, �ܻሻ + ݂̂,−�ሺܺ�, �ܻሻ. (15) 

For the denominator, the estimate is defined as follows: 

�̂ௗ,� = ݂̂′,′ሺ �ܺ′, �ܻ′ሻ݂̂−�′ ,−�′ ሺܺ�′, �ܻ′ሻ + ݂̂′,′ሺ �ܺ′, �ܻ′ሻ , (16) 

where ܺ′ and ܻ′ are defined as follows: ܺ′ =  (ܺ, ܺ�ℎ�),   ܻ′ = ሺܻ, ܻሻ. (17) 



 

 

As previously noted, we use a common bandwidth for the numerator and denominator in the ݃,ሺݔ,  .ሻ partsݕ

We can select the degree of freedom of the bandwidth matrix using some bandwidth selection 

method for bivariate density estimation. In this paper, we use the diagonal bandwidth matrix, which 

is defined as follows: ℎ = ℎ��ߣ, ℎ = ℎ��ೊߣ. 
(18) 

where ℎ��  and ℎ��ೊ  are the bandwidths selected by the Sheather and Jones [1991] direct plugin 

method using the sample ܺ, ܻ. 

5. Simulation Study 

5.1 Data 

Randomly generated data are used for Monte Carlo simulation. We adopt mixed normal 

distributions containing one to four elements. The distributions are defined as follows:  

∑ ��(ߤ௫,, ,௬,ߤ �ଶ )
=ଵ . (19) 

where �ሺߤ௫, ,௬ߤ �ଶሻ is the bivariate normal density function. The location parameters and mixing 

ratios of the distributions used here are shown in Table 1. 

The parameters for adjusting the degree of overlap between the elements are selected as follows. When 

the number of elements is one, two, or four, σ is set to 1.00. In addition, when the number of elements 

Table 1.  Location parameters and mixture ratios of each factor of the target mixture densities m μ୶,ଵ μ୶,ଶ μ୶,ଷ μ୶,ସ μ୷,ଵ μ୷,ଶ μ୷,ଷ μ୷,ସ σ pଵ pଶ pଷ pସ 

1 0    0    1.00 1.0    

2 2 -2   2 -2   1.00 0.5 0.5   

3 2 -2 0  -2 -2 2  1.00 0.3 0.3 0.4  

4 -3 -1 1 3 -2 2 -2 2 1.00 0.25 0.25 0.25 0.25 

3 2 -2 0  -2 -2 2  1.25 0.3 0.3 0.4  

3 2 -2 0  -2 -2 2  1.50 0.3 0.3 0.4  

3 2 -2 0  -2 -2 2  1.75 0.3 0.3 0.4  

3 2 -2 0  -2 -2 2  2.00 0.3 0.3 0.4  

3 2 -2 0  -2 -2 2  2.25 0.3 0.3 0.4  

3 2 -2 0  -2 -2 2  2.50 0.3 0.3 0.4  

3 2 -2 0  -2 -2 2  2.75 0.3 0.3 0.4  

3 2 -2 0  -2 -2 2  3.00 0.3 0.3 0.4  

 



 

 

is three, σ varies every 0.25 from 1.00 to 3.00. The shapes of the distributions determined by these 

Figure 1. Shapes of target densities 

 
 



 

 

parameter settings are shown in Fig. 1. Figs. 1(a–d) correspond to the four distributions of the different 

numbers of mixtures. In addition, Figs. 1(e–h) correspond to the four distributions of σ =ͳ.5, ʹ.Ͳ, ʹ.5, and ͵.Ͳ with three elements. For each distribution setting, the experiment were ran with 

the sample sizes at 50, 100, 200, 400, 800, 1600, and 3200. For every scenario, the simulation was 

repeated 100 times. 

5.2 Method 

Six variations of the proposed estimation method and one existing estimation method were examined 

in the experiment. The bivariate fixed kernel (FK) density estimation method was used as the existing 

method, and the product method and shuffle method were used as the proposed methods. Three 

methods for bandwidth selection were applied to each estimation method: likelihood cross-validation, 

least-square cross-validation, and weighted least-square cross-validation.  

The errors of the methods are calculated as MISE (mean integrated squared error). 

5.3 Results and Discussion 

The resulting data are shown in Tables 2, 3 and 4. First, we compared our six proposed estimation 

methods. At a sample size of n = 50, the product methods were better than the shuffle methods at a 

sample size of n = 3200, and the shuffled least-square cross-validation and shuffled weighted least-

square cross-validation methods were worse than other methods. Therefore, the shuffle methods 

performed worse than did the product methods. One possible explanation is that the randomization of 

the shuffle method increased the variance of the estimation methods. In summary, the product 

likelihood cross-validation method provided stable estimates under a wide range of conditions. 

Second, we compared the existing method and the product likelihood method at different target 

densities. As shown in Table 4, the MISE of the proposed estimation method displayed no clear 

dependence on the number of modes of the target densities. Table 4 illustrates the performance of the 

product likelihood method relative to that of the existing method under varying average mutual 

information of the two random variables of the target densities. 

Table 2. The MISE of One Existing Method and Our Six Proposed Methods. 

N = 50   Product Method Shuffle Method � � FK LiKCV LSCV WLSCV LiKCV LSCV WLSCV 

1 1 0.009156 0.006182 0.006182 0.007017 0.009318 0.009318 0.009196 

2 1 0.005926 0.007133 0.007506 0.018301 0.006055 0.008499 0.02111 

3 1 0.005504 0.009235 0.009235 0.009118 0.010653 0.010653 0.010495 

4 1 0.004227 0.005914 0.005909 0.005872 0.006781 0.006842 0.006777 

3 1.25 0.003367 0.004335 0.004335 0.004298 0.005186 0.005186 0.00507 

3 1.5 0.002332 0.002419 0.002419 0.002427 0.002989 0.002989 0.002896 

3 1.75 0.001722 0.001526 0.001526 0.001597 0.002118 0.002118 0.002064 

3 2 0.001287 0.001067 0.001067 0.00116 0.001422 0.001422 0.001419 

3 2.25 0.001177 0.00087 0.00087 0.000991 0.001279 0.001279 0.001271 

3 2.5 0.001002 0.000724 0.000724 0.00079 0.001001 0.001001 0.000991 

3 2.75 0.000903 0.000635 0.000635 0.00072 0.000902 0.000902 0.000898 

3 3 0.000677 0.000484 0.000484 0.000536 0.000711 0.000711 0.000697 

 



 

 

The proposed method estimates more efficiently than do conventional estimators when the average 

mutual information of the target density is low. The MISE of the proposed method is lower than that 

of the conventional methods when the average mutual information of the target density is lower than 

approximately 0.15 bits and the sample size is 50, as well as when the average mutual information of 

the target density is lower than approximately 0.08 bit and the sample size is 3200. When the average 

mutual information and sample size are small, the relative efficiency of the proposed method is high. 

One possible explanation for the effect of average mutual information is that the larger bandwidth for ݃ሺݔ, ,ݔሻ decreases the variance when the average mutual information of ݃ሺݕ  .ሻ is lowݕ

In contrast to the previous method, the proposed method does not exhibit nonnegativity. Moreover, 

the proposed method does not integrate to one. This weakness should be addressed in future research. 

 



 

 

6. Conclusion 

We proposed a method for estimating joint density from estimates of pointwise mutual information. 

We evaluated the proposed estimator through Monte Carlo simulation. Our experimental results 

showed that the proposed method was superior in efficiency than the previous method when the 

average mutual information of target density was low. The proposed method is thus useful for the 

analysis of noisy, weak dependent bivariate data. 

 

Table 3. The MISE of One Existing Method and Our Six Proposed Methods. 

N = 3200   Product Method Shuffle Method � � FK LiKCV LSCV WLSCV LiKCV LSCV WLSCV 

1 1 0.000599 0.000254 0.000254 0.000564 0.000614 0.000614 0.000614 

2 1 0.000457 0.000876 0.000459 0.001799 0.000515 0.000567 0.001814 

3 1 0.000943 0.001201 0.001452 0.004352 0.000971 0.001502 0.004453 

4 1 0.000351 0.000551 0.000803 0.002784 0.000367 0.000892 0.003036 

3 1.25 0.000578 0.000698 0.000972 0.001902 0.000664 0.00105 0.001973 

3 1.5 0.000371 0.000478 0.000635 0.000908 0.000513 0.000703 0.000952 

3 1.75 0.000258 0.000361 0.000441 0.000486 0.000404 0.000493 0.000513 

3 2 0.000187 0.000282 0.000302 0.000282 0.000333 0.000357 0.000293 

3 2.25 0.00014 0.000182 0.000184 0.00018 0.000224 0.000227 0.000193 

3 2.5 0.000108 0.000119 0.000119 0.000125 0.000156 0.000156 0.000135 

3 2.75 0.000089 0.000083 0.000083 0.000097 0.000114 0.000114 0.000105 

3 3 0.000072 0.00006 0.00006 0.000077 0.000086 0.000086 0.00008 

 

Table 4. Relative MISE for Product Method using LikCV to Fixed Kernel Method. 

  Average Mutual  
Information 

Sample Size � � 50 100 200 400 800 1600 3200 

1 1.00 0.00 0.68 0.65 0.61 0.54 0.50 0.47 0.42 

3 3.00 0.04 0.72 0.70 0.69 0.71 0.72 0.77 0.84 

3 2.75 0.05 0.70 0.71 0.70 0.74 0.79 0.84 0.93 

3 2.50 0.06 0.72 0.76 0.77 0.79 0.87 0.95 1.10 

3 2.25 0.08 0.74 0.74 0.85 0.91 1.04 1.19 1.30 

3 2.00 0.11 0.83 0.85 0.99 1.09 1.30 1.49 1.50 

3 1.75 0.16 0.89 1.01 1.17 1.43 1.69 1.80 1.40 

3 1.50 0.25 1.04 1.26 1.56 1.84 2.12 1.61 1.29 

3 1.25 0.42 1.29 1.66 2.03 2.31 1.79 1.38 1.21 

4 1.00 0.63 1.40 1.80 2.30 1.63 1.40 1.50 1.57 

3 1.00 0.77 1.68 2.12 2.51 1.74 1.39 1.34 1.27 

2 1.00 0.84 1.20 1.60 1.52 1.73 1.83 1.82 1.91 
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