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Abstract
Structural change is a major challenge to the applied forecaster and a potential source of large forecast errors. Large

forecasting competitions demonstrate the success of combined forecasts of simple linear models over forecasting

devices that endogenously model structural change. Thereby, most studies look at the average performance over time,

not at or around structural changes. However, is it really reliability in the presence of structural breaks that gives

average forecasts an edge over their competitors? An analysis of real-time forecasts of UK inflation indicates that it is

not their break performance that earns combined forecasts their fame.
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1 Introduction

Among others, Stock and Watson [1996a] show that most macroeconomic time series are

subject to structural breaks. This has strong implications for the forecasting profession, as

forecasting devices should incorporate past and anticipate future breaks.

However, the identification and locating of structural change is a highly demanding task,

even if a sufficiently large number of observations is available in sample. This situation is ag-

grevated when it comes to real-time out-of-sample forecasting. If a structural break occurs at

or very close to the forecast origin, the tests for structural breaks necessarily rely on a very lim-

ited information set. Furthermore, first vintages of data are frequently subject to considerable

revisions, limiting the reliability of the most recent data. Finally, even if a break is correctly

identified, it remains unclear how to incorporate this knowledge in the model. Therefore it is

not surprising that while it is tempting to try to model breaks endogenously, thus implicitly

predicting them as well, sucess has so far been limited, at best.

Considering structural breaks, it is inevitable to have a notion of a structural relationship

that describes the data. Depending on the aim of the analysis and the variable to be described,

there is a large variety of alternatives, ranging from large structural models, dynamic stochas-

tic equilibrium models or single equations, such as the Phillips Curve, to simple dynamic

processes. However, in the context of forecasting macroeconomic time series the latter, cap-

turing an omnipresent feature of most series, their persistence, is the starting point of most

approaches. Hence, it is the structure that is considered in the following.

In large forecast competitions, simple combinations of linear models not explicitly ac-

counting for structural changes frequently turn out to be among the best forecasting devices,

see e.g. Stock and Watson [2004]. Among others, the main argument put forward to explain

their success is their reliability in the presence of structural changes of various types. Tim-

mermann [2005] presents an overview of theoretical explanations for the success of combined

forecasts.

However, while most studies considering combinations of linear models test for the pres-

ence of structural changes, very few actually locate and test for their effect on the accuracy of

the forecasting devices. This paper tries to fill this void. In a real-time experiment, monthly

UK inflation is iteratively predicted using combined forecasts of direct and indirect multivari-

ate ordinary least squares estimate over a period of 17 years. Inflation is an attractive target

variable, as it is not subject to revisions over the time period under consideration. Thus, the

evaluation of forecast accuracy is not influenced by data revisions. Using the methodology of

Bai and Perron [2003], one break is detected within this period, which can be associated with

the Bank of England adopting an inflation targeting framework. The performance of the av-

erage forecasts at and after the break is contrasted with the individual linear and a benchmark

non-linear forecasting device. While ranking second over the whole period, its performance is

mediocre at and after the break. This indicates that it is not their performance at breaks that

earn average forecasts their fame.

The following section presents the real-time data used in the experiment. Section 3 outlines

the models used and the empirical approach. Section 4 presents the estimates of structural

breaks in UK inflation. Section 5 compares the performance of the models over the whole

period and at the break. The last section concludes.



2 The data

The data comprise of 16 monthly financial and economic time series. With the aim of being

as close to the real forecasting exercise as possible, each iteration only makes use of the data

as available at the time of forecast origin. This means that publication lags are explicitly

considered even for the endogenous; the inflation rate is published in the month following the

one that is reported, which implies that every forecast has to bridge at least one additional

month. Furthermore, part of the variables is frequently revised, sometimes even years after

the first publication date. The data used here are those printed in the Economic Trends and

Financial Statistics of the Office of National Statistics (ONS, formally the Central Statistical

Office) at the time the forecasts are made. These data are collected and described by Egginton

et al. [2002]. The vintages go back as far as January 1980 and ends in June 1999. The set

of real-time variables comprise industrial production (IP), the monetary aggregate M0, the

retail sales index (RS), the total claimant count (U) as a measure of unemployment, and finally

average earnings (AE). The variables are transformed to year on year percentage changes.

Table 7 in the appendix gives an impression of the extent of the total revisions the data have

been subject to up to today. It gives the mean of the absolute values of the revision, the extrema

of these values and the ratio of the mean absolute revision to the mean absolute change of the

respective variable. Especially in the case of IP the revisions are considerable.

The inflation rate (INFL), defined as the annual percentage change of the Retail Price In-

dex (RPIX), is never revised. Over the period covered in this paper, it is the official measure

of inflation and, after the Bank of England (BoE) adopted inflation targeting in 1993, the

RPIX-inflation was the target. Furthermore, the data comprise financial and survey data. The

exchange rate of the British Pound to the US Dollar (USD), the British Pound to the Deutsche

Mark (DEM), the Treasury Bill rate of the United States of America deflated with the US

consumer price inflation USINFL, (TBUS), and the price of Brent oil (OIL) are included as

indicators of the comparative financial and trading situation of the British economy; the UK

Treasury Bill rate deflated with INFL, (TB), the yields of the 10-year UK Government bench-

mark bonds (BD), and the monthly average of the Financial Times Stock Exchange Index

(FTSE) reflect the domestic financial markets; Furthermore, three of the leading qualitative in-

dicators are included: the Industrial Trends Survey of UK manufacturing of the Confederation

of British Industry (CBI), the Business Climate Indicator (BS) and the Economic Sentiment

Indicators (CS) of the Directorate General for Economic and Financial Affairs (DG ECFIN).

A list of the variables, the data transformations, and some descriptive statistics are provided in

Table 6 and Table 7 in the appendix.

3 The models and the experiment

The empirical experiment iteratively estimates models of the inflation rate on a monthly basis

and makes forecast, where the forecast origins start in January 1982:12 and end in 1999:6

exclusively using data that would have been available to the forecaster at the time of forecast.

In turn, 1, 3, 6 and 12-month-horizons forecasts are made (see Table 1).

The models analysed comprise direct and indirect linear models and – as a benchmark – a

non-linear model. The indirect linear model is the VAR(p) defined as



Table 1: The forecast experiment

Information set Forecast ahead

h = 1 h = 3 h = 6 h = 12

1948:6 −→ 1982:12 1983:1 1983:3 1983:6 1983:12

1948:6 −→ 1983:1 1983:2 1983:4 1983:7 1984:1

1948:6 −→ 1983:2 1983:3 1983:5 1983:8 1984:2

1948:6 −→ 1983:3 1983:4 1983:6 1983:9 1984:3

· · ·
1948:6 −→ 1999:6 1999:7 1999:9 1999:12 2000:6

h = forecast horizon

Yt = µ +A1Yt−1 + ...+ApYt−p + εt (1)

Yt = (y1t , ...,ynt) denotes an (n× 1) vector of variables, Ap the n× n matrix of regression

coefficients, p is the number of lags to be considered, µ is a vector of constants, and εt is the

n×1 unobservable zero mean white noise vector process (serially uncorrelated or independent)

with time invariant covariance matrix Σ. It is indirect, as, for h ≥ 2, the predictions are made

in a so called “plug-in” approach, i.e. recursively inserting the forecasts for period t + 1 to

obtain the forecast for t +2. First, the 1-step forecast based on information available at time t

is composed in a direct way inserting data up to time t into the estimated model:

Yt+1|t = µ̂ + Â1Yt + ...+ ÂpYt−p+1 (2)

h+1-step forecasts in contrast are obtained using the chain-rule as

Yt+h|t = µ̂ + Â1Yt+h−1|t + ...+ ÂpYt+h−p|t (3)

where Yt+ j|t =Yt+ j for j ≤ 0. In the experiment, the number p of the lags to be used in the

single models is iteratively optimized using the Bayesian information criterion (BIC) allowing

for a maximum of 12 lags.

Along the lines of Marcellino et al. [2006] the direct linear model is the simple OLS.

Its minimum lag is set such that pmin = h, so that no chain-rule is required to compose the

forecasts. The endogenous reduces to the target variable y∗t , i.e. the inflation rate, resulting in

estimating the model y∗t+h = µ +bXt + εt , where Xt = (y1t ,x1t , ...,xnt) is a vector of regressors

including exogenous variables and the endogenous. The forecasts are composed as y∗
t+h|t =

µ̂ + b̂Xt . This implies, that for each forecast horizon and each recursion a new model has to be

estimated. Here again, the number of additional lags is optimized using BIC.

For both the direct and the indirect approach, various variable combinations plus inflation

are used as regressors. Inflation is included in each model. However, as the implementation

of all possible combinations would result in the estimation of 216 = 65536 models for each of

the 199 iterations, the maximum number of variables per model is restricted to 6, giving 1941

models for each of the two approaches each recursion.



A common method of dealing with structural breaks is to use only a fixed number of past

observations of the data. The rationale is to facilitate the adaption of the model parameters

to the new (post-break) situation giving more recent observations more weight. However,

this obviously comes at the cost of artificially increasing estimation uncertainty. This rolling

window approach is contrasted with the recursive window approach that uses all observations

available up to the forecast origin. In the following, only the results for the rolling window

including 50 observations are presented. However, the main findings remain unchanged for

alternative window sizes of 40 and 60 observations.

As a benchmark, a model that explicitly accounts for coefficient changes, the time varying

parameter (TVP) model is used. As in Stock and Watson [1996b], we will consider a random

walk coefficient time-varying parameter model of the form

yt = βtyt−1 + et (4)

βt = βt−1 +ηt (5)

where et ∼ i.i.d.N(0,σ2
e ) and ηt ∼ i.i.d.N(0,σ2

η) and E(ηtet) = 0∀t and where the coefficient

βt is allowed to change over time. We estimate the model by using the Kalman filter and setting

diffuse priors for the hyperparameters.

4 The break point analysis

Following the approach of Hansen [2001] and Bai and Perron [2003], the analysis presented

here focuses on the breaks in the structure of a linear AR(p)-model. It represents a simple

and, in most cases, quite close description of the data. Furthermore, it has a proven track

record as a forecasting model, and is most often hard to beat benchmark model in forecast

comparisons (see e.g. Stock and Watson [2004]). BIC selects a lag length of six over the whole

sample. Bai and Perron [1998] propose to first test for the presence of one structural break

using the WDmaxFT (M,q) and the UDmaxFT (M,q) test statistics. If the null hypothesis of no

structural break can be rejected, the number of breaks is determined employing the sequential

supFT (l +1|l). Table 2 gives the empirical results for the UK inflation rate.

Table 2: Test results for the presence and number of breaks

supFT (1) UDmax WDmax supFT (2|1) supFT (3|2) supFT (4|3)

33.10 33.1 42.12 40.41 41.63 16.63

(22.62) (22.80) (24.34) (22.62) (24.64) (26.54)

Asymptotic critical values at the 5 % significance level are given in parenthesis

The supFT (1), the UDmax and the WDmax reject the null hypothesis at the 5 percent level,

i.e., at least one structural break is present. The supFT (l + 1|l) rejects up to l = 3, that is the

estimated number of breaks is m = 3. The estimated break points employing the sequential

procedure to find a global minimum are presented in Table 3.



Table 3: Breakdates and confidence intervalls

Estimators T̂1 T̂2 T̂3

Break dates 1961:9 1980:4 1991:2

(95 % confidence (1960:10; (3/31/1977; (1990:3;

intervall) 1963:6) 6/30/1981) 1992:5)

The 5 percent confidence intervall dates are given in parenthesis. As the estimator allows

for different variances across segments, the intervalls are not symmetric. The confidence band

for the break point that lies in the period for which real-time data is available, the one at

February 1991, is thereby especially tight spanning 26 month. A plot of the inflation rate, the

breakpoint estimates, and 95 percent confidence intervalls is given in Figure 1.

Figure 1: UK inflation, breaks and 95 percent confidence bands
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The sum of the estimated autoregressive coefficients and constants for the periods between

the break dates are given in Table 4. The estimated structural changes and the development of

the persistence correspond to the results found in the literature (see e.g. Benati et al., 2003).

The last break in the early nineties is frequently associated with the Bank of England adopting

an inflation targeting framework.

Table 4: Sum of estimated AR coefficients and constants between the breaks

Segment I II III IV

(1948:6– (1961:9– (1980:4– (1991:1–

1961:8) 1980:3) 1991:1) 2007:10)

Σ of AR coefs. 0.93 0.99 0.97 0.92

constant 0.29 0.13 0.20 0.24



The persistence rises sharply in the second period to approximately one and declines to

0.92 in the last segment after a moderate decline in the third segment. The estimated constant

drops from 0.29 to 0.13 in the second segment and rises to a value of 0.24 in the last segment.

5 Results

Table 5 presents the RMSE for the average performance at and during the 11 month after

the estimated break date. It shows of the naive combination scheme, averaging over all 7764

individual models of the direct and indirect OLS approach, using the rolling and the recursive

estimation scheme. The ranking given in parenthesis is the outcome of the comparison of the

respective model with all individual models, the TVP and the naive forecast1.

For the 1-month-horizon forecasts the naive combination scheme ranks merely 285th. For

the three, six and 12-months horizon forecasts, it performs even worse, ranking 2212th, 2672th,

and 3978th, respectively. The performance of the TVP as well as the naive forecasting scheme

is very poor for all horizons.

Table 5: RMSE and ranking at and 11 month after the break date considered

Horizon 1 3 6 12

NC0 0.81 2.40 8.24 18.69

(285) (2,212) (2,672) (3,978)

TVP 1.53 4.56 12.87 21.61

(3,888) (5,010) (4,572) (4,476)

NA 1.51 4.46 12.77 22.44

(3,784) (4,939) (4,549) (4,558)

NC0 = naive combination over all models, TVP = time

varying parameter model, and the NA = naive foreast;

Table 9 gives the RMSE and the ranking of the models including the AR(p) and the com-

bined forecasts using the direct and indirect, as well as the rolling and recursive approaches,

seperately. The main result holds.

6 Conclusion

Following intuition and theoretical results - averaging over different forecasters should rep-

resent a hedge against structural change. However, in the case of a violent break in the UK

inflation rate, this expectation is in sharp contrast with our findings. Using the methodology of

Bai and Perron [2003], a structural break in the persistence of UK inflation is identified within

the time window of the real-time experiment. A huge number of linear pseudo-out-of-sample

forecasts is generated each recursion. While still a good forecasting model in the class of linear

forecasting instruments, the naive combination of these forecasts underperforms at and shortly

1The naive forecast uses the last value observed as the forecast



after the structural break relative to its forecasting success over the whole window. Both its

performance in terms of the RMSE as well as its ranking in comparison with the individual lin-

ear models employed deteriorate considerably. However, though simple averages have largely

proven to be a good choice for many forecasting excercises, they might not be the best op-

tion. Recently, Tian and Anderson [2014] demonstrate that weighting schemes where average

forecasts are based on different estimation windows are very useful to account for structural

breaks. Furthermore, Barnett et al. [2014] show that some nonlinear models exhibit consider-

able performance to forecast UK data. Still, the results of this paper indicate that breaks in the

persistence of the forecasted variable merit a closer look for the optimization of averages of

linear forecasts.
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Table 6: List of variables and transformations

Variable Acronym Transformation

Government bonds BD ln(t-t(-12))*100

Financial Times Stock Exchange index FTSE ln(t-t(-12))*100

US Dollar exchange rate USD ln(t-t(-12))*100

Deutschmark exchange rate DEM ln(t-t(-12))*100

Treasury Bills TB Level

Confederation of British Industry indicator CBI ln(t-t(-12))*100

Oil price OIL ln(t-t(-12))*100

Real US treasury bill rate TBUS Level

Economic sentiment indicator CS Level

Business climate indicator BS Level

Inflation rate INFL ln(t-t(-12))*100

Retail sales index RS ln(t-t(-12))*100

Industrial production IP ln(t-t(-12))*100

Average earnings AE ln(t-t(-12))*100

Monetary aggregate 0 M0 ln(t-t(-12))*100

Unemployment rate U ln(t-t(-12))*100

Table 8: The extent of the total revision of the real-time data

Series Mean absolute Minimum Maximum Mean absolute Ratio

revision revision revision change

Industrial production 1.17 -2.78 4.65 3.21 0.37

Average earnings 0.28 -1.03 1.46 7.50 0.04

Retail sales 0.66 -2.54 2.36 3.13 0.21

Unemployment 1.48 -4.34 5.27 16.20 0.09

Money 0.29 -0.94 3.34 4.80 0.06



Table 7: Descriptive statistics

BD FTSE USD DEM TB CBI OIL TBUS

Mean -0.17 7.98 0.66 -2.16 1.48 17.82 23.41 1.29

Median 0.12 10.34 0.08 -0.58 2.55 16 19.06 1.47

Max 35.84 87.52 32.10 32.25 7.69 78 91.60 6.83

Min -41.81 -89.05 -29.31 -40.39 -16.67 -30 2.23 -7.31

Std. Dev. 13.20 19.92 9.51 10.51 4.14 24.55 15.50 2.07

# of Obs. 599 536 599 599 525 393 455 609

CS BS INFL RS IP AE M0 U

Mean -8.88 -8.17 5.82 2.86 1.11 8.02 6.80 0.95

Median -7 -6.25 4.2 3.26 1.20 7.26 6.14 -1.93

Max 12 28 26.9 12.72 20.42 29.82 16.04 57.96

Min -32 -56 -0.8 -11.08 -12.62 2.06 -1.81 -41.41

Std. Dev. 8.92 14.68 4.87 2.94 3.91 4.82 3.26 19.62

# of Obs. 406 382 712 428 465 524 431 428

Table 9: RMSE of combined forecasts and benchmarks on basis of the squared errors at and

11 after the break month respectively at and 23 month after the break

RMSE over breakdate + 11 breakdate+23

Horizon 1 3 6 12 1 3 6 12

AR1,3 1.22 2.87 9.42 17.16 0.80 1.86 5.59 11.95

(2,004) (2,931) (3,336) (3,637) (1,575) (2,866) (2,925) (3,172)

NC 1,3 0.92 1.83 6.74 11.72 0.56 1.11 3.91 7.20

(627) (1,353) (1,851) (2,071) (334) (603) (1,257) (1,394)

NC1,4 0.62 2.46 11.55 38.53 0.40 1.65 7.21 28.20

(49) (2,294) (4,122) (6,052) (7) (2,186) (3,863) (4,627)

NC 2,3 0.92 2.14 7.18 13.75 0.58 1.28 4.08 8.00

(603) (1,803) (2,072) (2,919) (370) (1,117) (1,421) (2,008)

NC2,4 0.94 3.72 9.05 17.77 0.59 2.28 6.51 24.44

(714) (4,246) (3,137) (3,783) (440) (3,988) (3,517) (4,287)

NC0 0.81 2.40 8.24 18.69 0.50 1.44 4.80 14.00

(285) (2,212) (2,672) (3,978) (133) (1,580) (2,166) (3,352)

TVP 1.53 4.56 12.87 21.61 0.94 2.58 7.10 14.84

(3,888) (5,010) (4,572) (4,476) (2,950) (4,447) (3,795) (3,401)

NA 1.51 4.46 12.77 22.44 0.92 2.50 6.96 15.05

(3,784) (4,939) (4,549) (4,558) (2,752) (4,361) (3,728) (3,418)

Rankings are given in parenthesis; 1=indirect OLS, 2=direct OLS, 3=recursive approach, 4=rolling

window approach; 0=all models, that is 1+2+3+4, AR=autoregressive model, NC=naive

combination, NA=naive forecast;


