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Abstract
This paper considers a stochastic evolutionary model in which agents can vote for different policies through majority

voting that induce different assortative matching patterns. We find that in coordination games, agents either vote for

complete segregation policy or maximal integration policy. The Pareto-dominant social convention is always

stochastically stable and it is possible that both risk-dominant and Pareto-dominant social conventions are

stochastically stable. This contrasts to risk-dominant social convention being uniquely stochastically stable predicted in

conventional stochastic stability analysis where matching is uniformly random.
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1. Introduction

The literature of stochastic stability analysis provides powerful tools for studying the emergence

of social conventions (for example, Foster and Young 1990, Young 1993, and Kandori et al. 1993,

among many others). One of the most remarkable findings in this literature is the selection of risk-

dominant social convention over Pareto-dominant social convention in coordination games, which

are commonly used for modeling the coordination on languages, forms of money and credits,

industrial and technological standards, accounting rules, business contracts and etc.

Most models in this literature are of decentralized nature: social conventions evolve through

a process of individual trial and error, experimentation and adaptation. However, in most modern

societies, people also engage in collective decision making processes. Therefore, it is of interest

to understand how such processes influence the emergence of social conventions. To our limited

knowledge, not many works contribute to this research direction.

Majority voting is one of the most common forms of collective decision making processes.

In this paper, we study how majority voting would affect the emergence of social conventions

in coordination games. More specifically, agents in a population vote for different policies that

induce different assortative matching patterns. We consider a 2× 2 coordination game in which

one strategy is risk-dominant while the other is Pareto-dominant. There are two possible scenarios:

1) All agents prefer to match with those who play the same strategies. In this case, they always vote

for complete segregation policy and Pareto-dominant social convention is uniquely stochastically

stable. 2) All agents prefer to match with agents playing Pareto-dominant strategy. In this case, if

agents playing risk-dominant strategy are the majority, they vote for maximal integration policy,

if agents playing Pareto-dominant strategy are the majority, they vote for complete segregation

policy. Then both risk-dominant and Pareto-dominant social conventions are stochastically stable.

Our findings sharply contrasts to the conventional finding in the literature of stochastic stability

that risk-dominant social convention is uniquely stochastic stable when matching is uniformly

random. This demonstrates that collective decision making processes such as majority rule have

non-negligible impacts on the emergence of social conventions.

Assortative matching has long been considered in evolutionary game theory. The first assor-

tative mechanisms date back to Wright (1921, 1922). Well-known examples include kin selection

(Hamilton 1964a,b; Bergstrom 1995), spatial interactions (Nowak and May 1992) and homophily

in preferences (Alger and Weibull 2012, 2013). Bergstrom (2003, 2013) propose a general frame-

work for studying assortativity. However, most of these works consider exogenous assortative lev-

els and they mainly apply assortative matching to study the phenomenon of cooperation in social

dilemmas instead of the emergence of social conventions in coordination games. The closest paper

to our work is Nax and Rigos (2016) who consider a model in which assortative matching is en-

dogenously determined by democratic consensus and agents interact in social dilemmas. Izquierdo

et al. (2014) allows agents to voluntarily leave their matches in prisoner dilemmas, Newton (2016)

also consider endogenous assortative matching but in a preference evolution context.

The paper is organized as follows. Section 2 delivers the model. Section 3 provides the stochas-

tic stability analysis. Section 4 concludes.



2. The Model

Consider a population consisting of n < ∞ identical agents who are randomly matched to play a

stage game in each period t = {1,2, . . .}, where n is an even number. The stage game is a 2× 2

symmetric coordination game with strategy space S = {0,1}. Let x ∈ X ≡ {0, 1
n
,

2
n
, . . . ,1} denote

the fraction of players playing 1. The coordination game is illustrated in table 1.

Table 1: A coordination game

The payoffs satisfy a > c and d > b. (0,0) and (1,1) are two symmetric Nash equilibria.

The matching process is assortative. Let the population size n be sufficiently large. Let Pr[i| j,x]
denote the probability that an agent playing j is matched with an agent playing i, where i, j ∈{0,1}.

Let θ(x) be the index of assortativity of the matching, such that

θ(x) = Pr[0|0,x]−Pr[0|1,x]. (1)

In other words, θ(x) is the difference between the probability that an agent playing 0 is matched

with an agent playing 0 and the probability that an agent playing 1 is matched with an agent playing

0.

When x∈ [0, 1
2
], the range of θ(x) is [1−2x

1−x
−1,1]; when x∈ (1

2
,1], the range of θ(x) is [−1−x

x
,1].

Notice that θ(x) = 0 implies uniformly random matching; θ(x) = 1 implies that the agents are

completely segregated according to the strategies they are playing. When θ(x) takes the lowest

value in its range, agents are most integrated in the matching. For example, suppose x <
1
2
, and

θ(x) = 1−2x
1−x

−1, then all agents playing strategy 1 are matched with agents playing strategy 0.

The index of assortativity θ(x) was first introduced by Bergstrom (2003, 2013) to study strategy

evolution and later adopted by Alger and Weibull (2012, 2013) to study preference evolution. It is

endogenized in Izquierdo et al. (2014), Nax and Rigos (2016) and Newton (2016) in ways different

from our approach.

The following balancing condition ensures that the expected number of agents playing 0 matched

with agents playing 1 equals the expected number of agents playing 1 matched with agents playing

0,

(1− x)(1−Pr[0|0,x]) = xPr[0|1,x]. (2)

From (1) and (2), we get

Pr[0|0,x] = (1− x)(1−θ(x))+θ(x); (3)

Pr[0|1,x] = (1− x)(1−θ(x)); (4)



and Pr[1|0,x] = 1−Pr[0|0,x], Pr[1|1,x] = 1−Pr[0|1,x].
Given the probabilities of matching, the payoffs corresponding to the two strategies are given

by

π0(x) = Pr[0|0,x]a+Pr[1|0,x]b, (5)

π1(x) = Pr[0|1,x]c+Pr[1|1,x]d. (6)

The index of assortativity θ(x) is determined by majority voting. When x < 1
2
, agents playing

0 are the majority, so they decide the assortativity level. When x >
1
2
, agents playing 1 are the

majority, so they decide the assortativity level. When x = 1
2
, both types of agents have 50% chance

to determine the assortativity level. In the case that the majority is indifferent among any assorta-

tivity level, the assortativity level is determined by the minority’s preferences. We call θ(x) = 1 the

complete segregation policy. When θ(x) takes the lowest value in its range, we call it the maximal

integration policy.

The timing of the dynamic process is as follows. In each period, first an agent is chosen at

random to have a strategy revision opportunity.1 Second, agents vote for the index of assortativity

through majority voting. Finally, agents are simultaneously rematched according to the index of

assortativity.

When a strategy revision opportunity arrives, an agent employs the following noise best re-

sponse revision protocol:

ρ01(x) = ση(π1(x)−π0(x)), (7)

ρ10(x) = ση(π0(x)−π1(x)), (8)

where η > 0 denotes the noise level and ση : R→ [0,1] satisfies

lim
η→0

ση(k) =

{

1 if k > 0,

0 if k ≤ 0.
(9)

If an agent playing strategy 0 receives a revising opportunity, she switches to strategy 1 with

probability ρ01(x). If an agent playing strategy 1 receives a revising opportunity, she switches to

strategy 0 with probability ρ10(x).
In particular, we adopt the widely used protocol from Kandori et al. (1993), best response with

mutations (BRM) protocol, which is defined by

ση(k) =

{

1− exp(−η−1) if k > 0,

exp(−η−1) if k ≤ 0.
(10)

1Blume (2003) argues that such a discrete time dynamic process is equivalent to a continuous time one in which

agents receive strategy revision opportunities according to some independent Poisson alarm clock. Alternatively, one

can assume that at the beginning of each period, each agent is awarded a strategy revision opportunity with some

fixed probability independent of the situation of all other agents as in Kandori et al. (1993). Our main results remain

unchanged if we adopt this alternative model specification.



This dynamic model defines a discrete time Markov process on the discrete state space X . The

transition probabilities are given by

Pn
xy =



















(1− x)ρ01(x) if y = x+ 1
n
,

xρ10(x) if y = x− 1
n
,

1− (1− x)ρ01(x)− xρ10(x) if y = x,

0 otherwise.

(11)

We focus on the stationary distribution µ of the Markov process when the noise level ap-

proaches zero and the population size approaches infinity. A state x ∈ [0,1] is stochastically stable

in double limit if for every open set O ⊆ X containing x,

lim
n→∞

lim
η→0

µ(O)> 0. (12)

See Sandholm (2010) for a textbook treatment of the related concepts.

3. Analysis

Without loss of generality, let a+b > c+d and a < d. Hence, 0 is the risk-dominant strategy and

1 is the Pareto-dominant strategy (Harsanyi and Selten (1988)) and we call the all-0 state (x = 0)

the risk-dominant social convention and all-1 state (x = 1) the Pareto-dominant social convention.

a > c together with d > a implies that d > c. Hence, agents playing 1 always prefer to match with

agents playing 1. We have the following main results of the paper:

Proposition 1. If a ≥ b, then Pareto-dominant social convention is uniquely stochastically stable.

Proof: When a > b, agents playing 0 always prefer to match with agents playing 0. Therefore,

regardless of which type of agents constitute the majority, θ(x) = 1 for any x ∈ [0,1]. When a = b,

agents playing 0 are indifferent among any assortativity level. Hence, we still have θ(x) = 1 for

any x ∈ [0,1]. The payoffs corresponding to the two strategies satisfy π0(x) = a < π1(x) = d. 1 is

always the best response and all-1 state is thus uniquely stochastically stable. Q.E.D.

Proposition 1 portrays a scenario in which agents with different strategies have incentive to use

their political power to segregate themselves from others whenever they are the majority. Given

segregation, because strategy 1 is the Pareto-dominant strategy, eventually, all-1 state is uniquely

stochastically stable. This result sharply contrasts to Young (1993) and Kandori et al. (1993), who

support the prediction that the risk-dominant equilibrium is uniquely stochastically stable.

Proposition 2. If a < b, then both the risk-dominant and the Pareto-dominant social conventions

are stochastically stable.

Proof: When a < b, agents playing 0 always prefer to match with agents playing 1. Therefore,

when x < 1
2
, they vote for θ(x) = 1−2x

1−x
−1. The payoffs of the two strategies are given by

π0(x) =
1−2x

1− x
a+

x

1− x
b, and π1(x) = c.



Since c < a and a < b, we must have π0(x)> π1(x) and 0 is the best response.

On the other hand, when x > 1
2
, agents playing 1 are the majority and they vote for θ(x) = 1.

Hence, the payoffs corresponding to the two strategies satisfy π0(x) = a < π1(x) = d and 1 is the

best response.

Since n is even, 1
2

does not belong to the state space and it should not be counted in the basin

of attraction of either all-0 state or all-1 state. The basins of attraction of all-0 state and all-1 state

thus have equal sizes, implying that all-0 state and all-1 state are both stochastically stable. Q.E.D.

Proposition 2 portrays a scenario in which agents playing the risk-dominant strategy 0 benefits

from integration policy while agents playing the Pareto-dominant strategy 1 benefits from segre-

gation policy. When agents playing 0 are the majority, they use the maximal integration policy to

exploit agents playing 1. Therefore, 0 serves as the best response. When agents playing 1 are the

majority, they use the complete segregation policy to protect themselves from agents playing 0.

Therefore, 1 serves as the best response. This gives rise to the coexistence of two distinct social

conventions.

4. Conclusion

This paper demonstrates how majority voting can influence the selection of social conventions in

stochastic evolutionary models. We propose a model in which agents vote for different policies

through majority voting that lead to different assortative matching patterns. We find that agents ei-

ther vote for maximal integration policy or complete segregation policy. Complete segregation pol-

icy helps agents playing Pareto-dominant strategy to earn a high payoff so that the Pareto-dominant

convention becomes stochastically stable. We hope that our attempt to incorporate collective deci-

sion making processes sheds some new insights to the study of social conventions.
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