
   

 

 

 

Volume 36, Issue 3

 

The optimality of non-optimal GMM estimation of parameters of interest and

the partial asymptotic efficiency of 2SLS estimation

 

Heather L. Bednarek 

Saint Louis University

Hailong Qian 

Saint Louis University

Abstract
In this paper, we first derive a necessary and sufficient condition for generalized method of moments (GMM)

estimation of a subset of parameters using a non-optimal weighting matrix to be asymptotically as efficient as the

optimal GMM estimation. We then apply our result to simultaneous equations models and derive a necessary and

sufficient condition for 2SLS estimation of a subset of regression coefficients to be asymptotically as efficient as the

3SLS estimation applied to the whole system. Our condition for the partial asymptotic efficiency of 2SLS estimation

encompasses many existing results for the numerical equality of 2SLS and 3SLS estimation of all regression

coefficients.
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1.  Introduction 

 There is a large literature on the numerical equality of ordinary least squares (OLS) and 

generalized least squares (GLS) estimation of regression coefficients in single or system of linear 

regression models.  For single linear regression models, examples include Zyskind (1967), 

Kruskal (1968), Rao (1968), Anderson (1971), Rao and Mitra (1971), Gourieroux and Monfort 

(1980) and Amemiya (1985).  Zyskind (1967), Haberman (1975), Gourieroux and Monfort 

(1980), Rao and Mitra (1971) and Qian and Schmidt (2003) also provide conditions for the 

partial numerical equality of OLS and GLS estimation of a subset of regression coefficients.   

 For systems of seemingly unrelated regressions (SUR), Zellner (1962) shows that when 

the covariance matrix of the system is diagonal or each equation in the system includes the same 

explanatory variables, GLS and OLS estimation of regression coefficients are numerically 

identical.  Motivated by Zellner’s sufficient conditions, many subsequent papers derive different 

(but equivalent) forms of necessary and sufficient conditions for the numerical equality of OLS 

and GLS estimators of SUR models; see for examples, Dwivedi and Srivastava (1978), 

Gourieroux and Monfort (1980), Srivastava and Giles (1987), Baltagi (1988), Baksalary and 

Trenkler (1989) and Bartels and Fiebig (1991).  Revankar (1974), Schmidt (1978) and 

Gourieroux and Monfort (1980) also provide conditions for the numerical equality of OLS and 

GLS estimation of a subset of regression coefficients under various conditions, while Qian and 

Bednarek (2015) using a generalized method of moments (GMM) estimation setup derive a 

necessary and sufficient condition for the partial asymptotic efficiency of OLS estimation of 

regression coefficients in a subset of equations. 

 Parallel to the SUR literature, there also exists a large number of published papers 

examining the numerical equality of two-stage least squares (2SLS) and three-stage least squares 

(3SLS) estimators of regression coefficients in simultaneous equations models (SEMs); for 

examples, Zellner and Theil (1962), Srivastava and Tiwari (1978), Gourieroux and Monfort 

(1980), Kapteyn and Fiebig (1981) and Baltagi (1988-89).  However, surprisingly, it appears that 

no paper has so far considered the asymptotic equivalence of the 2SLS and 3SLS estimators of a 

subset of regression coefficients, though Zellner and Theil (1962), Gourieroux and Monfort 

(1980, Section 3E) and Schmidt (1976, Theorem 5.2.13, p.213) also provide various conditions 

for the numerical equality of 2SLS and 3SLS estimators of the regression coefficients in over-

identified structural equations.  This paper seeks to fill this gap.  More precisely, this paper aims 

to extend the partial optimality result for OLS estimation of SUR models in Qian and Bednarek 

(2015) to 2SLS estimation of SEMs.  That is, we will derive a necessary and sufficient condition 

for the equation by equation 2SLS estimation of a subset of parameters to be asymptotically as 

efficient as the 3SLS estimation applied to the whole system.  We accomplish this goal by first 

casting 2SLS and 3SLS estimation as GMM estimation and deriving a necessary and sufficient 

condition for the asymptotic equivalence between a GMM estimation using a non-optimal 

weighting matrix and the optimal GMM estimation of a subset of parameters. 

 It is worth pointing out the main difference between the current paper and the existing 

literature on the comparison of 2SLS and 3SLS estimation of SEMs: our current paper is 

concerned with the partial asymptotic efficiency of 2SLS estimation of a subset of regression 

coefficients, while almost all of the published papers cited in the previous paragraph are mainly 

focused on the question of when 2SLS and 3SLS estimation of all regression coefficients are 

numerical identical, though Zellner and Theil (1962), Schmidt (1976, Theorem 5.2.13, p. 213) 

and Gourieroux and Monfort (1980, Section 3E) also consider the numerical equality of 2SLS 

and 3SLS estimation of the regression coefficients in over-identified structural equations.  As a 



 

result, our necessary and sufficient condition for the partial asymptotic efficiency of the 2SLS 

estimator of a subset of coefficients (Theorem 2 in the next section) generalizes existing 

sufficient conditions for the numeral equality of 2SLS and 3SLS estimators of all regression 

coefficients. 

The rest of the paper is organized as follows.  In Section 2, we derive a necessary and 

sufficient condition for a non-optimal GMM estimator of a subset of parameters to be 

asymptotically efficient.  In Section 3, we apply the necessary and sufficient condition to 

examine the optimality of 2SLS estimation of coefficients of interest in simultaneous equations 

models, while Section 4 briefly concludes the paper.  The appendix provides the proofs of the 

main results of the paper.    

 

2.  The Optimality of Non-optimal GMM Estimation for Parameters of Interest 

 In this section we will derive a necessary and sufficient condition for GMM estimation of 

parameters of interest using a non-optimal weighting matrix (hereafter referred to as a non-

optimal GMM estimation) to be asymptotically as efficient as the GMM estimation using the 

optimal weighting matrix.  

Suppose that we have a set of moment conditions: 

 

  0)],v(g[E 0t  ,                                                                                                    (1) 

 

where ),v(g t   is a 1q   vector of moment functions, tv  is an 1L  vector of observable 

variables, and 0  is a 1p  vector of (true) parameters to be estimated.  We assume that 

)],v(gvar[ 0t   is positive definite (p.d.), and that ]'/),v(g[ED 0t   has full column 

rank such that the moment conditions in (1) locally identify the unknown parameter vector 0 .  

For simplicity of derivation, we assume that the sample { 1v , ..., Tv } is i.i.d. 

 Under standard assumptions (see, for examples, Hansen 1982; Wooldridge 2010, Chapter 

14), the GMM estimator )W(ˆ
T  of 0 , based on moment conditions (1), using a symmetric and 

positive semidefinite (p.s.d.) weighting matrix TW  is consistent and asymptotically normal, 

])W(ˆ[T 0T   )]W(V,0[N , with 11 )WD'D(WDW'D)WD'D()W(V   , where W (a 

symmetric and p.d. matrix) is the probability limit of TW .  Hansen (1982) shows that when the 

weighting matrix used equals the inverse of ̂  (a consistent estimate of  ), the resulting GMM 

estimator 
~

 achieves its (first-order) asymptotic efficiency, with its asymptotic variance matrix 

equal to   )(VV 1*   11 )D'D(  .  (
1

T
ˆW   is usually referred to as the optimal 

weighting matrix and the corresponding GMM estimator 
~

 is called the optimal GMM estimator 

of 0 , based on moment conditions (1)).  Thus, *V)W(V   is always positive semidefinite.  

Now an interesting question is when *V)W(V  ; that is, under what circumstances is )W(ˆ
T  

asymptotically as efficient as 
~

?  To answer this question, we first define DWG 2/1 , 
2/12/1 WW  , where 2/1W  is a symmetric and p.d matrix satisfying 2/12/1 WWW  .  We 

also define 'Q)Q'Q(QIM 1

]Q[

 , for any full column rank matrix Q.  Then, we have Lemma 

1, as follows.  



 

 

Lemma 1.  The GMM estimator )W(ˆ
T  of 0 , based on moment conditions (1), using 

weighting matrix TW  is asymptotically as efficient as the optimal GMM estimator 
~

, if and 

only if:  (A) GCG  , with C ( pp ) non-singular; or equivalently, (B) 0GM ]G[  . 

Proof:  See Wooldridge (2010, p. 234, Problem 8.5).    

 

 Now suppose that we are only interested in estimating a subset of parameters.  For 

example, in systems of linear regression models, we sometimes are only interested in estimating 

regression coefficients of a subset of equations; see for example, Qian and Bednarek (2015).  As 

another example, in GMM estimation of linear panel data models with time-varying individual 

effects (see for example Ahn, et al. 2001), we are usually interested in the efficient estimation of 

regression coefficients but not the parameters in the second moments of the composite errors.  As 

such, we wonder under what circumstances the non-optimal GMM estimation of a subset of 

parameters is as efficient as the optimal GMM estimation.  To answer this question and without 

loss of generality, we now assume that we are only interested in estimating the first subset of 

parameters.  We thus partition the parameter vector 0  into )'','( 0201  , with 01  1p1  , 02  

1p2   and ppp 21  .  We also partition the derivative matrix D accordingly, 

)D,D(]'/),v(g,'/),v(g[ED 2120t10t  .    

 Using 11 )WD'D(WDW'D)WD'D()W(V   11 )G'G(G'G)G'G(    and the 

partitioned-matrix inverse formula, we can show that the asymptotic variance of the GMM 

estimator )W(ˆ
T1  of 01 , based on (1), using TW  as the weighting matrix equals: 

  

    )W(V1 )])W(ˆ(T[AV 01T1  1

1]G[11]G[]G[1

1

1]G[1 )GM'G(GMM'G)GM'G(
2222

  ,      (2) 

 

where 1

2/1

1 DWG   and 2

2/1

2 DWG  .  To improve the flow of the text, we move the 

derivation of (2) to the appendix.  When 1

T
ˆW   and 1W  , )(V 1

1

  becomes the 

asymptotic variance of the optimal GMM estimator 1

~
  of 01 , 

 

  )]
~

(T[AV)(VV 011

1*

1   1*

1]G[

*

1 )GM'G( *
2

 ,                                         (3) 

 

with 1

2/1*

1 DG   and 2

2/1*

2 DG  .    

 Because 1

~
  is asymptotically no less efficient than )W(ˆ

T1 , *

11 V)W(V   is always p.s.d.  

We now wonder when 0V)W(V *

11  .  When *

11 V)W(V  , we say that the non-optimal GMM 

estimator )W(ˆ
1  of 01  is partially optimal.  The following theorem provides a necessary and 

sufficient condition for the partial optimality of the non-optimal GMM estimator )W(ˆ
T1  of 01 . 

 

Theorem 1.  The GMM estimator )W(ˆ
T1  of 01 , based on moment conditions (1), using 

weighting matrix TW  is asymptotically as efficient as the optimal GMM estimator 1

~
  of 01 , if 

and only if any one of the following equivalent conditions holds: 



 

(A)  11]G[ GCGM
2

 , with 1C  ( 1pp ) of full column rank; 

(B)  21]G[1]G[]G[ CGMGMM
222

 , with 2C  ( 11 pp  ) nonsingular; 

(C)  0GMM 1]G[]G[ 2
 . 

Proof:  See Appendix.   

 

Conditions (A) and (B) can be thought of as extension of Lemma 1 (A) for the efficient 

estimation of 01 , while condition (C) is an extension of Lemma 1 (B).  Also, note that GMM 

estimation of 0 , based on 0)],v(g[E 0t  , using weighting matrix TW  is asymptotically 

equivalent to GMM estimation of 0 , based on 0)],v(gW[E 0t

2/1  , using an identity matrix as 

the weighting matrix.  Then, we can easily see that Conditions (A) and (B) have, respectively, 

the same generic forms as Conditions (G) and (C*) of Qian and Schmidt (2003, Theorem 3, pp. 

388-389), though their result is for the partial numerical equality of OLS and GLS estimation of 

linear regression models.    

 

3.  Application to Simultaneous Equations Models 

 There exists a large number of papers in the literature on efficient estimation of 

simultaneous equations models (SEMs) that investigate when the equation by equation 2SLS 

estimation of regression coefficients are numerically identical to the 3SLS estimation.  See for 

examples, Zellner and Theil (1962), Schmidt (1976, pp. 211-216), Srivastava and Tiwari (1978), 

Gourieroux and Monfort (1980), Kapteyn and Fiebig (1981), Baltagi (1988-89) and Wooldridge 

(2010, Chapter 9).  However, surprisingly, it appears that no paper has so far systematically 

examined the asymptotic equivalence of 2SLS and 3SLS estimation of a subset of regression 

coefficients.  In this section, we seek to fill this gap of the existing literature.  More precisely, we 

will apply Theorem 1 of the previous section to the efficient estimation of parameters of interest 

in SEMs.  For this purpose, we consider a system of G linear simultaneous equations: 

 

  gtggtggtgt 'z'Yy  ,  g = 1, 2, …, G,                                                          (4) 

 

where the subscripts g and t index equations and observations, respectively, gty  is the dependent 

variable of the g-th equation, gtY  is a 1G g   vector of endogenous explanatory variables, gtz  is 

an 1M g   vector of exogenous (or predetermined) explanatory variables, g  and g  are the 

corresponding coefficient vectors, and gt  is the disturbance term.  Note, gtz  usually contains a 

unity element so that the structural equations in (4) include nonzero intercepts.  

 Let )''z,'Y(x gtgtgt  .  Then, (4) can be rewritten as: 

 

  gtggtgt 'xy  ,                                                                                                  (5) 

 

where )'','( ggg   is 1K g  , with ggg MGK  .  Stacking over equations for a given 

observation t, we can rewrite (5) as: 

 

  ttt Xy  ,                                                                                                        (6) 



 

 

where )'y...,,y(y Gtt1t  , )'x,,'x(diagX Gtt1t  , )''...,,'( G1   and )'...,,( Gtt1t  .   

 Let tz  be an 1M   vector of all distinct exogenous variables appearing in (4).  Now, for 

the purpose of estimating the unknown regression coefficients in (4) and to be consistent with the 

existing literature (see for example, Chapters 8 and 9 of Wooldridge 2010), we make three 

standard assumptions. 

 

Assumptions:  (SEM.1) 0])zI[(E ttG  , with   denoting the Kronecker product. 

(SEM.2)  )'zz(E tt  is nonsingular and ]X)zI[(E ttG   has full column rank. 

(SEM.3) )]'zI()zI[(E)]'zI(')zI[(E tGtGtGtttG  , with )'(E tt  p.d. 

 

Assumptions (SEM.1) and (SEM.2) imply that the regression coefficients of the SEM (4) are 

identified by using the instrument set tz .  Assumption (SEM.3) is a system homoscedasticity 

assumption; Wooldridge (2010, Sections 8.3-8.4) makes similar assumptions.  Also, for 

simplicity of derivation, we assume that )''z,'y( tt  is i.i.d. over observations from 1 to T. 

Given the SEM (4), Assumption (SEM.1) implies the following set of orthogonality 

conditions: 

 0)

)'xy(z

)'xy(z

(E)]Xy)(zI[(E)](g[E

GGtGtt

1t1t1t

tttGt 



















  .                        (7) 

 

Then, it is easy to verify that the equation by equation 2SLS estimator of   in (4) is algebraically 

the same as the GMM estimator based on (7), using 
1

GT )T/Z'Z(IW   as the weighting 

matrix, where )'z,,z(Z T1  , while the 3SLS estimator of   is also algebraically identical to 

the GMM estimator based on (7), using 11

T )T/Z'Z(ˆW    as the optimal weighting matrix, 

where we assumed that both the 3SLS and the GMM estimators use the same initial consistent 

estimate, ̂ , of the covariance matrix   in (4).  See for example, Wooldridge (2010, Chapter 8).   

 Now, without loss of generality, suppose that we are only interested in estimating the 

regression coefficients of the first m equations in (4), with Gm1  .  Then, adopting the 

notation of the previous section, we have )'',,'( m101   , )'',,'( G1m02    , and 

 )'','( 02010 .  Now, applying Theorem 1 (C) to moment conditions (7), we obtain 

Theorem 2. 

 

Theorem 2.  Under Assumptions (SEM.1)-(SEM.3), the equation by equation 2SLS estimation 

of )'',,'( m101    in (4) is asymptotically as efficient as the 3SLS estimation applied to the 

whole system of (4), if and only if, 

 

  0AM j]A[ij i
 , for ji  ;  i = 1, 2, …, G;  j = 1, 2, …, m;                                  (8) 

 



 

where, Gm1  , )'xz(EA itti  , 'A)A'A(AIM i

1

iiiM]A[ i

 , and ),cov( jtitij   is the (i, 

j) element of the covariance matrix  . 

Proof:  See Appendix.   

 

This theorem is a natural extension of the necessary and sufficient condition for the partial 

efficiency of OLS estimation of SUR models (Qian and Bednarek 2015, Theorem 2) to the 

partial asymptotic efficiency of 2SLS estimation of simultaneous equations models.  Condition 

(8) is of course satisfied when the disturbances of the system are uncorrelated with each other or 

each equation in the system is just-identified (in this case, )'xz(EA itti   becomes a nonsingular 

square matrix).  In fact, given condition (8), we obtain Corollary 1. 

 

Corollary 1.  Under Assumptions (SEM.1)-(SEM.3), the equation by equation 2SLS estimation 

of )'',,'( m101    in (4) is asymptotically as efficient as the 3SLS estimation applied to the 

whole system of (4), if any one of the following sufficient conditions is satisfied:  

(A)  The disturbances of system are uncorrelated with each other; 

(B)  Each equation in the system is just-identified; 

(C)  The disturbances of the first m equations are uncorrelated with each other and furthermore 

are uncorrelated with the disturbances of the last (G-m) equations in the system; 

(D)  The disturbances of the first m equations are uncorrelated with each other, and the last (G-

m) equations in the system are just-identified; 

(E)  Each of the first m equations in the system is just-identified, and the disturbances of the first 

m equations are uncorrelated with the disturbances of the remaining equations in the system. 

Proof:  It is easy to verify that any one of the five conditions listed here is sufficient for condition 

(8) to hold.   

   

Conditions (A) and (B) are just the two well-known sufficient conditions for the numerical 

equality of 2SLS and 3SLS estimation of the whole system; see Zellner and Theil (1962).  

Conditions (C) appears new, though it is very intuitive.  Note that Condition (C) is weaker than 

Condition (A), since it does not require the disturbances of the last (G-m) equations uncorrelated 

with each other.  Condition (D) is an extension of Schmidt (1976, Theorem 5.2.13, p. 213) and 

Gorieroux and Monfort (1980, Section 3E), where they show that 3SLS estimation applied to the 

over-identified structural equations alone is numerically identical to 3SLS estimation applied to 

the whole system.  Condition (E) also seems a new sufficient condition, though it is intuitive too. 

 The sufficient conditions in Corollary 1 are stated in the population.  Now, to gain further 

insight of condition (8), we proceed to find an additional sufficient condition that is expressed in 

the sample.  Thus, for a given random sample of size T, we define the following data matrices: 

 )'z,,z(Z T1  , )'Y,,Y(Y iT1i)i(  , )'z,,z(Z iT1i)i(  , )Z,Y(X )i()i()i(  ,  

for i = 1, 2, …, G.  We also define )Z,Ŷ(X̂ )i()i()i(  , with )i(]Z[)i( YPŶ   denoting the fitted 

values from the first-stage regression for the i-th structural equation in (4).  Then, using the 

sample analogues of ]A[ i
M  and jA  in condition (8), we obtain Corollary 2. 

 

Corollary 2.  Under Assumptions (SEM.1)-(SEM.3), the equation by equation 2SLS estimation 

of )'',,'( m101    in (4) is asymptotically as efficient as the 3SLS estimation applied to the 

whole system of (4), if the following sufficient condition holds in the sample: 



 

 

  0X̂M )j(]X̂[ij
)i(

 ,  for ji  ;  i = 1, 2, …, G;  j = 1, 2, …, m,                              (9) 

 

with probability equal to 1. 

Proof:  See Appendix.   

 

If we compare Condition (9) with the necessary and sufficient condition of Baltagi (1988-89, Eq. 

(11), p.167) for the numerical equality of the 2SLS and 3SLS estimators of all regression 

coefficients in (4) (that is, in the notation of the current paper, 0X̂M )j(]X̂[

ij

)i(

 , for i, j = 1, 2, 

…, G, where ij  is the (i, j) element of 1 ) , we can easily see, as expected, that his condition is 

sufficient but not necessary for Condition (9).  Here we also note that the necessary and 

sufficient condition for the numerical equality of 2SLS and 3SLS estimators given in Kapteyn 

and Fiebig (1981, Proposition, p. 57) is actually equivalent to Baltagi’s (1988-89) condition.  

Thus, Corollary 2 somewhat extends the necessary and sufficient conditions of Baltagi (1988-89) 

and Kapteyn and Fiebig (1981) for full numerical equality of 2SLS and 3SLS estimators of 

SEMs to the partial asymptotic equivalence of 2SLS and 3SLS estimators of a subset of 

coefficients.   

 

4.  Conclusions 

 We made three new contributions in this paper.  First, we derived a necessary and 

sufficient condition for a non-optimal GMM estimator of a subset of parameters to be 

asymptotically efficient.  This result appears new in the GMM estimation literature and is of 

course applicable to both linear and nonlinear models. Secondly, we extended the current 

literature on the numerical equality of 2SLS and 3SLS estimation of all regression coefficients in 

linear simultaneous equations models to the asymptotic equivalence of 2SLS and 3SLS 

estimation of a subset of regression coefficients.  Thirdly, we provided several new and easily 

checkable sufficient conditions for the partial asymptotic efficiency of 2SLS estimation.   



 

Appendix 

Derivation of Equation (2).   

First, using the definition of DWG 2/1  and 2/12/1 WW  , we can rewrite 
11 )WD'D(WDW'D)WD'D()W(V    as 11 )G'G(G'G)G'G()W(V   .  Then, using 

)G,G(G 21  (with 1

2/1

1 DWG   and 2

2/1

2 DWG  ) and the partitioned matrix inverse 

formula, we have: 

 

V(W) 

= 

1

2212

2111

2212

2111

1

2212

2111

G'GG'G

G'GG'G

G'GG'G

G'GG'G

G'GG'G

G'GG'G





























 

= 















111111

111

BFCEFFCEF

BFEE











2212

2111

G'GG'G

G'GG'G
















111111

111

BFCEFFCEF

BFEE
, 

 

where we defined 11 G'GA  , 21 G'GB  , 12 G'GC  , 22 G'GF   and CBFAE 1 .  Then, 

)W(V1 , the asymptotic variance of ])W(ˆ[T 01T1  , is just the upper-left block of the matrix 

product above.  Thus, 

 

 )W(V1  = 11

22

11

12

11

21

11

11

1 CEF)ABFEAE(E)ABFEAE(   ,                    (A.1)  

 

where 1111 G'GA  , 2112 G'GA  , 1221 G'GA   and 2222 G'GA  .  We now proceed to 

simplify it.  In fact, the right hand side of (A.1) can be factorized as, 

 
11

2221

11

1211

1

1 E)]CFAA(BF)CFAA[(E)W(V   ,                                         (A.2) 

where 

 1]G[112

1

222111

1 GM'GG'G)G'G(G'GG'GCBFAE
2

 
,                             (A.3) 

 1]G[112

1

222111

1

1211 GM'GG'G)G'G(G'GG'GCFAA
2

 
,                     (A.4) 

 ]G'G)G'G(G'GG'G[)G'G(G'G)CFAA(BF 12

1

222212

1

2221

1

2221

1    

                                                 12

1

2222

1

2221 G]'G)G'G(GI['G)G'G(G'G    

                                                 1]G[]G[1 GMP'G
22

 .                                                                (A.5) 

 

Now, substituting (A.3)-(A.5) into (A.2), we have: 

 

 
1

1]G[11]G[]G[11]G[1

1

1]G[11 )GM'G](GMP'GGM'G[)GM'G()W(V
22222

                       

                        
1

1]G[11]G[]G[1

1

1]G[1 )GM'G(GMM'G)GM'G(
2222

  . 

 

This is just the expression of equation (2) in the text.  

 

  



 

Proof of Theorem 1.   
*

11 V)W(V   being p.s.d. is equivalent to 1

1

1*

1 )W(VV    being p.s.d.  Then, using (2) and (3) of 

Section 2, 1

2/1*

1 DG  , 2

2/1*

2 DG  , 1

2/1

1 DWG  , 2

2/1

2 DWG   and 2/12/1 WW  , 

we have:  

 

 1

1

1*

1 )W(VV    

 = *

1]G[

*

1 GM'G *
2

1]G[1

1

1]G[]G[11]G[1 GM'G)GMM'G(GM'G
2222

  

 = 1

2/1

]D[

2/1

1 DM'D
2

2/1




    

                1

2/1

]G[1

1

1]G[

2/12/1

]G[11]G[

2/1

1 DWM'G)GMWWM'G(GMW'D
2222

  

 =
]D[

2/1

1
2

2/1M{'D 
  

               1

2/12/12/1

]G[1

1

1]G[

2/12/1

]G[11]G[

2/12/1 D}WM'G)GMWWM'G(GMW
2222

   

 =
]D[

2/1

1
2

2/1M{'D 
 1

2/1

]GMW[
D}P

1]2G[
2/12/1




   (using 'X)X'X(XP 1

]X[

 ) 

 =
]D[

2/1

1
2

2/1PI{'D 
  1

2/1

]GMW[
D}P

1]2G[
2/12/1




  

 = 1

2/1

]GMW,D[

2/1

1 D}PI{'D
1]2G[

2/12/1
2

2/1




    

                  (using 2

2/1

2 DWG   and 0)GMW()'D( 1]G[

2/12/1

2

2/1

2


) 

 = 1

2/1

]GMW,D[

2/1

1 DM'D
1]2G[

2/12/1
2

2/1




   . 

 

Thus, *

11 V)W(V   (or equivalently, 1

1

1*

1 )W(VV   ) is p.s.d. and equals 0, if and only if  

0DM 1

2/1

]GMW,D[ 1]2G[
2/12/1

2
2/1 

 .  This is equivalent to: 

 

 1

2/1

]GMW,D[1

2/1 DPD
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2/12/1
2

2/1




   , or  

 1

2/1

]GMW[]D[1

2/1 D)PP(D
1]2G[

2/12/1
2

2/1




   ,  

 

using 0)GMW()'D( 1]G[

2/12/1

2

2/1

2


.  This implies: 

 

 1

2/1 D 1

1

2

1

2

1

22

2/1 D'D)D'D(D    

                              1

2/1

]G[1

1

1]G[

2/12/1

]G[11]G[

2/12/1 DWM'G)GMWWM'G(GMW
2222

 , 

or 1D 1

1

2

1

2

1

22 D'D)D'D(D    

                      1

2/1

]G[1

1

1]G[

2/12/1

]G[11]G[

2/1 DWM'G)GMWWM'G(GMW
2222

 . 

 

This can be rewritten as 

 

 1D 1

1

2

1

2

1

22 D'D)D'D(D   CGMW 1]G[

2/1

2
 , 

 



 

where 1]G[1

1

1]G[

2/12/1

]G[1 GM'G)GMWWM'G(C
222

  is nonsingular.  Now, pre-multiplying it 

by 2/1W  and post-multiplying it by 1C , we have: 

 

 1

1

1

2

1

2

1

22

2/11

1

2/1 CD'D)D'D(DWCDW   1]G[

2/12/1 GMWW
2

 , 

 

which is equivalent to: 

 

 12

2/1

1

2/1 C)DW,DW( 1]G[

2/12/1 GMWW
2

 , or 1]G[1 GMGC
2

 , 

 

using the definitions of )G,G(G 21 , 1

2/1

1 DWG  , 2

2/1

2 DWG   and 2/12/1 WW  ,  

where ]')'CD'D)D'D((,'C[C 1

1

1

2

1

2

1

2

1

1

   is 1pp  and has full column rank.  Thus, we 

prove condition (A) of Theorem 1. 

 We now turn to showing that conditions (A) and (B) are equivalent.  We first show that 

(A) implies (B).  Using (A), we have: 

 

 1]G[]G[ GMM
22

 1]G[ GCM
2

 121]G[ C)G,G(M
2

 )CGCG(M 3221]G[ 2
 21]G[ CGM

2
 , 

 

where we defined )''C,'C(C 321  .  Since the left hand side of the expression above has full 

column rank (from (2) of Section 2), the 11 pp   square matrix 2C  must be non-singular.  This 

proves that condition (A) implies condition (B).  We now show that the reverse is also true.  In 

fact, condition (B) can be rewritten as 0)CGGM(M 211]G[]G[ 22
 .  This implies 

)CGGM( 211]G[ 2
  is in the column space of 2G ;  that is, there exists a 12 pp   matrix 4C  such 

that 42211]G[ CGCGGM
2

 .  This is equivalent to 11]G[ GCGM
2

 , with )''C,'C(C 421  .  

Because 1]G[ GM
2

  has full column rank, the 1pp  matrix 1C  must have full column rank too.  

This completes the proof of (B) implying (A).  Thus, we have proved the equivalence of 

conditions (A) and (B).   

 Lastly, we show that conditions (B) and (C) are equivalent.  In fact, pre-multiplying both 

sides of condition (B) by 1G  and solving for 2C , we obtain 

1]G[]G[1

1

1]G[12 GMM'G)GM'G(C
222

 
.  Substituting it into condition (B), we can see that 

condition (B) is equivalent to: 

 

  1]G[]G[1

1

1]G[11]G[1]G[]G[ GMM'G)GM'G(GMGMM
222222

 
, or  

  0GM]M'G)GM'G(GMM[ 1]G[]G[1

1

1]G[11]G[]G[ 22222
 

,  

 

which can be rewritten as 0GM]PPI[ 1]G[]GM[]G[ 2122
  (with ]G[2 2

MM  ).  This is 

equivalent to: 

 

0GMM 1]G[]G,G[ 221
  or 0GMM 1]G[]G[ 2

 . 

 



 

This is just condition (C).  Thus we complete the proof of this theorem.   

 

Proof of Theorem 2.   

As we explained in Section 3, the equation by equation 2SLS estimator of   in (4) is 

algebraically the same as the GMM estimator based on moment conditions (7), using 
1

GT )T/Z'Z(IW   as the weighting matrix, while the 3SLS estimator of   is also 

algebraically identical to the GMM estimator based on (7), using 11

T )T/Z'Z(ˆW    as the 

optimal weighting matrix.  Thus, to prove Theorem 2, we only need to apply Theorem 1 to the 

case of GMM estimation of )'',,'( m101    based on (7).  For this purpose, we first note that 

2/12/1 WW  , DWG 2/1 , 1

2/1

1 DWG   and 2

2/1

2 DWG  .  Then, it is easy to verify that 

Theorem 1 (C), 0GMM 1]G[]G[ 2
 , is equivalent to: 

 

       0DW]W'D)WD'D(DWI[WW]W'D)WD'D(DWI[ 1

2/12/1

2

1

222

2/12/12/12/112/1    
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1

222

12/12/1    

    0D]W'D)WD'D(WDW[]W'D)WD'D(WDW[ 12

1

222

1    

 (pre-multiplying both sides by 2/1W , a nonsingular matrix) 

    0D]W'D)WD'D(DI[WW]'D)WD'D(WDI[ 12

1

222

1   .                                 (A.6) 

 

Now, using the moment functions in (7), we can calculate: 
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)'xz(E

]X)zI[(E]'/)(g[ED

Gtt

t1t

ttGt  . 

 

Define )'xz(EA itti   for i = 1, .., G.  Then, D can be rewritten as )A,,A(diagD G1  .   

Similarly, using the definition of )'',,'( m101    and )'',,'( G1m02    , we have: 

 

 









0

D
]'/)(g[ED

11

1t1  and 









22

2t2
D

0
]'/)(g[ED , 

 

with )A,,A(diagD m111   and )A,,A(diagD G1m22  . 

Note that B])zIvar[( ttG   and 1

G BIW   (for 2SLS estimation), with 

)'zz(EB tt .  Then, we have:  

 

 111 B)BI)(B)(BI(WW   ,                                                            (A.7) 
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Also, 0)'0,'D)(BI)('D,0(WD'D 11

1

G2212   . This implies: 

 

 112

1

222 DD]W'D)WD'D(DI[   .                                                                             (A.9) 

 

Then, by plugging (A.7)-(A.9) and )'0,'D(D 111   into (A.6), (A.6) becomes: 
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Now, using GGij )(   and )A,,A(diagD m111  , we can easily verify that this equation is 

equivalent to:  

 

 0AB]'A)AB'A(ABI[ j

1

iji

1

i

1

ii

1

M  
,  for i = 1, 2, …, G;  j = 1, 2, …, m.    (A.10) 

 

Thus, we have shown that Theorem 1(C) is equivalent to (A.10).  We now proceed to show that 

(A.10) is also equivalent to equation (8) of Theorem 2.  In fact, (A.10) is equivalent to: 

 

 0ij   or 0AB]'A)AB'A(ABI[ j

1

i

1

i

1

ii

1

M  
,  

 

for i j; i = 1, 2, …, G;  j = 1, 2, …, m.  But 0AB]'A)AB'A(ABI[ j

1

i

1

i

1

ii

1

M  
 is the same 

as j

1

i

1

i

1

iij AB'A)AB'A(AA  .  This implies that jA  is in the column space of iA , or 

0AM j]A[ i
 .  Therefore, (A.10) is equivalent to: 

 

  0AM j]A[ij i
 ,  for i j;  i = 1, 2, …, G;  j = 1, 2, …, m.  

 

This is just equation (8) of Theorem 2.  This completes our proof of Theorem 2.         

 

Proof of Corollary 2.   

Note that equation (8) of Theorem 2 is equivalent to: 

 

 0ij   or 0AM j]A[ i
 ,  for i j;  i = 1, 2, …, G;  j = 1, 2, …, m.  

 

But 0AM j]A[ i
  is equivalent to ijij CAA  , with ijC  being a ji KK   matrix of full column 

rank.  Recall the definition of )'xz(EA itti  , which can be consistently estimated by 



 

)i(

1

i X'ZTÂ  .  Then, for a given sample of size T, a sufficient condition for the population 

condition ijij CAA   is that the following condition holds, with probability equal to 1, in the 

sample: 

 

 ij)i(

1

)j(

1 ĈX'ZTX'ZT   , or ij)i(

1

)j(

1 ĈX'Z)Z'Z(ZX'Z)Z'Z(Z   , 

 

since 1)Z'Z(Z   has full column rank.  This is just ij)i()j( ĈX̂X̂   or 0X̂M )j(]X̂[ )i(

 , using 

)i(]Z[)i( XPX̂   and )j()i(

1

)i()i(ij X̂'X̂)X̂'X̂(Ĉ  .  Therefore, a sufficient condition for (8) is: 

 

 0X̂M )j(]X̂[ij
)i(

 , for i j;  i = 1, 2, …, G;  j = 1, 2, …, m, 

 

holds with probability equal to 1.  This completes the required proof.     
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