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Abstract
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1. Introduction 

Scoring Elimination Rules (SER), that give points to candidates according to their rank in 

voters' preference orders and eliminate the candidate(s) with the lowest number of points, 

constitute an important class of voting rules. As we only consider in this note the three-

candidate case, we can describe this class of voting systems as follows:  in the first round of 

the choice process, each voter ranks the candidates and the score of each candidate is 

computed on the basis of a point-system (1, �, 0), with 0 ≤ � ≤ 1, that gives 1 point each 

time a candidate is ranked first in voter’s preferences, � points for a second position and 0 

point for a third and last position. The candidate with the lowest score is then eliminated and, 

in a second round, the two remaining candidates are confronted and the one who obtains the 

majority of votes wins. Plurality Elimination Rule (PER) is obtained when � = 0 and is 

equivalent to the so-called Alternative Vote or Instant Runoff Voting in the three-candidate 

case. Taking � = 1 gives the Coombs method (or Negative Plurality Elimination Rule - 

NPER): the candidate who is eliminated in the first round is the one who is ranked last by the 

largest number of voters. A third well known Scoring Elimination Rule is the Borda 

Elimination Rule (BER), associated to the case where � = 1 2⁄ ; this rule is of particular 

interest because it is the only one in the class of Scoring Elimination Rules that always selects 

the Condorcet winner – i.e. the candidate who beats each other candidate in majority pairwise 

comparisons – when such a candidate exists (see Smith 1973). 

A striking feature of SERs is that getting more votes can cause a candidate to lose an election 

(the ‘More is Less Paradox’, MLP) and getting fewer votes can cause a losing candidate to 

win (the ‘Less is More Paradox’, LMP). The following example illustrates these two forms of 

monotonicity failures. Suppose there are 73 voters whose rankings of candidates, a, b and c, 

are as follows: 

 

Number of voters Ranking 

16 ��:	� ≻ � ≻ � 
7 ��:	� ≻ � ≻ � 

11 ��: � ≻ � ≻ � 
18 ��: � ≻ � ≻ � 

15 ��: � ≻ � ≻ � 

6 ��: � ≻ � ≻ � 

 

When PER is applied, candidate c is eliminated in the first round (a obtains 23 votes, b 29 

votes and c 21 votes) and candidate a beats candidate b in the second round (38 to 35): 

candidate a is thus the election winner. Suppose now that nine out of the 11 voters whose 

initial ranking is � ≻ � ≻ � change their ranking to � ≻ � ≻ � (thereby increasing a’s 

support). As a result of this change, b (rather than c) is eliminated in the first round and c 

beats a in the second round (39 to 34), illustrating the More-is-Less-Paradox. Suppose instead 

that four of the 18 voters whose initial ranking is � ≻ � ≻ � change their ranking to � ≻ � ≻� (thereby decreasing b’s support). As a result of this change, a (rather than c) is eliminated in 

the first round and b beats c in the second round (41 to 32), illustrating the Less-is-More-

Paradox. Note that, with the same example, it is easily shown that BER is vulnerable to the 

two paradoxes, MLP and LMP.   

 

Voting rules that never exhibit this kind of anomaly are said to be monotonic. Smith (1973) 

has shown that the whole class of Scoring Elimination Rules (including BER) is subject to 

monotonicity failure. It is however often suggested that monotonicity failure, while a 

mathematical possibility, is highly unlikely to occur. Is it true? The studies conducted by 

Lepelley et al. (1996) for PER and NPER and Miller (2016) for PER suggest a rather negative 



 

 

answer in the three-candidate case. But what about BER?  The aim of this note is to provide a 

response to this question by evaluating the vulnerability of BER to monotonicity failure and 

by comparing BER performances to those of PER and NPER. 

 

2. Vulnerability of BER to Monotonicity Paradoxes 

 We consider elections with a set of � voters and a set of three candidates, � = ��, �, ��. Each 

voter’s preference is given by one of the six strict rankings �� 	(1 ≤ � ≤ 6) defined in the 

introductory example. Preferences are supposed to be anonymous; thus we consider voting 

situations represented by six-tuples � = (��, ��, ��, ��, ��, ��) such that �� 	≥ 0	(1 ≤ � ≤ 6) 
and ∑ ����"� = �, where �� 	is the number of voters with preference ranking ��. Let #(�) be 

the set of voting situations with � voters. The Impartial Anonymous Culture (IAC) condition, 

on which our probabilistic results are based, assumes that all the voting situations in #(�) are 

equally likely to occur. A voting rule is a mapping $ from #(�) to �. We are interested here 

in the class of voting rules introduced in the previous section, i.e. the class of SERs for three-

candidate elections. Given �	 ∈ [0, 1], we denote by $( the SER using the point-system (1, �, 0). For a candidate )	 ∈ � and a voting situation �	 ∈ #(�), we denote by *((), �) the 

score obtained by  )  in the first round, when voters’ preferences are described by � and the 

point-system (1, �, 0) is applied. For example, the score of candidate � for each of the three 

rules under consideration is given by: *+(�, �) = �� + ��, *+.�(�, �) = �� + �� + 0.5(�� +��) and *�(�, �) = �� + �� + �� + ��. For � and / in #(�) and ) in �, we say that / is an 

improvement of the status of ) (from �) if ) is ranked higher in / by some voters, all else 

unchanged. Conversely, we say that / is a deterioration of the status of ) (from �) if ) is 

ranked lower in / by some voters, all else unchanged.  

 

Vulnerability to MLP and LMP can be formulated as follows. A voting system $ is 

vulnerable to (or exhibits) MLP at a voting situation � if there exists an improvement / of the 

status of $(�) such that $(/) ≠ $(�). Similarly, $ is vulnerable to LMP at � if there exists a 

candidate ), ) ≠ $(�),	and a deterioration / of the status of ) such that $(/) = ). For a 

monotonicity paradox M (MLP or LMP) and a voting rule $, we define the vulnerability of $ 

to M as the probability, 12(3, $, �), that a situation in #(�) gives rise to M under $. Under 

the IAC assumption, 12(3, $, �) is the proportion of voting situations in which $ is 

vulnerable to M: 12(3, $, �) = |#(3, $, �)	| |#(�)|⁄ , where #(3, $, �) is the set of all 

voting situations in #(�) for which $ is vulnerable to M. Note that #(351, $, �) is the 

disjoint union of the six subsets #(351, $, �)↗(7,7′) (),) ′ ∈ �,) ≠ ) ′) where #(351, $, �)↗(7,7′) consists of all voting situations � such that : $(�) = ) and there exists 

an improvement / of the status of ) such that $(/) = ) ′. Similarly, #(531, $, �) is the 

disjoint union of the six subsets #(531, $, �)↘(7,7′) (),) ′ ∈ �,) ≠ ) ′) where #(531, $, �)↘(7,7′) consists of all voting situations � such that: $(�) = ) and there is a 

deterioration / of the status of )′ such that $(/) = ) ′.  We also introduce a global measure 

for the vulnerability of $ to monotonicity paradoxes, denoted by 12(:31, $, �) and defined 

as the probability that a voting situation gives rise to MLP or LMP under $. If we denote by 12(351 + 531, $, �) the probability that a voting situation exhibits both MLP and LMP
1
, 

then: 12(:31, $, �) = 12(351, $, �) + 12(531, $, �) − 12(351 + 531, $, �)   (2.1) 

It is also easy to see that, by symmetry arguments, we obtain:  

                                                           
1
 Miller (2016) and  Felsenthal and Tideman (2014) refer to this kind of voting scenario as "double monotonicity 

failure".  



 

 

     12(351, $, �) = �<=(>?@,A,B)↗(C,D)	<|=(B)| 	 (2.2)  and 12(531, $, �) = �<=(?>@,A,B)↘(C,E)	<|=(B)|   (2.3)     

Finally, we can write 12(351 + 531, $, �) in the same way: 12(351 + 531, $, �) = �<=(>?@,A,B)↗(C,D)∩	=(?>@,A,B)↘(C,E)<|=(B)|     (2.4) 

Lepelley et al. (1996) provided analytical expressions for 12(351, $, �) and 12(531, $, �) 
for $ = $+ (PER) and $ = $� (NPER). The aim of our study is to complement their results by 

extending these representations to the case $ = $+.� (BER) and by computing the global 

vulnerability to monotonicity paradoxes for each of the three classical SER's. The first step in 

such calculations is to characterize the situations belonging respectively to #(351, $, �)↗(G,H) 
and #(531, $, �)↘(G,I) for each $ under consideration. The characterization of these sets for $+ and $� is given in Lepelley et al. (1996). The following proposition (the proof of which is 

given in appendix) provides characterizations of all voting situations belonging to #(351, $+.�, �) and to #(531, $+.�, �). As in Lepelley et al. (1996), to simplify calculations, 

we ignore the problem of tied elections: we assume that one and only one alternative is 

eliminated in the first stage as well as in the second (this assumption alters the results only for 

small values of �). 

Proposition 1.  A voting situation � = (��, ��, ��, ��, ��, ��) belongs to #(351, $+.�, �)↗(G,H) 
(resp. to #(531, $+.�, �	)↘(G,I)) if and only if  it satisfies system (*1)  (resp. (*2)): 

 

JKL
KM−2�1 − �2 − �3 + �4 + �5 + 2�6 < 0	−�1 + �2 − 2�3 − �4 + 2�5 + �6 < 0−�1 − �2 + �3 + �4 − �5 + �6 < 0�1 − �2 + �3 + �4 − 2�5 − 2�6 < 0�1 + �2 + �3 − �4 − �5 − �6 < 0

Q (*1) R−2�1 − �2 − �3 + �4 + �5 + 2�6 < 0−�1 − �2 + �3 + �4 − �5 + �6 < 0				�1 + �2 − �4 − �6 < 0																									
Q	 (*2) 

The second step of calculation is now to count the exact number of integer solutions for each 

of the two systems given by the previous proposition. Note that all (in)equalities in these 

systems are linear and have integer coefficients on the variables ��  and on the parameter �. 

We know from Lepelley et al. (2008) and Wilson and Pritchard (2007) that there is a well-

established mathematical theory and efficient algorithms to calculate the number of integer 

solutions of such systems. Indeed, by Ehrhart’s theorem (Ehrhart 1977), this number is a 

quasi-polynomial in �, i.e. a polynomial expression S(�) of the form S(�) = ∑ �TUT"+ (�)�T, 

where V is the degree of S(�) and where the coefficients �T(�) are rational periodic numbers 

in �. A rational periodic number of period W on the integer variable � is a function X: ℤ → ℚ  

such that X(�) = X(�′) whenever � ≡ �′ (mod W). Each coefficient �T(�) can have its own 

period, but we can always write S(�) in a form where the coefficients have a common period 

called the period of the quasi-polynomial S(�) and defined as the least common multiple of 

the periods of all coefficients. To calculate the quasi-polynomials associated with the systems 

of Proposition 1, we use the program proposed by Verdoolaege et al. (2005) based on 

Barvinok’s algorithm (Barvinok 1994).  

Proposition 2 (BER) For � ≡ 1	[12]  (i.e. n = 13, 25, 37…), we have: 12(351, $+.�, �) = (B]�)(��B^_�``Ba]��`�Bb_c�``B]��c�d�)�d�`(B_�)(B_�)(B_�)(B_�)(B_�)  ,  

12(531, $+.�, �) = (B]�)(B]d)(�Bb]�B]�+c)���(B_�)(B_�)(B_�)(B_�) ,  12(351 + 531, $+.�, �) = (B]�)(B]��)(��Ba]���Bb]�`+�B_`�d�)�d�`(B_�)(B_�)(B_�)(B_�)(B_�)  ,  



 

 

12(:31, $+.�, �) = (B]�)(�cBa]Bb]�+��B_``c)���(B_�)(B_�)(B_�)(B_�) .  
The proof of this result is immediate. Using Barvinok’s algorithm, we calculate quasi 

polynomials describing the numbers <	#(351, $+.�, �)↗(G,H)	< and <	#(531, $+.�, �)↘(G,I)	< as 

functions of �. The number |#(�)| is known and given by |#(�)| = e� + 5� f for � ≥ 1; it  
then suffices to apply formulas (2.2) and (2.3) to obtain the analytical expressions for 12(351, $+.�, �) and 12(531, $+.�, �). To calculate 12(:31, $+.�, �), we first calculated 12(351 + 531, $+.�, �) and then we applied formula (2.1). The calculation of 12(351 +531, $+.�, �) is done in three steps: (i) characterization of all voting situations belonging to #(351, $+.�, �)↗(G,I) ∩	#(531, $+.�, �)↘(G,H) that are simply all voting situations that jointly 

satisfy the two systems of Proposition 1, (ii) use of Barvinok’s algorithm to obtain the quasi-

polynomial giving the expression of <	#(351, $+.�, �)↗(G,H) ∩	#(531, $+.�, �)↘(G,I)< and (iii) 

application of formula (2.4). Note that the obtained quasi-polynomials are of degree 5 and 

period 12. For simplicity, we have only exhibited here the expression of these quasi-

polynomials for integers � that are congruent to 1 modulo 12. However, complete formulas 

for the probabilities calculated in this proposition for any congruence modulo 12 are available 

and can be provided on request from the authors.  

3. Comparison with other Scoring Elimination Rules 

We begin by complementing the results obtained by Lepelley et al. (1996) for PER and NPER 

(recall that the formulas they give in their study only deal with the vulnerability to MLP and 

LMP and ignore MLP+LMP and GMP). The following propositions are easily deduced from 

the characterization results proposed by these authors for $+ and for $�. 

Proposition 3 (PER) For � ≡ 1	[12]  (i.e. n = 13, 25, 37…), we have: 12(351 + 531, $+, �) = (B]�)(B_��)(B]��)(�dBb_��B]��)��+�(B_�)(B_�)(B_�)(B_�)(B_�)  ,  

12(:31, $+, �) = (B]�)(�cdB^_��c�Ba]���c`Bb]�����`B]������)�c��(B_�)(B_�)(B_�)(B_�)(B_�)  . 

Proposition 4 (NPER) For � ≡ 1	[12]  (i.e. n = 13, 25, 37…), we have: 

12(351 + 531, $�, �) = �(B]�)(B]��)(�Ba]��Bb]��`B]���)��c�(B_�)(B_�)(B_�)(B_�)(B_�)  , 

 12(:31, $�, �) = (B]�)(�+�B^_�+�dBa_���dBb]�+��B]�d+��)��c�(B_�)(B_�)(B_�)(B_�)(B_�)  . 

The following Tables display some values of 12(3, $(, �) for 3 ∈ �351, 531,351 +531, :31�, � ∈ �0, �� , 1� and n = 13 (Table 1), n = 109 (Table 2), n = ∞ (Table 3). 

 

Table 1: Vulnerability for PER ($+), NPER ($�) and BER ($+.�),  � = 13 

 MLP LMP MLP+LMP GMP $+ 0 5/476 = 1.05% 0 5/476 =1.05% $+.� 4/357 = 1.12% 1/357 = 0.28% 0 5/ 357= 1.40% $� 8/357 = 2.24% 9/238 = 3.78% 0 43/714=6.02% 

 



 

 

Table 2: Vulnerability for PER ($+), NPER ($�) and BER ($+.�), � = 109 
 MLP LMP MLP+LMP GMP $+ 475593/12233606 

= 3.89% 

63981/3495316 

= 1.83% 

78021/12233606 

= .64% 
16143/317756 =5.08% 

$+.� 
411/15029 = 2.73% 

5559/321937 = 

1.73% 

30648/6116803 = 

.50% 
12750/312937 = 3.96% 

$� 15789/321937 = 

4.90% 

3555/58534 = 

6.07% 

16572/6116803 = 

.27% 

187119/1747658=10.71% 

                   

Table 3: Vulnerability for PER ($+), NPER ($�) and BER ($+.�), � → ∞ 
 MLP LMP MLP+LMP GMP $+ 13/288 = 4.51% 17/864 = 1.97% 17/2304 = .74% 397/6912 =5.74% $+.� 53/1728 = 3.07% 3/144 = 2.08% 13/1728 = .75% 19/432 = 4.40% $� 1/18 = 5.56% 7/108 = 6.48% 5/1296 = .39% 151/1296=11.65% 

  

The computed values show that, for the three rules under consideration, the vulnerability to 

monotonicity paradoxes increases with the number of voters and, with the exception of double 

monotonicity paradox, this vulnerability reaches values that cannot be considered as 

negligible. NPER - or Coombs rule ($�) clearly exhibits the poorest performance for almost 

each type of monotonicity failure and each value of n, with a GMP probability close to 12% 

when n tends to infinity. However, a noticeable exception is observed for double 

monotonicity paradox for which the vulnerability of NPER is lower than the vulnerability of 

both PER and BER. Finally, it turns out that BER and PER perform similarly for LMP and 

MLP+LMP but BER dominates PER for MLP and GMP. 

 

4. Concluding remark 

In a companion paper, we have extended the current study to consider the whole class of SER (1, �, 0) with 0 < � < 1.The results we have obtained indicate that, when the number of 

voters tends to infinity: i) the vulnerability to monotonicity failures is minimized for  a value 

of � slightly lower than 1/2, and ii) the BER vulnerability is very close to the optimal value. 
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Appendix 

Proof of Proposition 1.   

For simplicity, we denote by $ the SER $+.� and by *(), �) the score *+.�(), �). For a voting 

situation � in #(�) and candidates ), )′ in �, we denote by 1j(),)′) the number of voters 

who prefer ) to )′ (for example, 1j(�, �) = �� + �� + �� and 1j(�, �) = �� + �� + ��). 

1) Let � = (��, ��, ��, ��, ��, ��) be a voting situation. Suppose that � belongs to #(351, $, �)↗(G,H). By definition, $(�) = � and there exists an improvement / of the status 

of � such that $(/) = �. Candidate � is present in the second round both at � and / since $(�) = � and / is an improvement of the status of  � from �. Candidate � is in the second 

round at / since $(/) = � and candidate � is in the second round at � (if � is present in the 

second round at �, he will win against � since he wins after improvement of the status of �). 

Thus, in one hand we have S(�, �) > S(�, �) (1), S(�, �) > S(�, �) (2) and 1j(�, �) >1j(�, �) (3).  In the other hand, S(�, /) > S(�, /) (4), S(�, /) > S(�, /) (5) and 1m(�, �) >1m(�, �) (6). 

Clearly, the improvement of the status of  � from � to / is only intended to decrease the score 

of � at the first round in such a way that � is now qualified for the second round at / and wins 

against �. With BER, turning �� = ��� into �� = ��� or  �� = ��� into �� = ��� will 

decrease both the score of � and the score of � by the same amount; and turning �� = ��� 

into �� = ��� or �� = ��� into �� = ��� will only decrease the score of �. These operations 

have no contribution to the election of � at /. Hence, with BER, the only changes (in favor of �) that allow to move from (1)-(3) to (4)-(6) consist in moving from �� = ��� to �� = ��� 
and from �� = ��� to �� = ���.  Note that when it is possible to move from (1)-(3) to (4)-(6) 

by changing the preferences of some voters of type �� or ��, it is obviously possible to move 

from (1)-(3) to (4)-(6) by changing the preferences of all these voters. We can therefore take / = (�� + ��, ��, 0, 	��, �� + ��, 0). Then, writing conditions (1), (2), (3), (5) and (6) yields 

(in order) the five inequalities of system (*1). This shows that the conditions described by 

system (*1) are necessary.  

To see that these conditions are also sufficient, let � = (��, ��, ��, ��, ��, ��) be a voting 

situation satisfying system (*1). Let / = (�� + ��, ��, 0, ��, �� + ��, 0). It is obvious that / 

is an improvement of the status of � from � and that the five inequalities of (*1) describe (in 

order) the five following conditions: S(�, �) > S(�, �) (1), S(�, �) > S(�, �) (2), 1j(�, �) >1j(�, �) (3), S(�, /) > S(�, /) (5) and 1m(�, �) > 1m(�, �) (6). Now, note that S(�, �) >S(�, �) implies S(�, /) > S(�, /), and since S(�, /) > *(�, /), we must have S(�, /) >*(�, /) (4). So we have $(�) = � (by (1)-(3)) and $(/) = � (by (4)-(6)). Therefore � ∈#(351, $, �)↗(G,H). 
2) Let � = (��, ��, ��, ��, ��, ��) be a voting situation. Suppose that � belongs to  #(531, $, �	)↘(G,I). By definition, $(�) = � and there exists a deterioration / of the status of 



 

 

� such that $(/) = �. Candidate � is present in the second round at �, since $(�) = �. 

Candidate � is present in the second round at / (since $(/) = �) and in the second round at � 

(the score of � increases from / to �). Candidate � is present in the second round at / 

(otherwise � is eliminated at the first round at /; and � will defeat � at the second 

round	since	� is already winning against � at � before the deterioration of the status of �). 

Thus, in the one hand we have  S(�, �) > S(�, �) (1), S(�, �) > S(�, �) (2) and 1j(�, �) >1j(�, �) (3). In the other hand, S(�, /) > S(�, /) (7), S(�, /) > S(�, /) (8) and 1m(�, �) >1m(�, �) (9). The deterioration of the status of  � from � to / is only intended to increase the 

score of � at the first round in such a way that � is now qualified for the second round at / and 

loses against �. With BER, turning �� = ��� into �� = ��� or  �� = ��� into �� = ��� will 

increase both the score of � and the score of � by the same amount; and turning �� = ��� 
into �� = ��� or �� = ��� into �� = ��� will only increase the score of �. These operations 

have no contribution to the election of � at /. Hence, with BER, the only changes (to the 

detriment of �) that allow to move from (1)-(3) to (7)-(9) consist in moving from �� = ��� to �� = ��� and from �� = ��� to �� = ���.  Each of these changes removes 0.5 point to S(�, �) and adds it to S(�, �). Similarly, each of these changes removes one point to 1j(�, �) 
and adds it to 1j(�, �). To move from (1)-(3) to (7)-(9), the score of � must increase to exceed 

that of �, while maintaining the score of � higher than the score of � and without changing the 

majority decision between � and �. For this to be possible, inequalities (1)-(3) and the 

additional following inequalities must be satisfied:   S(�, �) > *(�, �) (10),  S(�, �) −*(�, �) > *(�, �) − S(�, �) (11), 1j(�, �) − 2[	S(�, �) − *(�, �)] > 1j(�, �) + 2[	S(�, �) −*(�, �)] (12).  Writing conditions (1), (3) and (11) gives us (in order) the three inequalities of 

system (*2).  This shows that the conditions described by system (*2) are necessary.  

Conversely, let � = (��, ��, ��, ��, ��, ��) be a voting situation satisfying system (*2). It is 

easy to see that the inequalities of (*2) describe (in order) the three following conditions: S(�, �) > S(�, �) (1), 1j(�, �) > 1j(�, �) (3) and S(�, �) − *(�, �) > *(�, �) − S(�, �) (11). 

Notice that, Since S(�, �) − *(�, �) − [*(�, �) − S(�, �)] = −1.5(�� + �� − �� − ��) and �� + �� − �� − �� is an integer, then (11) implies S(�, �) − *(�, �) − [*(�, �) − S(�, �)] >1 (13). 

Let / = (�� − n, �� + n, ��, �� − o, ��, �� + o) whith 0 ≤ n ≤ ��, 0 ≤ o ≤ �� and n + o = 2[	S(�, �) − *(�, �)] + 1. This is possible because �� + �� > 2[	S(�, �) − *(�, �)]. 
Indeed, let p = �� + �� − 2[	S(�, �) − *(�, �)]. It is easy to verify that p = 	2[S(�, �) −*(�, �)] − 2[*(�, �) − S(�, �)] + 1j(�, �) − 1j(�, �) + �� + ��. So from (3) and (11), p >0.  

Now, note that (1) and (11) imply S(�, �) > *(�, �) (10); and (1) and (10) imply S(�, �) >S(�, �) (2). By a simple calculation of the scores of � and �, we also have *(�, /) = *(�, �) 
and *(�, /) = *(�, �) + 0.5(n + o) > *(�, �) + [	S(�, �) − *(�, �)] = S(�, �). Thus, we 

have S(�, /) > *(�, /) (7). We have also *(�, /) − 	*(�, /) = *(�, �) − 2[	S(�, �) −*(�, �)] − 1 − *(�, �) = S(�, �) − *(�, �) − [*(�, �) − S(�, �)] − 1. By (13) this expression 

is strictly positive. Thus, we have S(�, /) > *(�, /) (2). Finally, we have 1m(�, �) −1m(�, �) = 1j(�, �) + 2[	S(�, �) − *(�, �)] + 1 − (1j(�, �) − 2[	S(�, �) − *(�, �)] − 1); and 

it can be checked that 1j(�, �) + 2[	S(�, �) − *(�, �)] + 1 − (1j(�, �) − 2[	S(�, �) −*(�, �)] − 1) = 1j(�, �) − 1j(�, �) + �̀ ([*(�, �) − S(�, �)] − [*(�, �) − S(�, �)]) + 2 (by 

simply expanding both the left hand side and the right hand side of this equality). Thus (3) 

and (13) imply that 1m(�, �) − 1m(�, �) < 0 − �̀+ 2 < 0. Hence, 1m(�, �) > 1m(�, �) (9).  

To conclude, inequalities (1)-(3) show that $(�) = � , inequalities (7)-(9) show that $(/) =� and it is obvious that / is a deterioration of the status of � (from �). Hence, � ∈#(531, $, �	)↘(G,I). 


