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1 Introduction

Since the start of Modern Portfolio Theory with the seminal Mean-Variance (MV) model
of Markowitz (1952, 1959), the main aim of portfolio selection models was that of reducing
the risk of an investment in the stock market through diversification while trying to achieve
a satisfactory return. However, Markowitz also realized that, due to high correlations in
the stock market, the benefit of diversification would rapidly decline with the size of
the portfolio. In his fundamental book (Markowitz, 1959, Pag.102) he observed that:
“To understand the general properties of large portfolios we must consider the averaging
together of large numbers of highly correlated outcomes. We find that diversification is
much less powerful in this case. Only a limited reduction in variability can be achieved
by increasing the number of securities in a portfolio.”

The first empirical evidence of the sufficiency of small portfolios to achieve almost
complete elimination of the diversifiable risk in a market is probably due to a very influ-
ential work by Evans and Archer (1968) where, for any given size K from 1 to 40, they
randomly picked subsets of K assets from a market of 470 securities and computed some
statistics on the standard deviations of the Equally-Weighted portfolios formed with each
subset of assets. They found that the average standard deviation for each size K was
decreasing and rapidly converging to an asymptote and they concluded that no more than
around 10 assets were needed to almost completely eliminate the unsystematic variation
of a portfolio return.

Thenceforth, several authors contributed to the debate about the right size of a portfo-
lio that almost completely eliminates the diversifiable risk in a market (see, e.g., Newbould
and Poon, 1993, and references therein). Furthermore, based on Evans and Archer’s and
on other similar findings, such magic size, or size range, has been recommended in sev-
eral textbooks on investment management and on corporate finance, as reported by Tang
(2004).

There are several reasons for preferring small portfolios to large portfolios. The first
and more obvious one concerns the infeasibility of holding large portfolios for small in-
vestors. However, even big investors should consider the opportunity cost of holding large
portfolios and should identify the threshold where the costs exceed the benefit of risk
reduction. Statman (1987) identifies such costs with the transaction costs and, using the
cost of holding an index fund that replicates the market as a proxy, finds a threshold
around 30-40 assets. Furthermore, there are other sources of cost that depend on the size
such as those for monitoring the behavior and fundamentals of all the companies involved
in the portfolio. Another important advantage of small portfolios seems to be that of
reducing the estimation errors for variances and covariances thus leading to better out of
sample performance (see, e.g., Cesarone et al, 2014; DeMiguel et al, 2009a).

In this work we provide further evidence of the benefits of small portfolios both in
terms of in-sample risk reduction and in terms of out-of-sample performance. However,
our approach is significantly different from the mainstream approach pioneered by Evans
and Archer. Indeed, we overcome one of the main weaknesses of their approach which
consists in stating results that are valid only on average. In other words, if one picks an
arbitrary Equally-Weighted portfolio of a given size in a market, there is no guarantee
that its risk will not be much larger than the average risk of all portfolios of the same size



in that market.

The conceptually simple solution that we propose here is just to choose the best
Equally-Weighted portfolio for each given size with respect to variance, and, furthermore,
the optimal portfolios for each given size with respect to three different and complemen-
tary risk measures. In this way for each size we clearly obtain a portfolio which has a
risk not greater (and typically quite smaller) than the average risk. The reason why this
simple idea was not investigated before is probably due to the computational hardness
of the models required to find such best portfolios. Indeed, some of these models have
been solved exactly only recently for small to medium size markets (see, e.g., Angelelli
et al, 2008; Cesarone et al, 2015, and references therein), and one model is solved here for
the first time. Once we have obtained the optimal size of the minimum risk portfolio, we
proceed with a sensitivity analysis that allows us to find the smallest size of a portfolio
whose risk is not more than 1% larger than that of the minimum risk portfolio, thus
finding even smaller portfolios with satisfactory risk level.

Another difference between our approach and the one of Evans and Archer consists in
the possibility of using general weights in the selected portfolio instead of equal weights
only. For each portfolio size, this clearly allows one to find portfolio with even lower
in-sample risk. However, since optimizing weights might also cause the maximization of
estimation errors (DeMiguel et al, 2009b; Michaud, 1989), this choice does not necessarily
implies better out-of-sample performance. For both weighting schemes and for all risk
measures we find results comparable to those of Evans and Archer. More precisely, we
identify some ranges of (typically small) sizes where the portfolio risks are minimized and
ranges of even smaller sizes where the portfolio risks do not exceed the minimum by more
than 1%. The out-of-sample performance of the selected portfolios for each specified size
is another important feature of our analysis which is rarely found in previous works on
the subject. Also in this case we find that the best performances are generally obtained
by portfolios with no more than 15 assets.

As an interesting complement to our findings, we mention that, in a recent and detailed
analysis on the empirical behavior of investors and on the performance of their portfolios,
Ivkovié et al (2008) show that portfolios of small investors with low diversification exhibit
superior performance with respect to the ones with high diversification.

2 The portfolio models

In this section we describe the models analyzed and we provide an integer or a mixed-
integer linear or quadratic formulation for all models. We first need to introduce some
notation. Let T+ 1 be the length of the in-sample period used to estimate the inputs for
the models. We use p;; to denote the price of the i-th asset at time ¢, with ¢t =0, ..., T
_ D — Pig-y) is the ¢-th asset return at time ¢, with ¢ = 1,...,T"; x is the vector whose
Pit-1)
components x; are the fractions of a given capital invested in asset ¢ in the portfolio we are
selecting; y is a boolean vector whose components y; are equal to 1 if asset i is selected,
and 0 otherwise. We assume that n assets are available in a market and, adopting linear
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n
returns, we have that Ry(x) = Z x;r; is the portfolio return at time ¢, with t = 1,..., 7.
i=1
The n-dimensional vector p is used to denote the expected returns of the n risky asset,
while ¥ denotes their covariance matrix, and u denotes an n-dimensional vector of ones.

2.1 The Equally-Weighted portfolio

The most intuitive way to diversify a portfolio is to equally distribute the capital among
all stocks available in the market. In terms of relative weights we have x; = 1/n. This
is known as the Equally-Weighted (also called naive or uniform) portfolio. Clearly the
choice of the Equally-Weighted (EW) portfolio does not use any in-sample information
nor involve any optimization approach. However, some authors claim that its practical
out-of-sample performance is hard to beat on real-world data sets (DeMiguel et al, 2009b).
Furthermore, from the theoretical viewpoint, Pflug et al (2012) show that when increasing
the amount of portfolio model uncertainty, i.e., the degree of ambiguity on the distribution
of the assets returns, the optimal portfolio converges to the EW portfolio. We will thus
use this portfolio as a benchmark to compare the performances of the portfolios obtained
by the models.

2.2 Fixed-Size Minimum Variance Equally-Weighted portfolios

As already observed, the EW portfolio is the most robust choice when there is a great
uncertainty about the distribution of the asset returns. However, the EW portfolio has the
drawback of using all available assets, which might be too numerous and not all desirable.
A first proposal to overcome this drawback is due to Jacob (1974), who proposes to
select a small EW portfolio (with a specified number K of assets) that has minimum
variance among all EW portfolios of the same size. The model by Jacob is a nonlinear
0-1 optimization model that has not yet been tested in practice due to its computational
complexity. Thanks to the recent advances in solution methods and computing power,
we can propose here an empirical study of such Fixed-Size Minimum Variance Equally-
Weighted (FSMVEW) model formally described below.

min y? Sy
st. uly=K (1)
y € {0,1}"

This is probably the simplest Fixed-Size portfolio model and has the advantage of not
requiring the problematic estimates of the assets expected returns. Furthermore, the
effects of the possible estimation errors of the covariance matrix > do not result in very
large or small weights for some assets, but only influence the choice of the subset of
selected assets in the portfolio. From the optimization viewpoint, it falls into the class
of pseudoBoolean Quadratic Programming problems which are known to be theoretically
hard to solve in the worst case (NP-hard) (Boros and Hammer, 2002). However, due to
its special structure, practical problems of this type with several hundreds variables can
be actually solved fairly efficiently with available free or commercial codes.



Note that the vector x of weights of the optimal FSMVEW portfolio selected by model
(1) is obtained as © = +y. When K = n the FSMVEW portfolio coincides with the EW
portfolio.

2.3 Fixed-Size Minimum Variance portfolios

Another model that does not require the estimates of the assets expected returns is the
extreme case of the Markowitz model where we only seek to minimize variance. Within
our framework we thus consider the following Fixed-Size Minimum Variance (FSMV)
model where only K assets are allowed in the selected portfolio

min 'Yz

st. ulz=1
uy=K (2)
ly <z <y,
y €{0,1}"

The first constraint above is the budget constraint; the second one represents the portfolio
fixed-size constraint; u is an n-dimensional vector of ones; y is an n-dimensional vector of
binary variables used to select the assets to be included in the portfolio; = is the vector
of portfolio weights, and ¢ is a minimum threshold (often called buy-in threshold) for the
weights of the selected assets which must be greater than zero (in our experiments we chose
¢ =0.01). Without these thresholds, Problem (2) could generate portfolios with less than
K assets, which is equivalent to replacing the constraint u’y = K with u’y < K. Note
that Problem (2) is a Quadratic Mixed Integer Programming (QMIP) problem that falls
again in the class of NP-hard problems. However, also in this case problems with a few
hundred variables can be solved fairly efficiently with available free or commercial codes.
Furthermore, a recently proposed (Cesarone et al, 2009, 2013) specialized algorithm can
solve problems of this type with up to two thousand variables.

2.4 Fixed-Size Minimum CVaR portfolios

The Fixed-Size Minimum CVaR (FSMCVaR) model is a minimum risk model like the
previous one, but instead of variance it measures risk with Conditional Value-at-Risk at
a specified confidence level € (CVaR.), namely the average of losses in the worst 100c%
of the cases (Acerbi and Tasche, 2002). In our analysis losses are defined as negative
outcomes, and we set € equal to 0.05. The FSMCVaR model can be written as follows:

min CVaR.(x)

st. ulz=1
uly=K (3)
by <z <y,
y €{0,1}"

where ¢ plays the same role as in (2).



Using a classical approach introduced by Rockafellar and Uryasev (2000) (see also
Cesarone et al (2014)), Problem (3) can be reformulated as a Mixed Integer Linear Pro-
gramming (MILP) problem with n 4+ T + 1 continuous variables, n binary variables and
T +n + 3 constraints. Some recent computational experiences reported in Cesarone et al
(2015) on the solution of this model with state-of-the-art commercial solvers show that
models with more than a few hundreds variables are hard to solve with general purpose
solvers and would probably benefit from more specialized methods.

2.5 Fixed-Size Minimum Semi-MAD portfolios

The last risk measure that we take into account in our analysis is the downside Mean
Semi-Absolute Deviation (Semi-MAD):

n

SMAD(z) = E[min(0, Z Tit — [i)T;)] (4)
=1

This is a concise version of the more famous Mean Absolute Deviation (MAD) risk mea-
sure, which is defined as the expected value of the absolute deviation of the portfolio
return from its mean (Konno and Yamazaki, 1991). Indeed, Speranza (1993) showed that
Semi-MAD leads to a portfolio selection model that is equivalent to the MAD model, but
with half the number of constraints. We thus consider the following Fixed-Size Minimum
Semi-MAD (FSMSMAD) model

min SMAD(x)

st. ulx=1
uTy=K
ly <z <y,

y €{0,1}"

where ¢ plays the same role as in (2). Using the linearization approach described in Sper-
anza (1993), we can reformulate this problem as a MILP problem with n 4+ 7' continuous
variables, n binary variables and n + T + 3 constraints (see Cesarone et al (2014)). From
the computational experiences reported in Cesarone et al (2015) it appears that also this
model, although slightly easier than the previous one, cannot easily be solved with general
purpose state-of-the-art solvers when more than a few hundreds variables are involved.

3 Empirical behavior of the models

In this section we test the models described above on some publicly available data sets.

The analysis consists of two parts. First, we examine the behavior of the portfolios
selected by the models on the in-sample window where we obtain the input parameters
of the models. The second part consists in evaluating the out-of-sample performance of
the portfolios, which is the aspect that matters most to investors.



Data set | f of assets time interval frequency source
1 FF25 25 07/1963-12/2004 | monthly K. French
2| 48Ind 48 07/1963-12/2004 | monthly K. French
3 | 100Ind 100 01/1969-12/2011 | monthly K. French
4 | Stoxx50 32 01/2007-05/2013 | weekly | Yahoo Finance
5 | FtseMib 34 01/2007-05/2013 | weekly | Yahoo Finance
6 | Ftsel00 63 01/2007-05/2013 | weekly | Yahoo Finance

Table 1: List of data sets analyzed.

Since the markets are in continuous evolution, it seems appropriate to rebalance the
portfolio from time to time in order to take new information into account. For this
purpose, we use a Rolling Time Window procedure (RTW), i.e., we shift the in-sample
window (and consequently the out-of-sample window) all over the time length of each data
set. More specifically, we consider a time window (in-sample period) of 200 observations
for the data sets with weekly frequency, and of 120 observations for the data sets with
monthly frequency. The choice of the lengths of the in-sample and of the out-of-sample
windows is based on typical settings of portfolio selection problems (see, e.g., Bruni et al,
2012, 2013; Cesarone et al, 2015; DeMiguel et al, 2009a). Then we solve the selection
problem for overlapping windows built by moving forward in time with step size 4 (for
the weekly data sets) or 1 (for the monthly data sets). The optimal portfolio found w.r.t.
an in-sample period is held for the following 4 weeks (out-of-sample period of the weekly
data sets) or 1 month (out-of-sample period of the monthly data sets).

The out-of-sample performances of the resulting portfolios are evaluated in different
ways by computing some performance measures commonly used in the literature (Rachev
et al, 2008). Let a* = (z7,...,z}) denote the allocation of the selected portfolio and
re = (r1g, - .., o) denote the assets returns at time ¢. Then, in our analysis we consider:

e the Standard Deviation of the selected portfolio return;

Elz*r,—ry]

e the Sharpe Ratio as St —r,]"
t

where 7 = 0;

CVaRu[ry—z*r)]

e the Rachev Ratio as CVaRalo r—r,]"

where 7 = 0 and a = 8 = 0.1;

e the Max Drawdown as — min x*r; which is the maximum loss achieved by a port-
folio during the holding period.

In our analysis we use six data sets, summarized in Table 1. The monthly data sets
(FF25, 48Ind, 100Ind) are taken from Ken French’s website!. The weekly data sets
(Stoxx50, FtseMib, Ftsel00) are downloaded from http://finance.yahoo.com, and are
publicly available at http://host.uniroma3.it/docenti/cesarone/DataSets.htm.

Thttp://mba.tuck.dartmouth.edu/pages/faculty /ken.french /data_library.html
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Figure 1: Boxplot of the in-sample risk w.r.t. the portfolio size for 48Ind.

3.1 In-sample analysis

For each model described in Section 2 we study the behavior of its optimal value (minimum
risk) when varying the number K of assets in the portfolio.

One of our main empirical findings is the scarce effect of diversification in terms of risk
reduction when the portfolio size K does not belong to a certain range of values. Indeed, in
all analyzed markets, we find that the risk measures, representing the objective functions
of the models, achieve minimum values for a range of portfolio sizes corresponding to a
significantly limited number of assets w.r.t. the total. Furthermore, these risk measures
tend to increase when increasing the portfolio size, thus contrasting the paradigm that the
larger the diversification, the lower the risk. In Figs. 1 and 2 we report some empirical
evidences of this phenomenon for monthly (48Ind) and for weekly (Stoxx50) data sets.
However, this behavior is similar for each data set analyzed. Fig. 1 exhibits the boxplots
of the different risk measures w.r.t. all considered in-sample windows by varying the
portfolio size K. This means that, e.g., in the case of the 48Ind data set, for a fixed K we
have 377 values of risk, one for each in-sample window (i.e., one for each rebalancing of
the portfolio). Similarly we obtain Fig. 2, where we examine the Stoxx50 data set. Note
however that in the cases of weekly data sets for a fixed K we have 32 in-sample windows
(i.e., 32 values of risk). As mentioned above, the boxplot of the in-sample volatility
generated by the EW portfolios corresponds to that of the FSMVEW portfolios when
K = n, and it generally presents the highest median volatility. This feature is common
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Figure 2: Boxplot of the in-sample risk w.r.t. the portfolio size for Stoxx50.

to all data sets, and it suggests that a greater diversification does not always imply a risk
reduction, i.e., increasing the number of assets in the portfolio could worsen its in-sample
performance in terms of risk.

The empirical results of the FSMVEW portfolios could be compared to the findings
obtained by Evans and Archer, and by further influential experiments in the literature such
as the well-known Fama’s experiment (Fama, 1976). The author finds that, in a market
with 50 stocks, the effect of naive diversification determines a remarkable reduction of the
portfolio in-sample volatility, but only when including in the portfolio up to 20 stocks.
We refer to naive diversification as an EW strategy with a random selection of K out of n
available stocks. Indeed, he observes that adding further stocks in the portfolio does not
yield a considerable improvement. More precisely, Fama claims that approximately 95% of
the possible reduction deriving from diversification is achieved passing from 1 to 20 assets.
However, we point out that our approach is significantly different from that of Fama, as
well as from that of Evans and Archer. Indeed, we overcome one of the main weaknesses
of their approach which consists in stating results that are valid only on average. In other
words, if one picks an arbitrary EW portfolio of a given size in a market, there is no
guarantee that its risk will not be much larger than the average risk of all portfolios of
the same size in that market. While the results obtained by the FSMVEW portfolios
are those corresponding to the best Equally-Weighted portfolios for each given size with
respect to volatility. The findings on the FSMVEW model also highlight that when the
EW strategy is combined with risk minimization (instead of a randomly selection of K
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Figure 3: Distribution of the portfolio size corresponding to the global minimum risk.

out of n available stocks) the selected small portfolios show an improvement both in terms
of volatility and of robustness of its values obtained on all in-sample windows.

In addition, once we have obtained the optimal size of the minimum risk portfolio for
each in-sample window, we examine the range spanned by these optimal sizes. In Fig.
3 we show for the 100Ind data set the distribution of the optimal portfolio sizes (i.e.,
corresponding to the global minimum risk) for all models analyzed w.r.t. all in-sample
windows. We can see that the global minimum risk portfolio never exceeds 15 stocks for
the 100Ind data set. However, this behavior is almost the same in all the other considered
data sets, with the only exception of Ftsel00, where the optimal portfolio size is seldom
around 20 stocks. Furthermore, given the global minimum risk on an in-sample window,
we detect the smallest size of a portfolio whose risk is not more than 1% larger than that
of the minimum risk portfolio, thus finding even smaller portfolios with satisfactory risk
level. Then, we repeat this procedure for each in-sample window and for each portfolio
model. In Fig. 4 we report the distribution of these 101% min-risk optimal portfolio sizes
for each model analyzed w.r.t. all in-sample windows. More precisely, for each in-sample
window we consider all the cardinalities for which the corresponding portfolio has a risk
at most 1% greater than that of the minimum risk portfolio. As highlighted from the
four sub-figures (one for each portfolio), the 101% min-risk portfolios generally show a
significant risk reduction with 10 stocks for 100Ind data set. Furthermore, in most of the
cases we can achieve it with just 6 stocks. However, the 101% min-risk portfolio for the
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Figure 4: Distribution of the 101% min-risk portfolio.

other data sets never exceeds a size of 15, and generally are needed at most 10 stocks.

The most compelling result emerging from the in-sample analysis is the existence of
a portfolio size range (whose location could depend on the number of assets for each
market) where one can generally find the lowest values of risk for all models considered.
Indeed, we find that the smallest risk portfolios generally require no more than 15 assets.
Furthermore, it is almost always possible to find portfolios that are just 1% more risky
than the smallest risk portfolios and contain no more than 10 assets.

3.2 Out-of-sample analysis

The second part of our analysis concerns the out-of-sample behavior of the portfolios.
Our main goal is to confirm the finding, emerged from the in-sample analysis, that we
can improve performances without investing in a large number of stocks.

Again, we consider the EW portfolio as a benchmark and, instead of focusing only on
volatility reduction, we also compute the performance indices described in Section 3. We
start by verifying the behavior of the out-of-sample standard deviation. More precisely, we
check whether this performance measure reaches an optimal value, or at least a good value,
for small-size portfolios. We can see in Figs. 5a and 6a that, both for monthly (48Ind)
and for weekly (Stoxx50) data sets, the standard deviations of the portfolios returns reach
their minima for small sizes. For larger sizes, the portfolios volatility tends to increase
with different growth rates. These increases, except for the FSMVEW, are due to the buy-
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Figure 6: Analysis of the out-of-sample portfolio returns for Stoxx50.

in threshold constraints. Without these constraints we should expect nearly flat curves.
However, the buy-in threshold constraints are necessary to eliminate unrealistically small
trades that can otherwise be included in an optimal portfolio. In Figs. 5b and 6b we show
the values of two other performance measures, namely the Rachev and Sharpe ratios for
the same data sets. As for the standard deviation, each model generally tends to provide
the best values of the latter performance measures for small sizes. Furthermore, these
values almost always decay when the portfolio size approaches n. This behavior provides
a further support to the idea of improving the performances of a portfolio by limiting the
number of its stocks.

In addition to the graphical evidence, where only the most representative results are
shown, we also performed an extensive comparative analysis on all data sets considered.
Since describing the results for all data sets and for all portfolio sizes is impractical, we



K=5 FF25 | 48Ind | 100Ind | Ftsel00 | FtseMib | Stoxx50
FSMCVaR | 0.0448 | 0.0378 | 0.0556 | 0.0134 0.0185 0.0169
FSMVEW | 0.0431 | 0.0397 | 0.0424 | 0.0139 0.0181 0.0170

FSMV 0.0431 | 0.0377 | 0.0443 0.0141 0.0169 0.0166
FSMSMAD || 0.0430 | 0.0377 | 0.0446 0.0136 0.0177 0.0172

EW 0.0509 | 0.0488 | 0.0512 0.0210 0.0296 0.0288

K=10 FF25 | 48Ind | 100Ind | Ftsel00 | FtseMib | Stoxx50
FSMCVaR | 0.0447 | 0.0376 | 0.0556 0.0133 0.0189 0.0175
FSMVEW | 0.0441 | 0.0416 | 0.0428 | 0.0125 0.0203 0.0184

FSMV 0.0432 | 0.0372 | 0.0438 0.0126 0.0170 0.0168
FSMSMAD || 0.0432 | 0.0369 | 0.0440 0.0128 0.0167 0.0174

EW 0.0509 | 0.0488 | 0.0512 0.0210 0.0296 0.0288

K=15 FF25 | 48Ind | 100Ind | Ftsel00 | FtseMib | Stoxx50
FSMCVaR | 0.0448 | 0.0378 | 0.0537 0.0134 0.0188 0.0179
FSMVEW | 0.0458 | 0.0419 | 0.0435 | 0.0128 0.0218 0.0201

FSMV 0.0433 | 0.0371 | 0.0439 0.0127 0.0173 0.0170
FSMSMAD || 0.0434 | 0.0367 | 0.0436 | 0.0126 0.0171 0.0175

EW 0.0509 | 0.0488 | 0.0512 0.0210 0.0296 0.0288

Table 2: Standard Deviation of the out-of-sample returns.

report here the out-of-sample analysis for only three fixed sizes: K = 5,10, 15. This choice
is based on the observation that K = 5,10, 15 generally belong to the optimal ranges in
which the various models achieve the in-sample lowest risk for each data set. In Table
2 we provide the standard deviation of the out-of-sample returns for K = 5,10, 15 for
each model and data set analyzed. It is remarkable that the EW portfolio has almost
always the worst performance, with the single exception of the 100Ind market, where the
FSMCVaR portfolios generate the highest standard deviation. In Table 3 we report the
Sharpe ratio of the out-of-sample returns for the same portfolio sizes of the previous table
and for each model and data set analyzed. Note that when the portfolio excess return is
negative some gain-to-risk ratios have no meaning, thus we report “-”. Again we observe
that the EW portfolio yields the worst performances compared with those of the other
models, with the exception of the FSMCVaR portfolios for the 100Ind and FF25 markets.
Similar considerations can be made about the Rachev Ratio of the out-of-sample returns
shown in Table 4. Indeed, again the EW portfolio tends to be the worst choice, with the
only exception of the 100Ind data set. We also observe that for K = 10 the FSMV model
seems to be preferable since it provides the best results for 4 data sets out of 6, while for
K =15 it presents the best performances for 5 data sets out of 6.
The last performance measure considered in our analysis is the Max drawdown, which
is the worst out-of-sample loss achieved by a portfolio, as described in Section 3. Table 5
shows that, again, the EW portfolio always has the worst performance for the prescribed
sizes K = 5,10, 15, with the exception of the 100Ind market, where the FSMCVaR. port-
folios provide the worst loss. On the other hand, although there is not a clear superiority
of a single model, we observe that the FSMV portfolios present the best values for 3 data
sets out of 6 for K = 5, and for 4 data sets out of 6 for K = 10 and for K = 15.



K=5 FF25 | 48Ind | 100Ind | Ftsel00 | FtseMib | Stoxx50
FSMCVaR || 0.244 | 0.279 0.133 0.334 0.124 0.211
FSMVEW | 0.267 | 0.285 | 0.249 0.247 0.119 0.165

FSMV 0.268 | 0.293 | 0.249 0.257 0.126 0.207
FSMSMAD | 0.276 | 0.293 0.247 0.244 0.086 0.198

EW 0.264 | 0.242 0.215 0.178 - 0.026
K=10 FF25 | 48Ind | 100Ind | Ftsel00 | FtseMib | Stoxx50

FSMCVaR | 0.248 | 0.278 0.142 0.298 0.120 0.175

FSMVEW | 0.290 | 0.268 | 0.256 0.284 0.091 0.099

FSMV 0.27 | 0.289 0.242 0.276 0.112 0.178

FSMSMAD || 0.276 | 0.294 | 0.253 0.266 0.122 0.162
EW 0.264 | 0.242 0.215 0.178 - 0.026
K=15 FF25 | 48Ind | 100Ind | Ftsel00 | FtseMib | Stoxx50
FSMCVaR | 0.250 | 0.274 0.148 0.281 0.124 0.161
FSMVEW | 0.296 | 0.260 0.249 0.278 0.042 0.072

FSMV 0.272 | 0.289 0.242 0.269 0.098 0.179

FSMSMAD || 0.280 | 0.293 | 0.257 0.260 0.109 0.152
EW 0.264 | 0.242 0.215 0.178 - 0.026

Table 3: Sharpe Ratio of the out-of-sample returns.

K=5 FF25 | 48Ind | 100Ind | Ftsel00 | FtseMib | Stoxx50
FSMCVaR || 1.216 | 1.281 0.877 1.618 1.162 1.167
FSMVEW | 1.201 | 1.260 1.049 1.614 1.048 1.101

FSMV 1.245 | 1.403 1.043 1.514 1.164 1.205
FSMSMAD | 1.25 | 1.363 1.032 1.382 1.07 1.218

EW 1.150 | 1.200 0.992 1.007 0.861 0.910
K=10 FF25 | 48Ind | 100Ind | Ftsel00 | FtseMib | Stoxx50

FSMCVaR | 1.215 | 1.271 0.892 1.459 1.145 1.104

FSMVEW | 1.199 | 1.284 1.047 1.477 0.963 1.007

FSMV 1.244 | 1.360 1.027 1.514 1.147 1.150

FSMSMAD | 1.234 | 1.343 1.033 1.333 1.147 1.185
EW 1.150 | 1.200 0.992 1.007 0.861 0.910
K=15 FF25 | 48Ind | 100Ind | Ftsel00 | FtseMib | Stoxx50
FSMCVaR | 1.217 | 1.245 0.896 1.397 1.123 1.064
FSMVEW | 1.195 | 1.261 1.052 1.347 0.861 0.907

FSMV 1.244 | 1.343 1.024 1.426 1.135 1.135

FSMSMAD || 1.234 | 1.343 1.047 1.320 1.103 1.132
EW 1.150 | 1.200 0.992 1.007 0.861 0.910

Table 4: Rachev Ratio of the out-of-sample returns.




K=5 FF25 | 48Ind | 100Ind | Ftsel00 | FtseMib | Stoxx50

FSMCVaR | 0.209 | 0.150 0.578 0.027 0.042 0.031
FSMVEW | 0.214 | 0.175 | 0.201 0.029 0.045 0.036
FSMV 0.198 | 0.123 0.206 0.030 0.037 0.031
FSMSMAD | 0.201 | 0.121 | 0.206 0.039 0.041 0.032
EW 0.261 | 0.259 0.262 0.052 0.064 0.061
K=10 FF25 | 48Ind | 100Ind | Ftsel00 | FtseMib | Stoxx50
FSMCVaR | 0.210 | 0.145 0.501 0.033 0.042 0.034
FSMVEW | 0.219 | 0.201 | 0.201 0.029 0.041 0.041
FSMV 0.198 | 0.126 0.209 0.023 0.039 0.031
FSMSMAD || 0.203 | 0.125 | 0.212 0.031 0.039 0.034
EW 0.261 | 0.259 0.262 0.052 0.004 0.061

K=15 FF25 | 48Ind | 100Ind | Ftsel00 | FtseMib | Stoxx50
FSMCVaR | 0.212 | 0.141 0.493 0.029 0.040 0.036
FSMVEW | 0.235 | 0.206 0.213 0.027 0.050 0.045

FSMV 0.199 | 0.129 | 0.210 0.027 0.039 0.031
FSMSMAD || 0.203 | 0.127 | 0.210 0.027 0.040 0.035

EW 0.261 | 0.259 0.262 0.052 0.064 0.061

Table 5: Max drawdown of the out-of-sample returns.

4 Conclusions

The concept of diversification is not well-defined and the measures of diversification are
continuously evolving (see, e.g., Fragkiskos, 2013; Meucci, 2009, and references therein).
However, the qualitative idea of diversification is to not overly concentrate the investments
in very few stocks. Indeed, the role of diversification is to reduce risk by diversifying it as
much as possible.

In this work we investigated the possible benefits and disadvantages of enlarging the
portfolio size in several portfolio selection models with respect to various measures of
performance. Similar to various previous findings, but with a substantially different ap-
proach, our empirical results show that in most cases limiting the size of the selected
portfolio improves both the in-sample and the out-of-sample performance. We might call
this a “small portfolio effect”. These results are somewhat in line with the tendency de-
scribed by DeMiguel et al (2009a), where an improved out-of-sample performance is often
observed for the 1-norm-constrained minimum-variance portfolios. The analogy is based
on the observation that the 1-norm is often regarded as an approximation of the 0-norm,
i.e., the size of the portfolio.

Further studies are underway to investigate the validity of this small portfolio effect
with respect to other risk and performance measures and in larger markets.
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