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Abstract
The computational effort required to conduct a full model search to identify the most useful specification in problems

that feature a large set of potential explanatory variables is widely perceived to be large. To circumvent or mitigate this

challenge, the literature has proposed a host of techniques, many of which are not easy to implement. Using the

example of a standard cross-country growth regression data set, we demonstrate that the computational effort in

conducting a full model search will often be negligible. We provide an assessment of how this finding generalizes to

model spaces of different sizes.
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1. Introduction

Finding determinants of economic growth of a cross-section of countries is, for obvious reasons,
among the most relevant issues in economic research. Unsurprisingly, the topic has therefore
attracted substantial attention. However, economic theories explaining growth are typically
“open-ended” (Brock and Durlauf, 2001), implying that one set of determinants predicted by
some theory does not rule out others. Hence, given that the list of potential determinants
of growth is quite long, it may not come as a surprise that the literature does not naturally
converge to a consensus.

Ultimately, the question therefore needs to be answered empirically. Now, with K potential
determinants, there are 2K possible linear models of the type

y = c+Xℓβℓ + error, ℓ = 1, . . . , 2K

A natural and seemingly straightforward approach is to fit all possible 2K models and pick the
“best” one according to some suitable criterion. (Clearly, such a criterion needs to penalize
complexity to avoid picking the largest possible, and presumably overfitted, model. Examples
include the Bayesian Information Criterion or Mallows’ Cp.) For instance, Fernandez, Ley and
Steel (2001) construct, building on earlier work of Sala-i-Martin (1997), a famous dataset with
K = 41 that has been widely used in many subsequent empirical and methodological studies
(e.g., Hendry and Krolzig, 2004; Ley and Steel, 2009; Eicher, Papageorgiou and Raftery, 2011;
Schneider and Wagner, 2012; Deckers and Hanck, 2014). With K = 41, there are thus roughly
241 ≈ 2 · 1012, i.e., two trillion potential models. A full model search is then however widely
perceived to be “unwieldy” (Moral-Benito, 2015) or even “prohibitive,” see e.g. Hendry and
Krolzig (2004, p. 803).

Econometricians have devoted much effort to circumvent the challenge of a full model search.
Sala-i-Martin (1997) restricts himself to regressions including six predictors. An approach that
has recently received increasing attention relies on Bayesian Model Averaging (BMA), which
uses cleverly designed Markov Chain Monte Carlo Model Composition (MC3) algorithms to
at least explore the most compelling parts of the model space (e.g., Fernandez et al., 2001).
The “sheer number of models” (Schneider and Wagner, 2012) then however also implies that
computing exact BMA estimates is infeasible, see also Fernandez et al. (2001).1 Other examples
include the PcGets approach of Hoover and Perez (1999) and Hendry and Krolzig (2004), the
Lasso (Schneider and Wagner, 2012) or multiple testing techniques applied in Deckers and
Hanck (2014). The statistical literature has proposed devices such as forward or backwise
stepwise selection (e.g., Hastie, Tibshirani and Friedman, 2009).

All these approaches have in common that not visiting the entire model space implies the
risk of not considering a model with better performance than the ones that are considered.2

This note is to demonstrate that for the type of problems considered in Fernandez et al.

(2001), the arguably natural approach of a full model search—known as full subset selection
in the statistical literature (e.g., Hastie et al., 2009)—is a negligible task both computationally
and in terms of user input.

1Recent advances in the model averaging literature include Magnus, Powell and Prüfer (2010) or Magnus and
Wang (2014). See Moral-Benito (2015) for a survey.

2That said, there are fairly tight bounds on this risk in terms of, e.g., parsimony and prediction of for example
forward regression at least when predictors do not exhibit strong correlation (see, e.g., Das and Kempe, 2008).
A full discussion of this issue however is outside the scope of this note.
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The figure shows, for each model size k, the included variables of the best model of that size along with its Cp

criterion value. The models are sorted from best (above) to worst (below).

Figure 1: Best models for different model sizes k

2. Full subset regression

Full subset regression is conceptually straightforward. For a given model size k ∈ {1, . . . ,K},
fit all possible

(

K
k

)

models. Of these, choose the one with the lowest sum of squared residuals.
As all these models have k parameters, none has an unfair advantage over the others using
this criterion. Of the resulting set of optimal models of a given dimension, {M⋆

k, k = 1, . . . ,K},
choose the one with the smallest value of some information criterion such as Mallows’ Cp. Notice
that no hypothesis testing is involved, so that misspecification of smaller models is not an issue.

Using the R (R Core Team, 2014) package leaps (Lumley, 2009), we perform best sub-
set selection on the Fernandez et al. (2001) data (n = 72), provided in for instance the BMS
package (see Feldkircher and Zeugner, 2009).3 More specifically, we invoke {regsubsets(y~.,

data=datafls,nvmax=41). This task took a little more than three minutes on a standard
desktop PC (Intel i7-3770 3.40GHz CPU) without any attempts to speed up computation
by, say, parallelization. Calling the resulting object regfit.full yields Figure 1 on calling

3While leaps is guaranteed to find the best model, it does not literally run 2K OLS regressions. The under-
lying Fortran code (by Allan Miller) employs a branch-and-bound algorithm (Furnival and Wilson, 1974). The
algorithm avoids visiting parts of the model space which cannot contain the optimum given the results of models
fitted earlier in the search, effectively exploiting that dropping variables from a specification will never increase
the R2. To give an indication of the efficiency of the branch and bound method, fitting the full model with
K = 41 using lm requires 0.02 seconds. Hence, fewer than 10.000 = 104 (≈ 187/0.02) such regressions could be
fit until the algorithm has optimized over the entire model space of approximate dimension 2 · 1012. For details,
see e.g. Hand (1981).
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Figure 2: Information criteria as a function of model size k

plot(regfit.full).

The best-performing model then is the one given in the first row, i.e., the one with the lowest
information criterion Cp. It includes 23 predictors, with fitted model

ŷ = 0.0733 + 0.0134Spanish+ 0.0104French+ 0.0074Brit− 0.0116LatAmerica

− 0.02SubSahara− 0.0039OutwarOr + 0.0242PrScEnroll + 0.0009LifeExp

− 0.0178GDP60 + 0.0344Mining + 0.0064Buddha+ 0.0767Confucian

+0.0160EthnoL− 0.1065Hindu+ 0.0089Muslim+ 0.0123RuleofLaw

+3.68e-7LabForce− 0.1177HighEnroll − 0.0028CivlLib

− 0.0072English+ 0.1475EquipInv + 0.0294NequipInv − 0.0057BlMktPm

We do however notice that there are several models whose Cp only differs slightly from that
of the best one and hence perform fairly similarly, see also Figure 2. Figure 2 also highlights
the familiar bias-variance tradeoff, in that highly parameterized models fit better, but are more
variable. Reassuringly, these top models also only differ moderately in terms of the variables
selected, indicating a certain robustness.

Figure 2 shows that the BIC favors a model of very similar but, as expected, slightly smaller
size with 22 explanatory variables.

These results are broadly in line with those of other model selection approaches on the
Fernandez et al. (2001) data. In particular, variables with high posterior inclusion probability
in Fernandez et al. (2001) or small adjusted p-values in Deckers and Hanck (2014), such as initial
GDP, life expectancy or the fraction of Confucians, are also included by best subset selection.
See Deckers and Hanck (2014, Table 6) for a more complete comparison. With 23 or 22 included
variables, best subset selection is within the range of the number of selected variables by other
model selection procedures, but at the higher end (cf. e.g. Eicher et al., 2011, Table II).
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Magenta: linear fit (with prediction interval). Green: Cubic fit.

Figure 3: Log-runtimes as a function of kj

3. Some simulations

Of course, the conclusions that may be drawn from the above example are specific to data sets
with comparable k. As the size of the model space doubles with each additional regressor, one
needs to expect computation time to grow exponentially in k.4 To shed some light on how
the above findings generalize to models with other k, we record computation times for samples
drawn from a linear model y = Xkjβkj +u with a kj-dimensional zero-mean multivariate normal
regressor matrix Xkj with covariance matrix Σ′Σ where the entries of Σ are N(0, 1), just as
those of u. The first kj/2 elements of βkj are zero, representing irrelevant regressors, and the
remaining entries are drawn from a uniform distribution on [5, 10]. We use a sample size of
n = 100, take kj ∈ {14, 16, . . . , 52, 54} and draw M = 12 samples for each kj .

5

Figure 3 summarizes the results, plotting log-runtimes against kj . The excellent linear fit of
the regression (R2 = 0.993) confirms that computation time generally grows exponentially in kj .
The slope of the regression line (0.46) however reveals that the branch-and-bound algorithm
is capable of chopping off increasingly large parts of the model space with growing kj , as
computation time does not double when kj increases by one, but only by 100 · [exp(0.46)− 1] ≈
58%. The cubic fit provides tentative evidence that the increase in computation time might
even flatten out for very large kj , but the necessary computation time for such kj makes this
assessment speculative at today’s computational speeds.

4. Concluding remarks

This note shows that conducting a full model search is computationally feasible for a much
larger class of models than what appears to be commonly thought. Of course, we do not wish
to argue that clever approaches to model selection are not worth considering. For instance,

4For example, had we felt the necessity to include a full set of interaction terms of the k = 41 regressors in
Section 2, we would have been left with 41 · 40/2 additional variables, prohibitively increasing the computational
burden. There is hence a tradeoff between the desired flexibility of the model and the possibility to perform a
full model search.

5Experimenting with other conventional choices of n and βj had a minor impact on runtime. Moderately
larger sample sizes do not substantially increase computation time because the computationally costly operation
is to compute (X ′X)−1, which becomes more burdensome as k increases.



full subset regression increases the likelihood of selecting a spurious model with poor out-of-
sample explanatory performance, while forward selection (Hastie et al., 2009) only requires
comparing models along the selection path.6 Similarly, genome-association studies routinely
(and occasionally also some variable selection problems in economics) face situations in which
K ≫ n, the number of observations, calling for, e.g., sparse approaches such as the Lasso
(Tibshirani, 1996). Also, in many cases, the analyst may not only be interested in a single
specification best describing the data (i.e., “model search”), but rather in, say, prediction.
(Indeed, many popular “ensemble” machine learning algorithms like random forests, boosting
or bagging (e.g., Hastie et al., 2009) trade the neat, possibly structural, interpretability of a
single final specification with instead a predictive performance that is often superior.) In such
a situation, the averaged predictions of (frequentist or Bayesian) model averaging may offer
distinct advantages, as it is widely documented that the average forecast of different models
often outperforms that of a single model.7
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