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Abstract
The literature on health inequality with ordinal attributes is benefiting from the development of inequality measures,

which are useful in any wellbeing assessment involving ordinal variables (e.g. subjective wellbeing). Lv, Wang, and Xu

("On a new class of measures for health inequality based on ordinal data", Journal of Economic Inequality, 2015)

recently characterized a new class of this type of inequality measures axiomatically. In addition to their appealing

functional forms, these measures are the only ones in the literature satisfying a property of independence, inspired by

Kolm ("Unequal inequalities I", Journal of Economic Theory, 1976). As acknowledged by the authors, it is reasonable

to be concerned about the robustness of inequality comparisons with ordinal attributes to the several alternative

suitable measures within the class. This note derives the stochastic dominance condition whose fulfilment guarantees

that all inequality measures within the class rank a pair of distributions consistently; thereby providing an empirically

implementable robustness test for this class of measures.
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1 Introduction

The long-lasting, and ongoing, concern for health inequality has stimulated a burgeon-

ing literature on ordinal inequality measurement, which has provided several classes of

measures in the last few years. Prominent examples include Allison and Foster (2004),

Apouey (2007), Abul Naga and Yalcin (2008), Erreygers (2009), Reardon (2009), Lazar and

Silber (2013), and more recently Lv, Wang, and Xu (2015). The contribution of Lv et al.

(2015) is particularly interesting because their proposed class of measures cardinalises

the distances between ordinal categories, and yet the indices behave well, fulfilling key

properties like aversion to median-preserving spreads. Moreover, the functional forms of

the measures by Lv et al. (2015) also bear other appealing traits, including ease of compu-

tation (e.g. not requiring the use of the median). Last but not least, this class of indices

is the only one fulfilling an independence property inspired by Kolm (1976, property 7, p.

426). To be succinct, we call it Kolm-independence. Basically, in the measurement frame-

work of Lv et al. (2015) the inequality indices are weighted sums of functions mapping

from the modulus of the absolute distance between pairs of ordinal categories. The sum is

conducted over every possible pair of categories; and the weights, in turn, are the products

of the relative frequencies of each pair of categories. In this context, the independence

property introduced by Lv et al. (2015) requires that the change in total inequality due to

the change in the relative frequency of an ordinal category be independent of the initial

level of that frequency. Essentially, if we wanted to impose this property when measuring

inequality with ordinal attributes, then the axiomatic characterization provided by Lv et al.

(2015) implies that we should only use measures from their class.

However, even if we restricted ourselves to this class of Kolm-independent measures,

we could still choose among several equally suitable measures. Lv et al. (2015) provide ex-

amples of such measures, including one which is basically a Gini index based on the mod-

ulus of the differences between the ordinal categories of the variable, cardinalised with

natural numbers. Hence we could be naturally concerned by the robustness of pairwise

inequality comparisons with ordinal attributes to alternative choices of equally appropri-

ate inequality measures. Referring (perhaps confusingly) to the different functional forms

available to cardinalise the differences between pairs of ordinal categories as "weights",

Lv et al. (2015, p. 467) echo this concern succinctly: "It may be noted that the choice

of weights, wijs, in the construction of a health inequality index f in our context is not

unique. From the above discussion, those weights reflect our value judgments about how

to deal with health "inequalities" from any two further apart health statuses in the con-

struction of an overall health inequality index f . The choice of a particular set of weights

may cause some concerns for researchers and for policy makers when our intuition about

such weights is blurry or when we have some conflicting intuitions about exactly what set

of weights should be chosen and used."

Addressing this issue, this paper derives the first-order stochastic dominance condition

whose fulfilment guarantees that all inequality measures within the Kolm-independent

class rank a pair of distributions consistently. Hence the paper provides an empirically im-

plementable robustness test for this class of measures. The condition requires comparing



across populations, or samples, their cumulative distributions of products of probabilities,

which measure the likelihoods of finding pairs of individuals featuring specific differences

between their reported categories (e.g. of self-reported health, life-satisfaction responses,

educational levels, etc.). Intuitively, societies with higher probabilities of finding pairs of

people with narrower differences (between their category-values) and lower probabilities

of finding pairs with wider differences, will tend to be robustly less unequal than others,

according to the measures of the class axiomatically characterized by Lv et al. (2015).

The rest of the note proceeds as follows. Section 2 provides the notation and a descrip-

tion of the class of ordinal inequality measures proposed by Lv et al. (2015). Section 3

provides the dominance proposition, together with its respective proof. Then the paper

ends with some concluding remarks.

2 Preliminaries

2.1 Notation

Let x be an ordinal variable with c increasingly ordered categories. For example, a question

on self-reported health of the form "In general, how would you rate your health today" with

answer options: "very bad", "bad", "moderate", "good", and "very good" (Subramanian,

Huijts, and Avendano, 2010). Each category is assigned a natural number from 1 to c. The

respective discrete probability distribution is given by the vector: P ∶= [p(1), p(2), ..., p(c)],

where p(i) ≡ Pr[x = i]. With subscripts we refer to the probabilities, and other statistics,

of a specific population or sample. Hence, for example, pA(1) is the relative frequency of

people reporting the lowest category in society A.

Later, in the next section, we will also need statistics which are specific sums of proba-

bility products (e.g. p(1)p(2) ). In particular we define the following functions:

π(δ) ≡
c−δ

∑
i=1

p(i)p(i + δ), ∀ δ = 0,1, ..., c − 1 (1)

As it will become apparent below, δ measures the modulus of the difference between

two values of the variable, e.g. i and j, where each category has been cardinalised using

natural numbers in the range [1, c]. Henceforth we refer to these absolute values as "gaps".

Examples of 1 include: π(0) = ∑c
i=1[p(i)]

2, π(1) = p(1)p(2)+p(2)p(3)+...+p(c−1)p(c), and

π(c − 1) = p(1)p(c). Note, importantly, that: π(0) + 2∑c−1
δ=1 π(δ) = 1. These probabilities give

us the likelihood of finding two people in the population whose gaps between their reported

ordinal categories is equal to δ, assuming that the likelihood of appearance of a person with

a value of i is independent from the likelihood of appearance of a person with a value of j.

For instance, consider c = 3 and p(1) = 0.2, p(2) = 0.3, p(3) = 0.5. Then we could ask: what is

the probability of randomly sampling two people from this population whose gap between

their reported ordinal categories is equal to 0 (essentially, the probability of drawing two

people who gave the same answer). The probability is: π(0) = p(1)p(1)+p(2)p(2)+p(3)p(3) =

0.38. We can also define a cumulative version of definition (1), which will be very useful for



the derivation of the dominance condition in the next section:

Π(δ) ≡ π(0) + 2
δ

∑
i=1

π(i), ∀ δ = 0,1, ..., c − 1 (2)

Clearly, the vector Π ∶= [Π(0),Π(1), ...,Π(c − 1)] is a discrete cumulative probability

distribution, with Π(c − 1) = 1. Each element gives us the probability of finding pairs of

people with gaps of δ or lower.

Finally we define, for instance, ∆Π(δ) ≡ ΠA(δ) − ΠB(δ) in order to denote differences

between two populations or samples. Thus, likewise, we apply ∆ to other statistics.

2.2 The class of Kolm-independent ordinal inequality measures

Lv et al. (2015) axiomatically characterize the following class of ordinal inequality mea-

sures:

M ∶= {O(P )∣O(P ) =
c

∑
i=1

c

∑
j≠i

g(∣i − j∣)p(i)p(j)}, (3)

where g is a function mapping from the gaps of cardinalised categories to the non-

negative segment of the real line, and g(1) < g(2) < ... < g(c − 1).1 As shown by Lv et al.

(2015, proposition 1), the class (3) is the only one satisfying properties of normalization,

aversion to median-preserving spreads, invariance to parallel shifts, additivity and inde-

pendence. Yet different choices of g(∣i − j∣) are possible, including g(∣i − j∣) = ∣i − j∣ and

g(∣i − j∣) = 2αc−1−∣i−j∣ with 0 < α < 1 (Lv et al., 2015, p. 469). Hence it is worth inquiring

under which situations the choice of g (among all admissible functional forms satisfying

g(1) < g(2) < ... < g(c − 1)) will not affect the inequality ranking of A versus B.

3 The stochastic dominance condition for the class of

Kolm-independent ordinal inequality measures

The dominance condition is the following:

Proposition 1. O(PA) < O(PB) ∀O(P ) ∈ M if and only if ∆Π(δ) ⩾ 0 ∀δ = 0,1,2, ..., c−1 ∧ ∃δ ∈

[0,1,2, ..., c − 1]∣∆Π(δ) > 0.

Proof. First, note what ∆O looks like in terms of the relative frequencies:

∆O = g(1)2[pA(1)pA(2) + pA(2)pA(3) + ... + pA(c − 1)pA(c) − pB(1)pB(2) − ... − pB(c − 1)pB(c)] (4)

+... + g(c − 1)2[pA(1)pA(c − 1) − pB(1)pB(c − 1)]

Combining the definitions of π in expression (1) with expression (4), we can define ∆O

as:

1These functions g are a subclass of the "weights", wij, described by Lv et al. (2015, p. 467).



∆O ≡
c−1

∑
δ=1

g(δ)∆2π(δ) (5)

Applying summation by parts to 5 using Abel’s lemma (Guenther and Lee, 1988),2 we

get the following expression:

∆O = −
c−2

∑
δ=1

[g(δ + 1) − g(δ)]∆Π(δ) + g(c − 1)∆Π(c − 1) − g(1)∆Π(0) (6)

= −
c−2

∑
δ=1

[g(δ + 1) − g(δ)]∆Π(δ) − g(1)∆Π(0) (7)

Note that we moved from line (6) to line (7) because ∆Π(c − 1) = 0. Now, we know that

g(i) > 0 ∀i ⩾ 1 and that g(δ + 1) − g(δ) > 0 ∀δ ⩾ 1 (since we previously stated that g is a

monotonically increasing function). Therefore, from immediate inspection of line (7) we

can conclude that ∆O < 0 for all possible choices of g (given the specified constraints on its

properties, i.e. 0 < g(1) < g(2) < ... < g(c− 1)) if and only if ∆Π(δ) ⩾ 0 for all δ = 0,1,2, ..., c− 1

and there is at least one value δ ∈ [0,1,2, ..., c − 1] such that ∆Π(δ) > 0.

∎

Basically, proposition (1) states that A is robustly less unequal than B, i.e. according

to all members of the class (3), if and only if the cumulative distribution of probability

products, i.e. the cumulative distributions of category gaps, is never lower in A than in

B, and at least once strictly higher. Roughly, A has higher cumulative proportions of low

gaps and lower cumulative proportions of high gaps, vis-a-vis B. In order to implement the

condition we first need to compute the cumulative distributions following the instructions

of the preliminaries’ section.

By way of further illustration of the condition, we discuss the shapes of the cumula-

tive probability vectors, Π, corresponding to the benchmark situations of minimum and

maximum inequality with ordinal attributes. In the case of minimum inequality the re-

quirement is that there is one category i such that p(i) = 1, i.e. the whole population is in

the same category. In that case, we will have π(0) = 1 and π(δ) = 0 ∀δ = 1,2, .., c − 1. Hence

Π(0) = Π(1) = ... = Π(c − 1) = 1. Clearly, with such cumulative distribution, no other dis-

tribution (unless there is a category i such that p(i) = 1) can exhibit less inequality, since

their cumulative distributions of gaps must lie somewhere below. Likewise, all different

distributions characterized by having one category i with p(i) = 1 are bound to be ranked

as having the same level of inequality by all members of the class (3).

Meanwhile, in the case of maximum inequality it turns out that the benchmark com-

monly used in the literature (e.g. Apouey, 2007, Abul Naga and Yalcin, 2008) and char-

acterized by p(1) = p(c) = 0.5, i.e. half of the population in the bottom category and half

in the top, does not hold in the case of the inequality measures belonging to class (3).

For instance, consider the case c = 3 and the following two discrete probability distribu-

tions: A = (0.2,0.5,0.3) (where pA(1) = 0.2, and so on); and B = (0.5,0,0.5). Is it the

2This lemma establishes the discrete-setting version of integration by parts.



case that the benchmark distribution B is robustly more unequal than A? If we choose

g = (∣i − j∣)0.1, we get O(A) = 0.628613 > 0.535887 = O(B). By contrast, with g = (∣i − j∣)2

we get O(A) = 0.98 < 2 = O(B). That is, not only does the ranking depend on the choice

of admissible inequality index (note that both choices of g are admissible according to Lv

et al. (2015, proposition 1, p. 471)), but certainly B cannot represent the situation of max-

imum inequality when we rely on class (3). However, this should not be surprising once

we implement the robustness test based on proposition (1) above, and find that ΠA and ΠB

actually cross.3

4 Conclusion

Proposition (1) provides a partial answer to the concern put forward by Lv et al. (2015)

regarding the robustness of inequality comparisons to alternative choices of inequality

members from the same Kolm-independent class. When the condition based on the cumu-

lative distributions of gaps holds, the comparison is robust to any choice of index within

that class. Otherwise, the ranking between A and B will crucially depend on the particular

choice of ordinal inequality index.

Future research in this particular area could look into statistical inference techniques

for this robustness condition, which could be useful especially when comparing samples.

Secondly, given that there are bound to be empirical situations in which the condition of

proposition (1) will not be fulfilled, it is worth deriving higher-order dominance conditions

for narrower subclasses of inequality indices within class (3).4 Finally, it might be worth

inquiring into the existence of simpler dominance conditions relying more directly on the

cumulative discrete probability distribution, as opposed to the cumulative discrete distri-

bution of probability products.
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