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Abstract
This paper proposes a simple approach to comparing marginal effects between different models and/or samples. A

Generalized Method of Moments estimation framework is set up in which the equality of marginal effects between

models/samples can be tested quite easily. Three relevant examples of potential application are provided. Stata code in

the appendix shows that an implementation of the proposed approach in practice is quite simple.
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1. Introduction

In this paper, I propose a simple approach to comparing marginal effects between different
models and/or samples. The suggested method is useful when one wants to statistically
compare marginal effects between

1. (non-)nested models, e.g., does the marginal effect change when another set of
explanatory variables is added?

2. different classes of models, e.g., are the marginal effects generated from a probit
model equal to those generated from a linear probability model?

3. different samples, e.g., are the marginal effects for women equal to those for men?

While a statistical comparison of regression coefficients has already been addressed in
the literature (e.g., Clogg et al. 1995) and been implemented in statistical software such
as Stata (StataCorp 2015, “suest” command), there has not been presented a unified
approach for a statistical comparison of marginal effects. However, such a method is
practically relevant, since empirical researchers using nonlinear models typically calculate
and wish to compare marginal effects rather than coefficients; see, e.g., Greene (2012, p.
729) or Wooldridge (2010, p. 575, in the context of binary response models). In previous
empirical practice, researchers usually report differences between the point estimates
of the marginal effects, without taking into account the statistical significance of these
differences. The following examples from the literature illustrate this issue:

• Altonji et al. (2005) analyze different methods to identify and estimate the effect
of Catholic schooling on high school graduation (among other academic outcome
variables) and compare the estimated marginal effects obtained from a univariate
probit model, a bivariate probit model, an ordinary least squares (OLS) model and
a two stage least squares (2SLS) model. However, only differences in point estimates
are acknowledged without stating whether these differences are significant from a
statistical point of view. For example, Altonji et al. (2005) state “the bivariate
probit estimate of 0.170 (0.055) is also well above the univariate probit estimate
of 0.094 (0.022)” (p. 796) or “[...], the probit estimate of the effect of CHi on
college attendance is 0.068 (0.016), which [is] reasonably close to the corresponding
NELS:88 coefficient of 0.094” (p. 797).

• Chiswick et al. (2004) investigate the determinants of English language proficiency
among immigrants and compare probit marginal effects between models based on
different outcome variables. They also only compare the point estimates without
making statements about the statistical significance of the differences. For example,
they conclude that “[...], the impact of the birthplace concentration variable is
much weaker in the study of English reading and writing skills than it is in the
study of English-speaking skills” (pp. 121/124), without stating whether this is a
statistically significant difference.

• Goerke and Pannenberg (2012) study the relationship between risk aversion and
trade-union membership and compare probit marginal effects between subsamples
of males and females and the pooled sample of males and females. They state that
“relative to the pooled sample [...], the [average marginal effects] are slightly larger
[in the subsample of males]” (p. 287), without stating whether this slight difference
is significant from a statistical point of view.



• Using probit models, Fougere and Safi (2008) analyze the impact of naturaliza-
tion on the probability of being employed and report that “on average, gaining
French nationality increases the probability of being employed [...] by 2.7 points for
men and 8.2 points for women” (p. 17). They conclude that “the ‘naturalization
premium’ is much higher for women than for men” (p. 17), also without stating
whether this difference is statistically significant.

This literature review is of course not exhaustive, but it clearly demonstrates that previous
empirical practice merely relies on reporting and comparing differences in point estimates
of marginal effects without making statements on the statistical significance of these
differences. Therefore, there seems to be a need for a method to compare marginal
effects between models and/or samples on a statistical basis. This paper provides a
simple approach to statistically comparing marginal effects that might prove useful in
empirical practice.

2. Econometric Framework

Suppose there are two different models or samples characterized by parameter vectors
θ1 and θ2, respectively. Assume that these parameter vectors are the solution to the
following moment conditions:

E[g1(Y1, X1; θ1)] = 0 (1)

E[g2(Y2, X2; θ2)] = 0, (2)

where Yj is the dependent variable of model/sample j, Xj the associated vector of ex-
planatory variables, and gj a known function. The variables Yj, Xj, and the functions
gj, j = 1, 2, are allowed to be identical across models/samples. Most linear and nonlinear
regression models imply moment conditions as given by (1) and (2), hence assuming that
these conditions are satisfied is not restrictive.

The marginal effects considered in this paper will be average marginal effects, as
opposed to marginal effects at the average. In general, marginal effects are defined as
the change in the conditional expected value of the dependent variable given a one-unit
change in explanatory variables. Formally, they are defined as

mj(Xj ; θj) ≡
∂E[Yj |Xj ; θj]

∂Xj

, j = 1, 2. (3)

Note that mj , j = 1, 2, is a vector, where each element contains the marginal effect of a
specific explanatory variable included in Xj . Also note that the marginal effects depend
on the explanatory variables Xj. The average marginal effects for model/sample j are
defined as

µj ≡ E[mj(Xj; θj)] = E

[

∂E[Yj |Xj; θj ]

∂Xj

]

, j = 1, 2, (4)

where the outer expectation averages over the distribution of Xj. Note that µj , j = 1, 2, is
also a vector, containing the average marginal effect of each explanatory variable included
in Xj.

The average marginal effects are the marginal effects averaged over the distribution
of explanatory variables. Hence, they represent the average response of an individual



to a one-unit change in explanatory variables. By contrast, the marginal effects at the
average are defined as µ̃j ≡ mj(E[Xj]; θj), hence they are marginal effects evaluated at
the mean of explanatory variables. A conceptual drawback of the marginal effects at the
average is that it is unclear whether the mean of explanatory variables actually represents
the “average individual” in the population. In other words, the marginal effects at the
average might not have a sound interpretation; see Wooldridge (2010, p. 575). For this
reason, this paper focuses on average marginal effects and not on the marginal effects at
the average.

For simplicity, it is assumed here that the explanatory variables are continuous. How-
ever, the framework can be easily extended to discrete explanatory variables. In that
case, the derivative in Eq. (4) has to be replaced by the discrete change:

µj ≡ E[mj(Xj; θj)] ≡ E [E[Yj|Xj ⊕ 1; θj]− E[Yj|Xj ; θj]] , j = 1, 2, (5)

where Xj ⊕ 1 means that each element of the vector Xj is increased by one. A mixture
of continuous and discrete explanatory variables is also possible. This might be the most
relevant case in practice, since most empirical applications include both continuous and
discrete explanatory variables.

The functions m1 and m2 are typically known to the researcher. Given that θ1 and
θ2 were also known, the average marginal effects could be derived from the following
moment conditions:

E[m1(X1; θ1)− µ1] = 0 (6)

E[m2(X2; θ2)− µ2] = 0. (7)

These conditions follow directly from the definition of average marginal effects in Eq. (4).
However, as θ1 and θ2 are not known in practice, a natural suggestion would be to

replace them by their estimates θ̂1 and θ̂2 obtained from the empirical counterparts to Eqs.
(1) and (2) and then to estimate Eqs. (6) and (7) conditional on θ̂1 and θ̂2. A disadvantage
of this procedure is that the standard errors of estimated marginal effects would have to
be corrected for the fact that θ1 and θ2 have been estimated. In principle, such a standard
error correction is possible within a two-step estimation approach. However, a simpler
way to proceed in practice is to perform a one-step approach by estimating Eqs. (1), (2),
(6) and (7) jointly. This gives the following set of moment conditions:

E









g1(Y1, X1; θ1)
g2(Y2, X2; θ2)

m1(X1; θ1)− µ1

m2(X2; θ2)− µ2









= 0 (8)

This system of moment conditions can be estimated conveniently by applying the Gener-
alized Method of Moments (GMM) estimation approach; see, e.g., Wooldridge (2010, ch.
14) for a description of this estimation approach. Since θ1, θ2, µ1 and µ2 are estimated
jointly, the standard errors of the estimated marginal effects µ̂1 and µ̂2 will be correct
immediately.

In order to statistically compare the marginal effects from models/samples 1 and 2,
a simple Wald test can be carried out. The null hypothesis is H0 : µ1k = µ2k, where the
k indicates the marginal effect of a specific explanatory variable Xjk. It is also possible
to test joint hypotheses, for instance H0 : µ1k = µ2k ∀k. For the validity of the Wald



test it is important that the researcher specifies the correct standard error computation
procedure. For example, heteroskedasticity is often an issue in cross-sectional data sets,
hence heteroskedasticity-robust standard errors should be computed.

Statistical software like Stata allows the user to perform GMM estimation with user-
specified moment conditions, and also to test hypotheses within this estimation frame-
work. Appendix 1 of this paper contains Stata code for the examples discussed in the
next section. The code shows that implementing the proposed approach in empirical
practice is quite simple.

3. Examples of Application

3.1 (Non-)Nested Models

Suppose that a probit model shall be estimated and that the marginal effect of a specific
variable is the object of interest. The researcher wants to compare the marginal effect from
a base model with the marginal effect from the same model augmented with additional
explanatory variables. Put differently, the researcher wants to test whether the marginal
effect remains unaffected when additional (control) variables are added.

The moment conditions (1) and (2) can be written as

E[(Y − Φ(X ′

1
θ1))X1] = 0 (9)

E[(Y − Φ(X ′

2
θ2))X2] = 0, (10)

where Φ(·) denotes the standard normal cumulative distribution function. Here, X1 is a
subset of X2, X2 includes the additional control variables.

The moment conditions say that the prediction error of the probit model, Y −Φ(X ′

jθj),
j = 1, 2, should be orthogonal to the explanatory variables (instruments). Alternative
moment conditions could also be exploited; for example, one could use the first order
conditions from maximum likelihood estimation as moment conditions, which might result
in efficiency gains.

The moment conditions for the marginal effects are given by

E[φ(X ′

1
θ1)θ1 − µ1] = 0 (11)

E[φ(X ′

2
θ2)θ2 − µ2] = 0, (12)

where φ(·) denotes the standard normal probability density function. To test whether the
marginal effect of a specific variable remains constant when additional control variables
are added, a Wald test can be carried out, as described in the last section. The procedure
can also be used for non-nested models, i.e., when X1 is not a subset of X2.

3.2 Different Classes of Models

Suppose that the marginal effects from a probit model shall be compared to the marginal
effects from an analogous linear probability model. As Wooldridge (2010, p. 579) points
out, the linear probability model will consistently estimate the average marginal effects
when the explanatory variables are jointly normally distributed. Under joint normality,
one would thus not expect the marginal effects generated from the linear probability
model to be different from the marginal effects of a correctly specified probit model.
However, when the explanatory variables are not jointly normally distributed and/or the



probit specification is incorrect, average marginal effects from both models might not be
equal. To test statistically whether the marginal effects generated from the two different
models are equal, the researcher can use the approach presented in this paper.

The moment conditions (1) and (2) can be written as

E[(Y − Φ(X ′θ1))X ] = 0 (13)

E[(Y −X ′θ2)X ] = 0, (14)

assuming that the first model is the probit model and the second model is the linear
probability model. It is also assumed that each model includes the same dependent
variable and the same set of explanatory variables, hence the index on Y and X has been
omitted. The only difference between the models is thus that the first model is a probit
model and the second a linear probability model.

The moment conditions for the marginal effects are given by

E[φ(X ′θ1)θ1 − µ1] = 0 (15)

E[θ2 − µ2] = 0, (16)

where the second condition trivially follows from the fact that the marginal effects in the
linear probability model are identical to the coefficients. To test whether the marginal
effects from the probit model are equal to the marginal effect from the linear probability
model, a Wald test can be carried out, as described above.

If the null hypothesis of equality of marginal effects cannot be rejected, this might
indicate that the marginal effects are robust against the specification of the underlying
binary response model, at least among the models under consideration.1 However, the
question might arise which model we should trust when the null hypothesis is rejected,
i.e., when the marginal effects are statistically different. A way to proceed in practice
is to find the “best” model among the models under consideration, for example by ap-
plying the Vuong (1989) test for non-nested models. Given such a “best” model, one
may then perform model specification tests to test the validity of the current model
specification. Such specification tests may address issues like heteroskedasticity, omitted
variables (including nonlinear terms) and functional form (see, e.g., Wooldridge 2010 or
Greene 2012). If these tests indicate that the current model specification is valid, then
the marginal effects based on this model should be reported in empirical work.

3.3 Different Samples

Suppose that two probit models with the same dependent and explanatory variables are
estimated, but one for a sample of males and the other for a sample of females. The
researcher wants to test whether the marginal effects for females are identical to the
marginal effects for males. Let D denote a dummy variable equal to one if an individual
is male. Then, the parameters characterizing the male and female sample can be derived
from the following moment conditions, which are analogous to Eqs. (1) and (2):

E[D(Y − Φ(X ′θ1))X ] = 0 (17)

E[(1−D)(Y − Φ(X ′θ2))X ] = 0. (18)

1Formally, failing to reject the null hypothesis does not imply that one can accept the null hypothesis.



The moment conditions for the marginal effects are given by

E[D(φ(X ′θ1)θ1 − µ1)] = 0 (19)

E[(1−D)(φ(X ′θ2)θ2 − µ2)] = 0. (20)

Again, a Wald test can be carried out to compare the marginal effects between males
and females.

4. Empirical Example

In this section, an illustrative example is provided to show the usefulness of the pro-
posed approach in empirical practice. This example uses data from Mroz (1987) on the
labor force participation of married women. The data set encompasses a sample of 753
married women and can be obtained from the data archive associated with Wooldridge’s
(2010) textbook “Econometric Analysis of Cross Section and Panel Data”. The depen-
dent variable of interest (inlf ) is a binary variable equal to one if a woman belongs to the
labor force and zero otherwise. Concerning the choice of explanatory variables I follow
Wooldridge (2010, p. 580) and select the following set of explanatory variables: years
of education (educ), age (age), the number of children aged 0-5 (kidslt6 ), the number of
children aged 6-18 (kidsge6 ), labor market experience (exper), labor market experience
squared (expersq) and non-wife income (nwifeinc).

Suppose we are interested in the impact of education on the probability of labor force
participation of married women. Our goal is therefore to estimate the marginal effect of
education on the probability of labor force participation. Given the explanatory variables
listed above, we estimate three different binary response models: the probit model, the
linear probability model (LPM) and the logit model. Estimating each model separately
and using Stata’s margins command to calculate marginal effects, we obtain the following
estimates of the quantity of interest:2

Probit LPM Logit

Estimated marginal effect of education 0.0394 0.0380 0.0395

Standard error 0.0074 0.0073 0.0075

By visual inspection, the estimates are very similar. The estimates from the probit and
logit models are almost identical, while the estimate from the linear probability model is
a bit smaller. Given these small discrepancies, we might wonder if the marginal effects
generated from the three models are different from a statistical point of view.

In this situation, the approach proposed in this paper proves useful. In Sec. 3.2 it was
shown how to compare marginal effects between a probit model and a linear probability
model. It is straightforward to extend this approach to include a third model, which is

2The parameter estimates generated from the three models are reported in Wooldridge (2010), p.
580. In contrast to Wooldridge (2010), I computed robust (sandwich-type) standard errors to account
for possible misspecification of the underlying binary response models. The standard errors of the
marginal effects are based on these robust standard errors.



the logit model in this example. The moment conditions are:

E

















(Y − Φ(X ′θ1))X
(Y −X ′θ2)X

(Y − Λ(X ′θ3))X
φ(X ′θ1)θ1 − µ1

θ2 − µ2

λ(X ′θ3)θ3 − µ3

















= 0, (21)

where Λ(·) and λ(·) denote the standard logistic cumulative distribution and probability
density functions, respectively. I applied the GMM command available in Stata 14 to
obtain estimates of the parameters (θ′

1
, θ′

2
, θ′

3
)′ and marginal effects (µ′

1
, µ′

2
, µ′

3
)′. I used a

two-step GMM approach with an initial weighting matrix given by the identity matrix
in the first step and a “robust” weighting matrix in the second step. The second-step
weighting matrix accounts for the potential correlation of the moment conditions as well
as for potential heteroskedasticity. The exact specification of the second-step weighting
matrix is given in Appendix 2 of this paper.

After estimation, I tested the null hypothesis that the marginal effects of education
are identical across the models under consideration. The corresponding Wald test yields
a p-value of 0.2358, which clearly exceeds the conventionally used significance levels.
Hence, from a statistical point of view the marginal effects of education are not different
across the models under consideration.
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Appendix 1: Stata Code for Examples of Application

(Non-)Nested Models

Let y denote the dependent variable and x1 and x2 the explanatory variables. To test
if the marginal effect of x1 in a probit model using x1 as the only explanatory variable
is equal to the marginal effect of x1 in a probit model using x1 and x2 as explanatory
variables, the following Stata code must be executed:

gmm (y−normal ({ theta10}+{theta11 }∗x1 ) ) (y−normal ({ theta20}+{
theta21 }∗x1+{theta22 }∗x2 ) ) ( normalden ({ theta10}+{theta11 }∗x1 )
∗{ theta11}−{mu1}) ( normalden ({ theta20}+{theta21 }∗x1+{theta22
}∗x2 ) ∗{ theta21}−{mu2}) , inst ruments ( 1 : x1 ) inst ruments ( 2 : x1 x2
) inst ruments ( 3 : ) inst ruments ( 4 : ) w i n i t i a l ( i d e n t i t y )

t e s t b [ /mu1]= b [ /mu2 ]

Note: Each model includes a constant term.

Different Classes of Models

Let y denote the dependent variable and x1 and x2 the explanatory variables. To test if
the marginal effect of x1 in a probit model using x1 and x2 as the explanatory variables is
equal to the marginal effect of x1 in an analogous linear probability model, the following
Stata code must be executed:

gmm (y−normal ({ theta10}+{theta11 }∗x1+{theta12 }∗x2 ) ) (y−({ theta20
}+{theta21 }∗x1+{theta22 }∗x2 ) ) ( normalden ({ theta10}+{theta11 }∗
x1+{theta12 }∗x2 ) ∗{ theta11}−{mu1}) ({ theta21}−{mu2}) ,
inst ruments ( 1 : x1 x2 ) inst ruments ( 2 : x1 x2 ) inst ruments ( 3 : )
inst ruments ( 4 : ) w i n i t i a l ( i d e n t i t y )

t e s t b [ /mu1]= b [ /mu2 ]

Note: Each model includes a constant term.

Different Samples

Let y denote the dependent variable and x1 and x2 the explanatory variables. Moreover,
let d be a sample indicator being equal to one if the observation belongs to the first
sample (e.g., males) and zero if it belongs to the second sample (e.g., females). To test if
the marginal effect of x1 in a probit model using x1 and x2 as the explanatory variables
is the same in both samples, the following Stata code must be executed:

gmm (d∗(y−normal ({ theta10}+{theta11 }∗x1+{theta12 }∗x2 ) ) ) ((1−d) ∗(
y−normal ({ theta20}+{theta21 }∗x1+{theta22 }∗x2 ) ) ) (d∗( normalden
({ theta10}+{theta11 }∗x1+{theta12 }∗x2 ) ∗{ theta11}−{mu1}) ) ((1−d
) ∗( normalden ({ theta20}+{theta21 }∗x1+{theta22 }∗x2 ) ∗{ theta21}−{



mu2}) ) , inst ruments ( 1 : x1 x2 ) inst ruments ( 2 : x1 x2 ) inst ruments
( 3 : ) inst ruments ( 4 : ) w i n i t i a l ( i d e n t i t y )

t e s t b [ /mu1]= b [ /mu2 ]

Note: Each model includes a constant term.

Appendix 2: Specification of the Second-step Weighting Matrix in the
Empirical Application

Let {(xi, yi)}
n
i=1

denote a random sample of realizations of the random variables (X, Y ).
Furthermore, define

Zi ≡

















x′

i 0 0 0 0 0
0 x′

i 0 0 0 0
0 0 x′

i 0 0 0
0 0 0 IK 0 0
0 0 0 0 IK 0
0 0 0 0 0 IK

















and ui ≡

















yi − Φ(x′

iθ1)
yi − x′

iθ2
yi − Λ(x′

iθ3)
φ(x′

iθ1)θ1 − µ1

θ2 − µ2

λ(x′

iθ3)θ3 − µ3

















,

where IK denotes an identity matrix of dimension K, with K being the dimension of µ1,
µ2 and µ3.

Then, the empirical counterpart to Eq. (21) can be written as n−1
∑n

i=1
Z ′

iui, and the
GMM estimator minimizes

Q(θ1, θ2, θ3, µ1, µ2, µ3) ≡

(

n−1

n
∑

i=1

Z ′

iui

)

′

W

(

n−1

n
∑

i=1

Z ′

iui

)

,

where W denotes the weighting matrix. As mentioned above, the initial (first-step)
weighting matrix is the identity matrix. The second-step weighting matrix is given by
W = S−1, with

S ≡ n−1

n
∑

i=1

Z ′

iûiû
′

iZi,

where ûi denotes ui evaluated at the estimated parameters from the first step; also see
StataCorp (2015, “gmm” command).


