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Abstract
Cavaliere and Xu developed in 2014 simulation-based versions of existing unit root tests (among which the ADF),

valid in case the time series under test is bounded. In this note, we present a Monte Carlo study to investigate, in

particular, the power of the simulation-based ADF test against bounded near unit root and bounded fractionally

integrated alternative processes. Results show a rather good performance of the simulation-based ADF test,

particularly for near unit root alternatives.
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1. Introduction

In recent years, interest has been growing in testing for unit root in the presence of bounds.
Granger (2010) defined a bounded (limited) process as “one that has bounds either below
or above or both”. From an economic point of view, bounded time series can emerge as a
result of two reasons. On the one hand, bounded time series can be observed when agents
regulate the dynamic of an economic variable only in case its value overtakes a certain
threshold (bound). For instance, when a monetary authority intervenes to maintain the
exchange rate inside a target zone, the dynamics of the exchange rate can be represented
by a bounded process. Phenomena of this kind have recently received some attention in
the theoretical literature (among others Hommes (2006), Bauer et al. (2009), DeGrauwe
and Grimaldi (2006)); in addition, there have been previous attempts to empirically
analyse them via rather ad hoc models as in Sarno and Taylor (2002). On the other hand,
bounded time series emerge also in case of by-construction limited variables. Expenditure
shares, unemployment rate are only some of the possible examples of real data time series
that take values only in a restricted interval.

One feature that makes the analysis of bounded time series very interesting is that in
actual facts they often exhibit strong persistence or even nonstationarity: overlooking the
specificity of the bounded series and, hence, failing to adjust the empirical methodology
for its analysis and treating them as integrated in the usual sense is possibly leading to
wrong inferential conclusions. More specifically, Cavaliere (2005), developing a framework
where bounded time series can properly be paired with the concept of I(1) process, shows
that the test statistics of the PP test for unit root may have quite a different behaviour
in case of bounds as the latter are nuisance parameters on which the limiting distribution
depends. The effects in the asymptotic null distribution are not negligible since ignoring
the bounds can actually lead to overrejecton of the unit root null hypothesis.

To circumvent the problem, Cavaliere (2005) then proposes a two-stage procedure
that firstly estimates consistently the nuisance parameters related to the bounds and
then derives proper bound-robust asymptotic critical values for the PP unit root test
by Phillips and Perron (1988). However, this approach suffers from finite sample size
problems. With respect to this, an improvement is proposed in a subsequent paper by
Cavaliere and Xu (2014) who develop a more robust approach, built on the the ADF test
(Dickey and Fuller (1979), Said and Dickey (1984)) and the autocorrelation-robust ‘M’
unit root test by Perron and Ng (1996), Stock (1999) and Ng and Perron (2001).

A specific feature of the new approach is that it resorts to direct simulation methods
to obtain approximate p-values from the asymptotic distributions of the standard unit
root statistics. Through a Monte Carlo experiment, Cavaliere and Xu (2014) study the
size of the simulation-based ADF and ‘M’ unit root tests, revealing quite a satisfactory
behaviour. However, no finite sample findings are provided relatively to the power of
the tests, which, in general, is quite a serious issue for unit root tests, known to have
potentially low power levels for a variety of data generating processes.



Here, we intend to fill this gap by conducting a Monte Carlo experiment whose aim is
to study the power of the new simulation based procedure proposed by Cavaliere and Xu
(2014). In particular, we concentrate on the ADF version of the procedure and compare
it with that of the traditional ADF test for several data generating processes. More
specifically, we consider bounded near unit root processes and bounded (a.k.a. regulated)
fractionally integrated processes, introduced by Trokic (2013), and the results show that,
compared to the traditional ADF test, the simulation-based ADF test has no loss in terms
of finite sample power performance, being sometimes even able to outperform it.

The structure of the paper is as follows. In the second section the simulation-based
ADF test by Cavaliere and Xu (2014) is recalled. The third section is devoted to the
Monte Carlo experiment. The fourth section concludes.

2. The simulation-based ADF test for bounded time series

In general, let a bounded time series Xt, with fixed bounds b and b (b < b), be the finite

realization of a stochastic process such that Xt ∈
[

b, b
]

almost surely for all t. It is then

possible to give the definition of the bounded integrated, BI(1), process as in Cavaliere
(2005):

Xt = θ + Yt

Yt = Yt−1 + ut
(1)

the term ut being defined as:
ut = ǫt + ξt + ξt (2)

where ǫt is a stationary unbounded process with zero mean and ξt and ξt are non-negative

processes such that ξt > 0 if and only if Yt−1 + ǫt < b − θ and ξt > 0 if and only if

Yt−1+ ǫt > b−θ. Consequently, BI(1) behaves similarly to a traditional unit root process
when it is away from the bounds; however, when approaching the bounds its behaviour is
mean-reverting since the terms ξt and ξt, also called regulators, force the process between

b and b.
Testing for unit root is one of the issues related to the definition of this class of

processes. Cavaliere (2005) shows that the asymptotic distributions of the Phillips-Perron
(PP) unit root test statistics by Phillips and Perron (1988) are strongly affected by the
presence of bounds. More precisely, limiting distributions depend on nuisance parameters
that are, in turn, a function of the bounds. As a consequence, the distribution of the unit
root statistics is increasingly shifted to the left, the tighter are the bounds. This leads
to an overrejection of the unit root null hypothesis since the bounds, which regulate the
dynamic of the series, can somewhat induce mean reversion. It is only when the bounds
are sufficiently far from each other that inference based on the usual critical values of the
unit root test is valid.



To avoid this, Cavaliere (2005) proposes a two-stage procedure that firstly estimates
consistently the nuisance parameters related to the bounds and then derives proper bound-
robust asymptotic critical values for the PP unit root test. In spite of being asymptotically
valid, this version of the PP test still has a poor finite sample size performance.1 For
this reason Cavaliere and Xu (2014) work on developing the bounds-robust version of
other unit root tests, such as the ADF test (Dickey and Fuller (1979), Said and Dickey
(1984)) and the autocorrelation-robust ‘M’ unit root test by Perron and Ng (1996), Stock
(1999) and Ng and Perron (2001); these, unlike the PP test, are not based on the sum of
covariances estimators of the lung run variance, so they should suffer less from problems
of finite sample size performance.

One element of novelty in the bounds-robust versions of the ADF and ‘M’ unit root
tests proposed by Cavaliere and Xu (2014) is represented by the new consistent estimators
of the nuisance parameters related to the bounds. Moreover, the p-values are now obtained
via direct Monte Carlo methods, with a number of possible algorithms allowing also
for potential autocorrelation and heteroskedasticity in the error terms. Compared to
traditional versions of the same tests as well as with the approach in Cavaliere (2005),
these simulation-based tests provide critical values that guarantee a good size performance
in case of bounded unit root both asymptotically and in finite samples. It is interesting
to observe that another case where traditional unit root tests have been adjusted to
avoid overrejecting the unit root is when the data generating process exhibits structural
breaks (see Narayan and Pop (2013) for a review). However, processes with structural
breaks are very different in nature with respect to processes with bounds and the implied
modifications to traditional unit root tests are consequently also different. In the first
case, the modification requires the inclusion of structural break dummies; in the second
one, it entails an adjustment of the existing test statistics so that the bounds effect is
accounted for.

Now, let us provide a few technical details on the simulation-based ADF test, starting
with some notation. Given the OLS regression

X̂t = αX̂t−1 +
k
∑

i=1

αi∆X̂t−1 + ǫt,k (3)

where X̂t is the OLS residuals from the regression of Xt on a constant and the traditional
ADF statistics, ADFT is

ADFT =
α̂− 1

s(α̂)
(4)

where α̂ is the OLS estimate of α and s(α̂) is the standard error of α̂. The asymptotic null
distribution of the ADFT test statistic in case of BI(1) is based on Bc

c , a Brownian motion
regulated at c, c (Cavaliere, 2005) that behaves like a standard Brownian motion, but it

1This is not surprising since, in general, this is a well-known weakness of the PP test.



reverts in a neighborhood of the bounds. Bearing in mind the dependence of the asymp-
totic distribution under the null hypothesis upon the nuisance parameters c, c, Cavaliere
and Xu (2014) obtain correct p-values for unit root tests after estimating consistently the
nuisance parameters c, c according to the following:

ĉ =
b−X0

sAR(k)T 1/2
ĉ =

b−X0

sAR(k)T 1/2
(5)

in which the bounds b, b are assumed to be known and

sAR(k) =
σ̂2

α̂(1)2
(6)

is an autoregressive estimator of the spectral variance where α̂(1) = 1 −
∑k

i=1 α̂i and σ̂2

is the variance of the OLS regression (3). So, once the c, c parameters are consistently
estimated, the p-values are produced from the approximation of the non pivotal limiting
null distribution calculated through a four-step algorithm (see Cavaliere and Xu (2014)
for details):

1. Step 1 : generate an iid(0, 1) sequence ǫ∗t , t = 1, ..., T .

2. Step 2 : obtain recursively X∗
t , t = 1, ..., n, n ≥ T as

X∗
t =











ĉ if X∗
t + n−1/2ǫ∗t > ĉ

ĉ if X∗
t + n−1/2ǫ∗t > ĉ

X∗
t + n−1/2ǫ∗t otherwise

with initial condition X0 = 0

3. Step 3 : compute the Monte Carlo statistic ADF ∗
T on the X∗

t

4. Step 4 : repeat steps 1–3 for B times, then calculate the Monte Carlo p-value.

Cavaliere and Xu (2014) show (Theorem 2, page 263) that under the null hypothesis
ADF ∗

T has the same asymptotic distribution as ADFT . Hence, even if the unit root
statistics are not pivotal in the presence of bounds, ADF ∗

T has correct asymptotic size.
Cavaliere and Xu (2014) also consider the case of correlated errors. Under this cir-

cumstance, the ADF ∗
T in the third step can be replaced with ADF ∗∗

T , the corresponding
statistic from the following OLS regression

X̂∗
t = αX̂∗

t−1 +
k
∑

i=1

αi∆X̂∗
t−1 + e∗t (7)



where X̂∗
t is the de-meaned counterpart of X∗

t . An alternative way to deal with correlated
ǫt suggested by the same authors is to include in the above algorithm a sieve (or recolour-
ing) intermediate step. This does not alter the underlying theory and, operatively, it can
be done by fitting the regression:

X̂∗
t = αX̂∗

t−1 +
krc
∑

i=1

αi∆X̂∗
t−1 + ǫ∗t,krc (8)

where krc is the lag truncation for recolouring. To accommodate this, Step 2 of the
algorithm becomes:

X∗
t =











ĉ if X∗
t + n−1/2u∗

t,krc > ĉ
ĉ if X∗

t + n−1/2u∗
t,krc > ĉ

X∗
t + n−1/2u∗

t,krc otherwise

where u∗
t,krc is the recoloured innovation

α̂krc(L)

α̂krc(1)
u∗
t,krc = ǫ∗t

α̂krc(L) being 1−
∑krc

i=1 α̂iL
i. Clearly, since the simulated errors are correlated, the ADF ∗∗

T

must be employed in the fourth step.

3. Monte Carlo experiment

To study the power of the simulation based ADF unit root test by Cavaliere and Xu (2014),
we consider bounded near unit root data generating processes (DGPs) and bounded frac-
tional DGPs for the sample sizes T = 100, 200, 500. The number of Monte Carlo repli-
cations is 2000. While the idea of considering fractional alternatives in the power study
comes from a work by Hassler and Wolters (1994), here, given the theme we are working
on, we focus on bounded fractionally integrated processes introduced by Trokic (2013).2

As for the first group of DGPs, we generate bounded AR(1) time series Xt following
Cavaliere (2005) algorithm that begins with the generation of an AR(1) process ST :

∆St =
a

T
St−1 + ǫt, a ≥ 0, S0 = 0 (9)

and then maps ST onto an interval [b, b] so that Xt ∈ [b, b] (hence ∆Xt ∈ [b − Xt−1, b −
Xt−1]). This can be done by either truncating (e.g. according to a reflection principle) or

2Actually, Trokic (2013) call these processes regulated fractionally integrated processes, but we use
the name bounded fractionally integrated as a synonym.



censoring ∆St between [b −Xt−1, b −Xt−1].
3 In what follows, we will focus on values of

the autoregressive coefficient that gradually approach 1, namely a
T
= 0.7, 0.9, 0.95. This,

in turn, given the adopted sample sizes, leads to a = 30, 10, 5 (for T = 100), a = 60, 20, 10
(for T = 200), a = 150, 50, 25 (for T = 500).

If ǫt is WN, Xt is a bounded near I(1) with uncorrelated errors (we denote this as
DGP1) and under this circumstance b = c

√
T and b = c

√
T (because sAR is equal to

1). On the other hand, generating ǫt as an AR(1), the resulting Xt will be a bounded
near unit root process with autocorrelated errors (DGP2). In this second case, where

ǫt = φǫt−1 + ηt, ηt ∼ WN , we set φ = 0.5 and we have that b = c
√
T

(1−φ)2
and b = c

√
T

(1−φ)2

(Cavaliere (2005)).4

As for bounded fractional DGPs (DGP3), we concentrate on nonstationary processes.
To do this, we adopt the algorithm by Trokic (2013), who modifies Cavaliere (2005)’s
in equation (9) by generating the error terms ǫt ∼ I(d), i.e. as a factional noise. More
in details, in order to generate nonstationary bounded fractional DGPs, i.e. processes
whose overall long memory parameter d + 1 is larger than 1/2, we consider ǫt ∼ I(d)
where d = −0.1,−0.2,−0.3; this leads to nonstationary St processes with long memory
parameter, respectively equal to 0.9, 0.8, 0.7. We then map ST onto the interval [b, b],
in the same fashion as for bounded AR(1) to obtain a bounded fractionally integrated
process Xt. In general, for bounded fractionally integrated processes Trokic (2013) shows

that b = c
√

T 2(d+1/2)

Γ2(d+1)
and b = c

√

T 2(d+1/2)

Γ2(d+1)
.5

For all models, innovations are distributed as N(0, 1). The parameters c and c are
set equal to, respectively, ±0.4, 0.6, 0.8 as in Cavaliere and Xu (2014), corresponding
to increasingly wider symmetric bounds. Also the case of one single (positive) bound
has been considered, i.e. c=0.4, 0.6, 0.8. The bounded near unit root DGPs have been
generated using a censoring algorithm, whereas the fractionally bounded DGPs have been
generated according to a reflection algorithm.

As for the implementation of the simulation-based ADF test, for all cases, the number
of replications is B = 499, the significance level is 0.05, the Monte Carlo errors ǫ∗ ∼
N(0, 1). When the recolouring algorithm is used, krc = 4.6

Power results for DGP1, DPG2 and DGP3 are shown, respectively, in tables I, II,
III. Each table reports the percentages of rejection of the null hypothesis of unit root
for increasingly wider bounds, both in case of two symmetric bounds and one single
bound. Three algorithms of the simulation-based ADF test have been employed. In case
of DGP1, ADF ∗

T has been adopted. In case of DGP2 and DGP3, due to the correlation
in the error terms, the ADF ∗∗

T version of the test has been adopted, also augmented by

3Details on the censoring and truncating algorithm are in Cavaliere and Xu (2014).
4In this case the long run variance sAR is equal to 1

(1−φ)2 .
5The long run variance sAR is, yet again, equal to one.
6Most of these settings are as in Cavaliere and Xu (2014) experiment.



the recouloring algorithm (denoted as ADF ∗∗
T − rec in the tables). As a benchmark,

the traditional ADF has also been computed both for the bounded DGPs and for their
corresponding unbounded versions (table IV).

In general, over all considered DGPs we observe that, as expected, the power grows
with the sample size but it worsens the closer the DGP is to the unit root case, i.e. when
the autoregressive parameter approaches 1 or the long memory parameter also approaches
1. Moreover, the power performance is poorer the tighter are the bounds. More precisely,
the smaller is the absolute value of (c, c), the tighter are the bounds and, consequently,
the stronger is the mean reversion induced by the bounds themselves. This is rather as
expected: as remarked by Cavaliere (2005), under this circumstance the discrimination
between H0 and H1 is even more difficult than in the usual case of unbounded DGPs.
So, it is of no surprise that the power performance of the simulation-based ADF test in
presence of bounds (table I–III) can actually be even poorer than that of the traditional
ADF in the analogous case with no bounds (table IV). On the other hand, compared
to the power of the traditional ADF in case of the same bounded DGPs, the simulation-
based ADF test exhibits no loss, being sometimes even able to outperform it. This is
an important result, especially if it is read together with the results in Cavaliere and Xu
(2014) about the better size performance of the simulation-based ADF test.

In comparison to the case of two symmetric bounds, the effect of one single bound
varies with the DGPs, but appears actually rather small. In case of near unit root DGPs,
it seems that the power is slightly higher for the case of one bound compared to the case
of two bounds. This is a rather logical behaviour considering that the mean reversion
induced by the bounds is much stronger when the regulation of the dynamics of the time
series is governed by two bounds instead of just one. On the contrary, in case of bounded
fractionally DGPs, the two bounds case seems to lead to a better power performance but,
actually, the power level is always extremely low.

Finally, the recolouring algorithm is a good option, able to slightly improve the per-
formance of the simulation-based test in case of near unit root DGPs. The same holds in
case of bounded fractional DGPs.

Moving now to the specific results, in case of near unit root DGPs with uncorrelated
errors (table I), the ADF ∗

T test has a performance that is in line with that of the traditional
ADFT . The only exception is represented by the case (indeed, a tough one) that combines
the smallest sample size with the tightest bounds (T = 100, c = 0.4, in particular a= 5,
10). Also for near unit root DGPs with correlated errors (table II), the performance of
the ADF ∗∗

T test is very similar to that of ADFT . Again, the case where T = 100, c = 0.4,
a= 5, 10 is the most difficult to treat: ADF ∗∗

T is outperformed by ADFT , but it also
should be observed that the power level is extremely low for ADFT anyway. Even the
recolouring version of the test is unable to improve the performance in this very difficult
case.

As for bounded fractional DGPs, the case c = 0.4 over all sample sizes is the most
difficult one, not only for the simulation-based ADF (both ADF ∗

T and ADF ∗∗
T ), but also



for the traditional ADF, which, although managing to have slightly better percentages
of rejection, is still features rather unsatisfactory power levels. From c = 0.6, 0.8 things
improve for all tests and no difference can be noticed between simulation based and
traditional ADF.



Table I: Percentage of rejections of the unit root null hypothesis for DGP1 (bounded nearly
integrated with uncorrelated errors) in which: c is the parameter expressing the tightness of
the bounds (in case of two bounds, the value should be read as ±); T is the sample size; the
parameter a, for a given T , leads to values of the autoregressive parameter α = a/T equal to
0.7,0.9,0.95. The nominal level is 0.05.

Two bounds Single bound

c T a ADF ∗
T ADFT ADF ∗

T ADFT

0.4 100 5 0.140 0.358 0.189 0.408
10 0.499 0.799 0.616 0.816
30 1.000 1.000 1.000 1.000

200 10 0.628 0.801 0.693 0.792
20 0.947 0.999 0.985 0.997
60 1.000 1.000 1.000 1.000

500 25 0.993 1 0.999 1.000
50 1.000 1.000 1.000 1.000
150 1.000 1.000 1.000 1.000

0.6 100 5 0.300 0.374 0.310 0.364
10 0.763 0.758 0.762 0.808
30 1.000 1.000 1.000 1.000

200 10 0.709 0.761 0.755 0.790
20 0.998 0.999 0.994 0.998
60 1.000 1.000 1.000 1.000

500 25 1.00 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000
150 1.000 1.000 1.000 1.000

0.8 100 5 0.365 0.352 0.367 0.354
10 0.765 0.781 0.782 0.798
30 1.000 1.000 1.000 1.000

200 10 0.781 0.790 0.800 0.807
20 0.997 0.999 0.995 1.000
60 1.000 1.000 1.000 1.000

500 25 1.000 1.000 0.999 1.000
50 1.000 1.000 1.000 1.000
150 1.000 1.000 1.000 1.000



Table II: Percentage of rejections of the unit root null hypothesis for DGP2 (bounded nearly
integrated with AR(1) errors, ǫt = 0.5ǫt−1 + ηt) in which: c is the parameter expressing the
tightness of the bounds (in case of two bounds, the value should be read as ±); T is the sample
size; the parameter a, for a given T , leads to values of the autoregressive parameter α = a/T
equal to 0.7,0.9,0.95. The number of lags in the recolouring algorithm is krc = 4. The nominal
level is 0.05.

Two bounds Single bound

c T a ADF ∗∗
T ADF ∗∗

T − rec ADFT ADF ∗∗
T ADF ∗∗

T − rec ADFT

0.4 100 5 0.093 0.130 0.249 0.156 0.198 0.273
10 0.217 0.332 0.546 0.328 0.338 0.557
30 0.761 0.746 0.947 0.854 0.843 0.942

200 10 0.549 0.561 0.627 0.421 0.557 0.637
20 0.685 0.731 0.930 0.822 0.941 0.914
60 0.995 0.992 1 0.999 0.996 1.000

500 25 0.905 0.927 0.995 0.968 0.979 0.999
50 1.000 1.000 1.000 1.000 1.000 1.000
150 1.000 1.000 1.000 1.000 1.000 1.000

0.6 100 5 0.225 0.243 0.274 0.249 0.258 0.265
10 0.456 0.499 0.56 0.535 0.551 0.553
30 0.916 0.902 0.946 0.937 0.961 0.942

200 10 0.573 0.571 0.619 0.602 0.604 0.610
20 0.900 0.913 0.938 0.921 0.930 0.932
60 1.000 0.999 1.000 1.000 1.000 1.000

500 25 0.992 0.991 0.996 0.992 0.996 0.997
50 1.000 1.000 1.000 1.000 1.000 1.000
150 1.000 1.000 1.000 1.000 1.000 1.000

0.8 100 5 0.286 0.303 0.271 0.268 0.286 0.289
10 0.568 0.565 0.555 0.579 0.627 0.579
30 0.950 0.941 0.936 0.942 0.961 0.953

200 10 0.641 0.645 0.618 0.659 0.689 0.623
20 0.939 0.931 0.933 0.931 0.966 0.948
60 1.000 1.000 1.000 1.000 1.000 1.000

500 25 0.993 0.995 0.994 0.992 0.998 0.999
50 1.000 1.000 1.000 1.000 1.000 1.000
150 1.000 1.000 1.000 1.000 1.000 1.000



Table III: Percentage of rejections of the unit root null hypothesis for DGP3 (bounded fraction-
ally integrated) in which: c is the parameter expressing the tightness of the bounds (in case of
two bounds, the value should be read as ±); T is the sample size; d is the parameter expressing
the long memory level. The number of lags in the recolouring algorithm is krc = 4. The nominal
level is 0.05.

Two bounds Single bound

c T d ADF ∗∗
T ADF ∗∗

T − rec ADFT ADF ∗∗
T ADF ∗∗

T − rec ADFT

0.4 100 -0.3 0.227 0.182 0.357 0.137 0.184 0.192
-0.2 0.253 0.225 0.356 0.135 0.181 0.195
-0.1 0.145 0.147 0.292 0.130 0.171 0.188

200 -0.3 0.304 0.237 0.467 0.214 0.234 0.312
-0.2 0.342 0.298 0.481 0.197 0.227 0.284
-0.1 0.229 0.228 0.423 0.155 0.188 0.23

500 -0.3 0.418 0.372 0.632 0.346 0.421 0.48
-0.2 0.483 0.467 0.606 0.304 0.407 0.393
-0.1 0.323 0.297 0.571 0.216 0.356 0.309

0.6 100 -0.3 0.475 0.45 0.508 0.302 0.326 0.301
-0.2 0.395 0.335 0.42 0.253 0.283 0.265
-0.1 0.15 0.146 0.215 0.121 0.196 0.123

200 -0.3 0.595 0.552 0.66 0.395 0.415 0.413
-0.2 0.584 0.531 0.611 0.342 0.387 0.337
-0.1 0.224 0.254 0.301 0.19 0.197 0.189

500 -0.3 0.742 0.738 0.738 0.52 0.583 0.574
-0.2 0.724 0.719 0.735 0.47 0.485 0.464
-0.1 0.363 0.342 0.463 0.237 0.336 0.262

0.8 100 -0.3 0.593 0.587 0.581 0.369 0.382 0.339
-0.2 0.356 0.341 0.334 0.2 0.292 0.204
-0.1 0.113 0.121 0.11 0.086 0.177 0.094

200 -0.3 0.748 0.735 0.753 0.488 0.502 0.487
-0.2 0.531 0.505 0.536 0.315 0.369 0.330
-0.1 0.157 0.155 0.146 0.112 0.188 0.123

500 -0.3 0.848 0.846 0.879 0.602 0.632 0.611
-0.2 0.759 0.746 0.761 0.481 0.502 0.467
-0.1 0.207 0.213 0.203 0.156 0.193 0.169



Table IV: Traditional ADF test power for all considered DGPs when the series are generated
with no bounds. Parameters T , a and d as defined in Tables I–III. The nominal level is 0.05.

T a DGP1 DGP2 d DGP3
100 5 0.357 0.258 -0.3 0.127

10 0.788 0.571 -0.2 0.092
30 1.000 0.959 -0.1 0.071

200 10 0.792 0.610 -0.3 0.233
20 0.998 0.944 -0.2 0.139
60 1.000 0.999 -0.1 0.072

500 25 1.000 0.993 -0.3 0.357
50 1.000 1.000 -0.2 0.191
150 1.000 1.000 -0.1 0.109

4. Conclusions

In this work we proposed a Monte Carlo study to investigate the power of the simulation-
based version of the ADF test for unit root developed by Cavaliere and Xu (2014) that
is valid in case the time series is characterized by the presence of bounds. In our Monte
Carlo experiment we consider bounded near unit root and bounded fractionally integrated
processes and apply the simulation based ADF test in a variety of algorithms as well as
the traditional ADF test, for comparative purpose.

Results show a good performance of the simulation-based ADF test, particularly for
near unit root alternatives. Indeed, no loss is registered in terms of power levels when we
compare the simulation-based ADF tests with the traditional ADF test, sometimes the
rormer being even able to outperform the latter. This is a very important result given
that the presence of the bounds, acting as regulators, induces mean-reversion and makes
distinguishing unit root from near unit root a possibly even more difficult task. The same
type of results is also found in the case of fractionally integrated alternatives, but here
the power level of all unit root tests is extremely low: none of them has a satisfactory
performance.

As a final comment for practitioners, it must be emphasized that the results indicate
that a reasonably large sample size, of at least T = 200, is recommended to make sure
that the test is capable of recognizing the nonstationary behaviour far from the bounds.
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