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Abstract
The purpose of this note is to provide new insights on the sensitivity of technical inefficiency scores, estimated using a

directional distance function with small samples and the presence of outliers, to the choice of the direction vector. A

simulation study with a geometric illustration is conducted considering several direction vectors. To the best of authors'

knowledge, this is the first simulation work comparing 16 direction vectors, some of which are often employed in

empirical studies. The four directional vectors that consistently provide the best results are identified and used in the

empirical application discussed in this study.
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1. Introduction 

Selection of a direction vector when estimating a directional distance function, and the 

sensitivity of technical inefficiency scores to the choice of the direction vector have 

originated a few studies concerned explicitly with this issue (e.g., Zofio, Pastor & Aparicio, 

2013; Färe, Grosskopf & Whittaker, 2013; Peyrache & Daraio, 2012). The flexibility gained 

with the introduction of the directional distance functions, as opposed to the radial (Shephard) 

distance functions, has the counterpart of the sensitivity of technical inefficiency scores to the 

choice of the direction vector along which inefficiency is evaluated.  

The purpose of this note is to provide new insights on the sensitivity of technical 

inefficiency scores to the choice of the direction vector in models with small samples and the 

presence of outliers. A simulation study is conducted considering 16 direction vectors, 

including the one based on sample medians, which is not frequently used in the efficiency 

literature. Since it is widely-known in robust statistics that median is more robust than the 

mean, the idea is to explore it in the context of directional distance functions.  The four 

directional vectors that consistently provide the best results are identified and used in the 

empirical application discussed in this study.      

 

 

2. Which direction vectors have been used? 

In the nineties, Chambers, Chung & Färe (1996, 1998) introduce the directional distance 

functions based on the benefit function and the shortage function developed by Luenberger 

(1992, 1995). These functions allow the construction of directional measures of technical and 

economic inefficiency, as opposed to the radial measures, based on Shephard’s (or radial) 

distance functions. The directional distance functions are an important contribution to the 

measurement of productive efficiency and productivity. Based on the directional distance 

functions, Chambers (1998, 2002) introduce the Luenberger productivity indicators and 

Chung, Färe & Grosskopf (1997) propose the Malmquist-Luenberger productivity index.  

A series of empirical studies appear in the literature using the directional distance 

functions with different research purposes. Some empirical studies attempt to assess technical 

and economic inefficiency (e.g., Koutsomanoli-Filippaki, Margaritis & Staikouras, 2012; 

Glass et al., 2006; Färe, Grosskopf & Weber, 2004), productivity growth (e.g., Nakano & 

Magani, 2008; Guironnet & Peypoch, 2007; Chambers, Färe & Grosskopf, 1996), and 

investigate environmental issues (e.g., Beltrán-Esteve et al., 2014; Rødseth, 2014; Picazo-



Tadeo, Beltrán-Esteve & Gómez-Limón, 2012; Domazlicky & Weber, 2003; Färe et al., 

2005; Färe, Grosskopf & Pasurka, 2001).  

The selection of the direction vector in empirical studies can be classified in two 

general categories. The first one consists in a firm’s specific direction vector, namely: (i) 

),(),( yxgg yx = ; and (ii) ),0(),( ygg yx

�
=  or )0,(),(

�
xgg yx = . The second category 

involves a direction vector common to all observations: (iii) ),(),( yxgg yx = , where x  and 

y  are, respectively, the sample means of x and y; (iv) )1,1(),(
��

=yx gg ; (v)  )0,1(),(
��

=yx gg , 

)1,0(),(
��

=yx gg , or ),0(),( ∑=

j
jyx ygg where yj is a vector of outputs and ∑

j
jy  is a vector 

of total outputs.
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In case (i), technical inefficiency of each observation is evaluated along its own input-

output bundle (e.g., Chambers, Färe & Grosskopf, 1996; Färe, Grosskopf & Weber, 2004; 

Glass et al., 2006). Case (ii) either measures output expansion in the firm’s output direction 

(e.g., Chambers, Färe & Grosskopf, 1996; Nin et al., 2003) or input contraction in the firm’s 

input direction (e.g., Chambers, Färe & Grosskopf, 1996). Case (ii) leads to the directional 

output or input distance functions that are the analog of the Shephard output or input distance 

functions. 

Cases (iii) (e.g., Chambers, Färe & Grosskopf, 1996; Guironnet and Peypoch, 2007), 

(iv) (e.g., Färe, Grosskopf & Pasurka, 2001; Domazlicky & Weber, 2003; Färe et al., 2005), 

and (v)  (e.g., Foltz et al., 2012; Weber & Xia, 2012; Ferrier, Leleu & Valdmanis, 2009) 

imply that inefficiency of all observations are evaluated along the same direction vector. The 

direction vectors in (iii)-(v) facilitate aggregation of efficiency and productivity indicators 

across firms to form aggregate (e.g., industry) efficiency or productivity indicators (e.g., 

Briec, Dervaux & Leleu, 2003).  

In the empirical studies using (i)-(v), the direction vector is pre-defined and its elements 

are treated as exogenous variables in the estimation of the directional distance functions. 

Recently, some studies (e.g., Zofio, Pastor & Aparicio, 2013; Färe, Grosskopf & Whittaker, 

2013) propose the endogenization of the direction vector, avoiding in this way ad hoc choices 

of the researcher. Recently, a data-driven approach is proposed by Daraio & Simar (2016). 

   

                                                           

1
 In the study by Ferrier, Leleu and Valdmanis (2009), ∑

j
j

y is the vector of total outputs produced within each 

standard metropolitan statistical area.  



3. Simulation studies 

It is widely known that nonparametric, deterministic frontier estimators (e.g., Data 

Envelopment Analysis (DEA) estimators) are, by construction, highly sensitive to outliers 

(e.g., Charnes et al., 1992; Wilson, 1995; Zhu, 1996). Additionally, these estimators suffer 

from the curse of dimensionality (e.g., Simar and Wilson, 2008). In this section, several 

simulation models are performed, although only five of them are reported here, to evaluate 

the sensitivity of technical inefficiency scores to the choice of the direction vector in models 

with small samples and the presence of outliers.  

Different production technologies with one output and one or two inputs, exhibiting 

constant (CRS) and variable returns to scale (VRS), are considered. To illustrate 

geometrically each of the simulation models, some of the ten Decision Making Units 

(DMU’s) define the production frontier and the remaining ones are randomly generated in 

1000 trials inside a specific triangle or polyhedron (see Figure 1 to Figure 5).
2
 Table I 

presents the mean value of the distance to the production frontier for each model with ten 

DMU’s.  

Model 1 represents a VRS production technology considering one output and one 

input with “no outliers”.
3
 Considering the directional technology distance function, it is 

interesting to note that ),(),( ymedianxmediangg yx =  provides the shortest distance to the 

production frontier when compared with the other directional vectors defined in the input-

output space. 

 Models 2 and 3 correspond to a VRS production technology considering one output 

and one input with, respectively, one outlier and two outliers. Focusing on the simultaneous 

expansion of the output and contraction of the input, the average shortest distance to the 

frontier, in both models, is generated with the direction vector ),(),( yxgg yx =  followed by 

),(),( ymedianxmediangg yx = . 

CRS production technologies considering one output and two inputs with one outlier 

and two outliers are represented, respectively, by model 4 and model 5.  Considering 

simultaneously the expansion of the output and the contraction of inputs, the shortest distance 

to the frontier is achieved, in both models, by the unit direction vector followed by 

                                                           
2
 All the computations are accomplished in MATLAB software.  

 
3
 Depending on the random values generated, some observations may be considered as outliers.  

 



),(),( ymedianxmediangg yx = . Focusing in an input-oriented directional distance function, 

the direction vectors (1,0) and )0,( xmedian  provide a similar average distance to the 

frontier. 

 

Table I: Mean values of the distance to the production frontier. 

Direction vector Model 1 Model 2 Model 3 Model 4 Model 5 

(x,y) 5.6001 4.9129 4.1765 0.8851 0.8801 

(mean x, mean y) 5.8012 5.0701 4.5618 0.8712 0.8666 

(1,1) 5.7109 5.0064 4.2577 0.8519 0.8421 

(median x, median y) 5.5990 4.9342 4.2277 0.8682 0.8544 

(mean x, 1) 5.9449 5.2308 4.4586 0.9244 0.9257 

(median x,1) 5.9447 5.2180 4.4433 0.9306 0.9224 

(1, mean y) 11.2968 10.0354 8.7017 1.0907 1.0907 

(1, median y) 11.0621 9.7822 8.3947 1.0992 1.0802 

(0,y) 12.1147 10.6202 9.0320 1.4755 1.4586 

(0,1) 12.1146 10.6202 9.0320 1.4755 1.4586 

(0, mean y) 12.1147 10.6202 9.0320 1.4755 1.4586 

(0, median y) 12.1147 10.6202 9.0320 1.4755 1.4586 

(x,0) 6.0573 5.3101 4.5160 1.1699 1.6404 

(1,0) 6.0573 5.3101 4.5160 1.0433 1.0314 

(mean x, 0) 6.0573 5.3101 4.5160 1.0436 1.0420 

(median x, 0) 6.0573 5.3101 4.5160 1.0437 1.0323 

 

 

It is important to note that the presence of outliers, its number and its severity may 

have a huge influence in the results, namely in models with small samples. For example, in 

model 5, if the two outliers are considered as severe outliers (farther away from the center of 

mass of the remaining observations in the polyhedron), the direction vector based on the 

firm’s input-output bundle (or the firm’s input vector), which is often used in empirical 

studies, may not be an adequate choice to evaluate firm’s inefficiency. Also, the direction 

vector defined by the sample means of x and y perform poor. In contrast, the direction vector 



based on the sample medians performs better in the presence of severe outliers. As expected, 

the same occurs in other simulation models, whose results are not reported in this note.  

The directional vector ),(),( ymedianxmediangg yx =  provides the best or the 

second best result in the simulation models discussed here. In the other simulation models, 

whose results are not reported in this note, the directional vector based on the sample medians 

is always on the first three top best results (out of 16 directional vectors analyzed) 

corresponding to the lowest technical inefficiency scores. To a certain extent, we can assert 

that this direction vector is robust to different production specifications, the presence of 

outliers and its severity, in models with small samples.  

Ranking the inefficiency results, generated by each of the four directional vectors that 

consistently provide the best results, based on the shortest distance (1) to the highest distance 

(4) to the frontier in all simulation models, including the ones not reported here, the average 

ranking of the directional vector based on the sample medians is 1.9. The direction vector 

),(),( yxgg yx =  and the unit direction vector have an equal average ranking of 2.2 and the 

directional vector based on the sample means has, on average, a ranking equal to 3.8. 
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Figure 1. Model 1: VRS technology, one output and one input, with “no outliers”. 
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Figure 2. Model 2: VRS technology, one output and one input, with one outlier. 

 

0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

160

180

 

Figure 3. Model 3: VRS technology, one output and one input, with two outliers. 
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Figure 4. Model 4: CRS technology, one output and two inputs, with one outlier. 
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Figure 5. Model 5: CRS technology, one output and two inputs, with two outliers. 



4. An empirical application 

The four directional vectors that provide consistently the best results in the simulation study 

are used in an empirical application with the database “Philippines Rice Data” from Coelli et 

al. (2005), available on Package “frontier” (Coelli & Henningsen, 2013). For each rice 

producer, there is information on the output (tonnes of rice), area planted (hectares), labor 

used (man-days of family and hired labor), fertilizer (kg of active ingredients) and other 

inputs used. Considering 10 rice producers randomly selected in the year 1997, the 

information on 3 producers is modified accordingly to illustrate a possible outlier 

contamination in the sample. Figure 6 presents boxplots for the technology directional 

distance function, estimated using DEA under CRS and VRS.  

As expected, the DEA inefficiency scores under VRS are smaller than or equal to the 

ones generated under CRS. The unit direction vector presents the worst results in this 

example. The direction vector ),(),( yxgg yx =  and the directional vectors based on the 

sample medians and the sample means have a similar performance. 

 

 

Figure 6. Value of the technology directional distance function under CRS and VRS. 

 



5. Conclusions 

This note evaluates the sensitivity of the technical inefficiency scores to the choice of 16 

directional vectors, in models with small samples and the presence of outliers. To the best of 

authors’ knowledge, this is the first simulation study with a comparison among several 

directional vectors, including the one based on sample medians, which is not frequently used 

in the efficiency literature. Considering all the simulation models, including the ones not 

reported here, the directional vector based on the sample medians obtains the best average 

position in the rankings of the four directional vectors that provide consistently the best 

results. To a certain extent, we can assert that this direction vector is robust to different 

production specifications, the presence of outliers and its severity, in models with small 

samples. However, these conclusions should be tempered with caution, since more complete 

simulation studies are needed in future research. 
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