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Abstract
We study the the average-opinion group contest in which each group's effort level is determined as the median of the

effort levels of its group members. We find that, in the average-opinion group contest, both free rider and coordination

problem exist among the players in each group, and there exist multiple Nash equilibria of the game. This is the mixed

characteristics of each Nash equilibria of the perfect-substitutes, the weakest-link, and the best-shot group contest.

Also, we specifically figure out the Nash equilibria of the average-opinion group contest in several examples.
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1 Introduction

In a contest between groups the winning probability of each group depends on the
collective effort level of the players in that group, and there appear different types of group
contests according to the way of aggregating the effort levels of the players in the group.1

For instance, the group effort level in a contest can be defined as the sum, the minimum,
and the maximum of the effort levels chosen by the players in the group, and each case is
named perfect-substitutes group contest (Katz et al. 1990, Baik 1993; Baik 2008; Sheremeta
2011), weakest-link group contest (Lee 2012; Chowdhury and Topolyan 2016; Lee and Song
2016), and best-shot group contest (Chowdhury et al. 2013; Barbieri et al. 2014; Lee and
Lee 2016), respectively.2 In this paper, we consider another type of group contest, named
“average-opinion group contest”, in which each group effort level is defined as the median of
players’ effort levels in the group. The term “average-opinion” is come from average opinion
games of Van Huyck et al. (1991) in which each player’s payoff function is increasing in
the median of all players’ choices and decreasing in the distance between its choice and the
median. In our average-opinion group contest, the payoff for each player in a group has
similar structure to the one in the average opinion games.

Since the median is not distorted by skewed data and it can be determined even for
data measured in a ratio, an interval, and an ordinal scale, the median rule as one of the
ways to determine group effort levels in a contest would be applied in various ways. For
instance, it would be adopted in the decision-making process of a public authority. Suppose
that the government plans to build a public facility in one of several regions and tries to
make a decision on its location on the basis of opinions collected from the residents in the
proposed regions. Then, as one of the ways to gather the opinions of the residents about
building the facility in their region, the government can use a questionnaire which asks them
to choose one of the following numbers: 5-‘more than completely agree’, 4-‘completely agree’,
3-‘mostly agree’, 2-‘agree’, 1-‘neutral’. Because each respondent is also asked to give some
reasonable explanation/evidence for his answer, choosing higher number incurs more effort
(cost) to the respondent. In this case, the responses of the residents in each region to the
questionnaire reflect their opinions, which are measured in an ordinal scale, and they are
well summarized by the median of the responses rather than the mean, the maximum, or the
minimum. Then the information about the median values for each proposed regions may be
useful for the government to make its final decision on where to build the public facility.

We investigate the existence and characteristics of the Nash equilibrium of the average-
opinion group contest in a general setting, i.e., n groups compete against and each group i
consists of mi group members for i = 1, 2, . . . , n. In our average-opinion group contest, both
free rider and coordination problem exist among the players in each group. Namely, at the
Nash equilibrium of the game, one subgroup of players in each group do not exert any effort
and the other subgroup of players exert the same amount of effort that lies between zero and a
certain strictly positive level. The free-riding subgroup doesn’t necessarily consists of the low-

1The function that translates the effort levels of the players in a group into the group effort level is called
as the impact function (Wärneryd 1988).

2For more information about contests, see Corchón (2007), Garfinkel and Skaperdas (2007), and Konrad
(2009).



valuation players in the group. Thus there exist multiple Nash equilibria of the game. This is
a mixed characteristics of the results in the perfect-substitutes, weakest-link, and best-shot
group contest. In the perfect-substitutes group contest, only the highest-valuation player
in each group expends some efforts and the rest of players do nothing at Nash equilibrium.
Similarly, in the best-shot group contest, only one player in each group exerts some efforts
but he isn’t necessarily the highest-valuation player in the group. Contrary to these contests,
there does not exist the free rider problem in the weakest-link group contest, instead, the
coordination problem exists among the players in each group. The Nash equilibria of the
average-opinion group contest show all these features of the equilibria.

The paper proceeds as follows. Section 2 describes our model and it is analyzed in
Section 3. Section 4 provides several examples.

2 The model

Let us consider a contest in which n ≥ 2 groups compete to win a prize. Each group i
consists of mi ≥ 2 risk-neutral players who expend effort to win the prize. Players in group i
are indexed by ik where k = 1, 2, . . . ,mi. The prize is a public good within a winning group
in a sense that all the players in the winning group benefit from the prize. The players’
valuations for the prize may differ. Let vik represent the valuation of player ik. Players’
valuations are assumed as follows:
Assumption 1 vi1 ≥ vi2 ≥ · · · ≥ vimi

> 0 for all i = 1, . . . , n.
Let xik represent the nonnegative effort level chosen by player ik. Each player’s effort

is irreversible regardless of whether or not his group wins the prize. Let pi denote the
probability of group i’s winning the prize. We define that the winning probability for group
i is

pi = pi(X1, . . . , Xn) where Xi = median {xi1, xi2, . . . , ximi
} .

Xi denotes the effort level for group i and it is determined by the median value of the effort
levels chosen by the players in group i. I.e., when we rank the effort levels of the players in
descending order, Xi is the middle value. If mi is an even number, we define Xi as the mean
of two middle values. The function pi satisfies the following regularity conditions:
Assumption 2 0 ≤ pi ≤ 1,

∑n
j=1 pj = 1, pi(0, . . . , 0) = 1/n, ∂pi

∂Xi
≥ 0, ∂2pi

∂X2
i

≤ 0, ∂pi
∂Xj

≤ 0,
∂2pi
∂X2

j

≥ 0, ∂pi
∂Xi

> 0 and ∂2pi
∂X2

i

< 0 for some Xj > 0, ∂pi
∂Xj

< 0 and ∂2pi
∂X2

j

> 0 for Xi > 0, where

i 6= j.
Let πik represent the payoff for player ik. Then the payoff function for player ik is given:

πik = vikpi(X1, . . . , Xn)− xik.

We assume that all the players in the contest choose their effort levels independently
and simultaneously. All of the above is common knowledge among the players.



3 The equilibria of the game

Let xb
ik denote the best-response of player ik in an imaginary situation where he is a

unique player in group i, given the other groups’ effort levels. We call xb
ik the “imaginary”

best-response of player ik. Specifically, xb
ik is the effort level xik that maximizes his payoff

πb
ik = vikpi(X1, . . . , Xi−1, xik, Xi+1, . . . , Xn)− xik

subject to xik ≥ 0. Thus xb
ik satisfies the first-order condition for maximizing πb

ik with respect
to xik:

vik
∂pi
∂xik

≤ 1.

Assumption 1, 2 and the first-order condition tell us the relative sizes of the imaginary
best responses of the players in group i. Lemma 1 shows this.

Lemma 1 Given the effort levels of the other groups, X−i, the relative sizes of the imaginary
best responses of the players in group i are

xb
i1(X−i) ≥ xb

i2(X−i) ≥ · · · ≥ xb
imi

(X−i) for all X−i ≥ (0, . . . , 0),

where X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn).

Using Lemma 1 and the characteristics of the median function Xi, we obtain group-i-
specific equilibrium.3 A group-i-specific equilibrium is a mi-tuple vector of effort levels the
players in group i will expend, given the other groups’ effort levels. So, at group-i-specific
equilibrium, every player in group i shouldn’t have any incentive to increase or decrease its
effort level, given the effort levels of the rest of the players in its group and the other groups’
effort levels. Lemma 2 presents the group-i-specific equilibrium. The proof is presented in
Appendix.

Lemma 2 Given effort levels of the other groups, X−i, following group-i-specific equilibria
exist.

(a) When mi is an odd number:

( xi, xi, · · · , xi, xi
︸ ︷︷ ︸
mi+1

2
players (A)

, 0, 0, · · · , 0, 0
︸ ︷︷ ︸

mi−1

2
players (B)

) with xi ∈
[

0,min
{
xb
ik(X−i)

}

ik∈A

]

,

where A denotes the set of players choosing effort level xi (|A| = mi+1
2

) and B does the
set of the other players choosing zero effort level (|B| = mi−1

2
). Note that the above

mi-tuple vector of effort levels does not indicate which players compose each subgroup
A and B.

3We use the term ‘group-i-specific equilibrium’ that is firstly used in Baik (2008).



(b) For the convenience of description for an even number mi, we divide the players into
two equally sized subgroups A and B, consisting of contributors and noncontributors
respectively. Then group-i-specific equilibria are as follows.

When mi is an even number and min {vik}ik∈A > max {vik}ik∈B (vimi/2 > vi(mi+2)/2):

(xi1, xi2, . . . , ximi
) = ( xi, · · · , xi

︸ ︷︷ ︸
mi
2

players (A)

, 0, · · · , 0
︸ ︷︷ ︸

mi
2

players (B)

) with xi ∈
[
xb
i(mi+2)/2(X−i), x

b
imi/2

(X−i)
]
∪{0} .4

Note that subgroup A consists of player i1, i2, . . ., imi/2 and subgroup B consists of
player i(mi + 2)/2, i(mi + 4)/2, . . ., mi.

(c) When mi is an even number and min {vik}ik∈A = max {vik}ik∈B:

(xi, xi, · · · , xi, xi
︸ ︷︷ ︸

mi
2

players (A)

, yi, 0, · · · , 0, 0
︸ ︷︷ ︸
mi
2

players (B)

) with xi + yi = min
{
xb
ik(X−i)

}

ik∈A
and xi > yi ≥ 05

and
(xi, xi, · · · , xi, xi
︸ ︷︷ ︸

mi
2

players (A)

, xi, 0, · · · , 0, 0
︸ ︷︷ ︸
mi
2

players (B)

) with xi ∈
[

0,min
{
xb
ik(X−i)

}

ik∈A

]

, 6

where nonzero yi and xi in subgroup B are chosen by the highest-valuation player (or
one of the highest-valuation players) in subgroup B. Note that the above mi-tuple
vectors of effort levels do not indicate which players compose each subgroup A and B.

(d) When mi is an even number and min {vik}ik∈A < max {vik}ik∈B:

(xi, xi, · · · , xi, xi
︸ ︷︷ ︸

mi
2

players (A)

, xi, 0, · · · , 0, 0
︸ ︷︷ ︸
mi
2

players (B)

) with xi ∈
[

0,min
{
xb
ik(X−i)

}

ik∈A

]

, 7

where nonzero xi in subgroup B is chosen by the highest-valuation player (or one of the
highest-valuation players) within the subgroup. Note that the above mi-tuple vectors of
effort levels do not indicate which players compose each subgroup A and B.

Lemma 2 says that the free-rider problem occurs within each group at equilibrium. Some
players in each group choose zero effort level and those free-riding players are not necessarily
the low-valuation players in the group. Note that, except for (b), the players composing
of subgroup B are not identified. Lemma 2 also implies that, given X−i, there may exist

4Note that Xi is the mean of two middle values, i.e., ximi/2 and xi(mi+1)/2. So,

xb
imi/2

(X
−i) = argmaxximi/2

vimi/2 · pi(X1, . . . , Xi−1,
ximi/2

2 , Xi+1, . . . , Xn)− ximi/2 and xb
i(mi+2)/2(X−i) =

argmaxxi(mi+2)/2
vi(mi+2)/2 · pi(X1, . . . , Xi−1,

xi(mi+2)/2

2 , Xi+1, . . . , Xn)− xi(mi+2)/2.
5xb

ik(X−i) = argmaxxik
vik · pi(X1, . . . , Xi−1,

xik

2 , Xi+1, . . . , Xn)− xik.
6xb

ik(X−i) = argmaxxik
vik · pi(X1, . . . , Xi−1, xik, Xi+1, . . . , Xn)− xik.

7xb
ik(X−i) = argmaxxik

vik · pi(X1, . . . , Xi−1, xik, Xi+1, . . . , Xn)− xik.



multiple group-i-specific equilibria. The value of each xi in the lemma can be any one that
belongs to a certain range, which means that the coordination problem exists among the
players in subgroup A. And the certain range varies according to who is the lowest-valuation
player(s) in subgroup A. As a result, depending on which players compose of subgroup A
and B and how the players coordinate with each other in choosing their effort levels, there
exist many different group-i-specific equilibria. Hence, the Nash equilibrium of the game,
that is derived from group i-specific equilibria for all i = 1, 2, . . . , n, will be characterized by
the composition of subgroup A and B and the degree of coordination among the players at
each group’s specific equilibria, and the multiplicity of each group-i-specific equilibria results
in multiple Nash equilibria of the game. Proposition 1 summarizes these.

Proposition 1 The Nash equilibrium of the average-opinion group contest

(a) The Nash equilibrium is characterized by the composition of subgroup A and B at each
group-i-specific equilibria and the degree of coordination among the players within each
group.

(b) There exist multiple Nash equilibria.

(c) At the Nash equilibrium, free rider and coordination problem coexist within each group.

4 Examples

In this section we specifically figure out the Nash equilibria of the average-opinion group
contest in which two groups compete against each other, i.e., n = 2, and the each group’s
winning probability follows the Tullock-form contest success function, i.e., pi(X1, X2) =

Xi

X1+X2
for X1 + X2 > 0 and 1

2
for X1 + X2 = 0. We first consider the case in which

m1 = m2 = 3, and then the case in which m1 = 3 and m2 = 4.

4.1 The case in which m1 = m2 = 3

From (a) in Lemma 2 we obtain group-1-specific equilibria, given X2. According to the
composition of subgroup A and B in group 1, there exist different group-1-specific equilibria.
Here we consider the group-1-specific equilibria in which A = {11, 12}, i.e., subgroup A
consists of player 11 and 12. Then player 12 is the lowest-valuation player in subgroup A
and those group-i-specific equilibria are as follows:

(x11, x12, x13) = (x1, x1, 0) with 0 ≤ x1 ≤ xb
12(X2) =

{ √
v12X2 −X2 for X2 ≤ v12

0 for X2 > v12.

In the same way we have following group-2-specific equilibria in which A = {21, 22},
given X1:

(x21, x22, x23) = (x2, x2, 0) with 0 ≤ x2 ≤ xb
22(X1) =

{ √
v22X1 −X1 for X1 ≤ v22

0 for X1 > v22.



Figure 1 (a) provides information about the group-i-specific equilibria for i = 1, 2. The
shadowed area Si in the figure represents the values of xi each of which composes each
group-i-specific equilibrium, given X−i, i.e., xi ∈ [0, xb

i2(X−i)]. Note that Xi = xi.

[Figure 1 about here.]

Then the Nash equilibrium of the game are consist of x1 and x2 which belong to the
overlapped area from S1 and S2, i.e. S1 ∩ S2. Figure 1 (b) provides information about the
Nash equilibria of the game. Each pair of x1 and x2, belonging to the deviant-crease-line
area, compose of the Nash equilibrium, ((x1, x1, 0), (x2, x2, 0)). So, there exist infinitely many
Nash equilibria. Formally, the set of the pure-strategy Nash equilibria is

{
((x1, x2, 0), (x2, x2, 0)) | x1 ∈ [0, xb

12(x2)] and x2 ∈ [0, xb
22(x1)]

}
.

Among the infinitely many Nash equilibria, there is a coalition-proof Nash equilibrium
and it is denoted by N . It is determined at the intersection of the imaginary best responses
of player 12 and 22, i.e., xb

12(X2) and xb
22(X1). Specifically, the unique coalition-proof Nash

equilibrium is

(

(
v212v22

(v12 + v22)2
,

v212v22
(v12 + v22)2

, 0), (
v12v

2
22

(v12 + v22)2
,

v12v
2
22

(v12 + v22)2
, 0)

)

.

4.2 The case in which m1 = 3, m2 = 4, and v22 > v23

As in the previous section, we have following group-1-specific equilibria in which A =
{11, 12}, given X2:

(x11, x12, x13) = (x1, x1, 0) with 0 ≤ x1 ≤ xb
12(X2) =

{ √
v12X2 −X2 for X2 ≤ v12

0 for X2 > v12.

From (b) in Lemma 2 we have following group-2-specific equilibria, given X1:

(x21, x22, x23, x24) = (x2, x2, 0, 0) with xb
23(X1) ≤ x2 ≤ xb

22(X1),

xb
23(X1) =

{ √
2v23X1 − 2X1 for X1 ≤ v23

2

0 for X1 >
v23
2

and

xb
22(X1) =

{ √
2v22X1 − 2X1 for X1 ≤ v22

2

0 for X1 >
v22
2
.

Figure 2 (a) provides information about group-i-specific equilibria. The shadowed area
S1 in the figure represents the values of x1 each of which composes each group-1-specific
equilibrium, given X2, i.e., x1 ∈ [0, xb

12(X2)]. The area S2 represents the values of
x2

2
each of

which composes each group-2-specific equilibrium, given X1, i.e.,
x2

2
∈ [

xb
23
(X1)

2
,
xb
22
(X1)

2
]. Note

that X1 = x1 and X2 =
x2

2
.

[Figure 2 about here.]



The Nash equilibria of the game are consist of x1 and
x2

2
which belong to the overlapped

area from S1 and S2, i.e. S1∩S2. Figure 2 (b) provides information about the Nash equilibria
of the game. Each pair of x1 and

x2

2
, belonging to the deviant-crease-line area, compose of the

Nash equilibrium, ((x1, x1, 0), (x2, x2, 0, 0)). So, there exist infinitely many Nash equilibria.
Formally, the set of the pure-strategy Nash equilibria is

{

((x1, x2, 0), (x2, x2, 0, 0)) | x1 ∈
[

0, xb
12(

x2

2
)
]

and
x2

2
∈
[
xb
23(x1)

2
,
xb
22(x1)

2

]}

.

Among the infinitely many Nash equilibria, there is a coalition-proof Nash equilibrium
and it is denoted by M . It is determined at the intersection of the imaginary best responses
of player 12 and 22, i.e., xb

12(X2) and xb
22(X1)/2. Specifically, the unique coalition-proof Nash

equilibrium is

(

(
2v212v22

(2v12 + v22)2
,

2v212v22
(2v12 + v22)2

, 0), (
2v12v

2
22

(2v12 + v22)2
,

2v12v
2
22

(2v12 + v22)2
, 0, 0)

)

.

4.3 The case in which m1 = 3, m2 = 4, and v22 = v23

We have following group-1-specific equilibria in which A = {11, 12}, given X2:

(x11, x12, x13) = (x1, x1, 0) with 0 ≤ x1 ≤ xb
12(X2) =

{ √
v12X2 −X2 for X2 ≤ v12

0 for X2 > v12.

From (c) in Lemma 2, we have following two types of group-2-specific equilibria in which
A = {21, 22} and B = {23, 24}, given X1:

(x21, x22, x23, x24) = (x2, x2, y2, 0) with x2 > y2 and x2+y2 = xb
22(X1) =

{ √
2v22X1 − 2X1 for X1 ≤ v22

2

0 for X1 >
v22
2

and

(x21, x22, x23, x24) = (x2, x2, x2, 0) with 0 ≤ x2 ≤ xb
22(X1) =

{ √
v22X1 −X1 for X1 ≤ v22

0 for X1 > v22.

First, we consider the Nash equilibrium which consists of the group-2-specific equilibrium
(x2, x2, y2, 0). Figure 3 (a) provides information about the group-i-specific equilibria. The
shadowed area S1 in the figure represents the values of x1 each of which composes each group-
1-specific equilibrium, given X2, i.e., x1 ∈ [0, xb

12(X2)]. The curve S2 represents the values of
x2+y2

2
that compose each group-2-specific equilibrium, given X1, i.e.,

x2+y2
2

=
xb
22
(X1)

2
. Note

that X1 = x1 and X2 =
x2+y2

2
.

[Figure 3 about here.]

Then the Nash equilibria of the game are consist of x1 and x2+y2
2

which belong to the
overlapped curve from S1 and S2, i.e. S1 ∩ S2. Figure 3 (b) provides information about the



Nash equilibria of the game. Each pair of x1 and x2+y2
2

, belonging to the green bold line,
compose of the Nash equilibrium, ((x1, x1, 0), (x2, x2, y2, 0)). So, there exist infinitely many
pure-strategy Nash equilibria. Formally, the set of the pure-strategy Nash equilibria is

{

((x1, x2, 0), (x2, x2, y2, 0)) | x1 ∈
[

0, xb
12(

x2 + y2
2

)

]

, x2 > y2, and
x2 + y2

2
=

xb
22(x1)

2

}

.

Among the infinitely many Nash equilibria, the coalition-proof Nash equilibrium is de-
noted by L which is determined at the intersection of the imaginary best responses of player
12 and 22, i.e., xb

12(X2) and xb
22(X1)/2. Specifically, the coalition-proof Nash equilibria are

(

(
2v212v22

(2v12 + v22)2
,

2v212v22
(2v12 + v22)2

, 0), (x2, x2, y2, 0)

)

with
x2 + y2

2
=

v12v
2
22

(2v12 + v22)2
and x2 > y2.

Lastly, we consider the Nash equilibrium which consists of the group-2-specific equilib-
rium (x2, x2, x2, 0). Figure 4 (a) provides information about the group-i-specific equilibria.
The shadowed area Si in the figure represents the values of xi each of which composes a
group-i-specific equilibrium, given X−i, i.e., xi ∈ [0, xb

i2(X−i)]. Note that X1 = x1 and
X2 = x2.

[Figure 4 about here.]

Then the Nash equilibria of the game are consist of x1 and x2 which belong to the
overlapped area from S1 and S2, i.e. S1 ∩ S2. Figure 4 (b) provides information about the
Nash equilibria of the game. Each pair of x1 and x2, belonging to the deviant-crease-line
area, compose of the pure-strategy Nash equilibrium, ((x1, x1, 0), (x2, x2, x2, 0)). So, there
exist infinitely many Nash equilibria. Formally, the set of the pure-strategy Nash equilibria
is

{
((x1, x2, 0), (x2, x2, x2, 0)) | x1 ∈ [0, xb

12(x2)] and x2 ∈ [0, xb
22(x1)]

}
.

Among the infinitely many Nash equilibria, there is a coalition-proof Nash equilibrium.
The coalition-proof Nash equilibrium is denoted byK, which is determined at the intersection
of the imaginary best responses of player 12 and 22, i.e., xb

12(X2) and xb
22(X1). Specifically,

the coalition-proof Nash equilibrium is

(

(
v212v22

(v12 + v22)2
,

v212v22
(v12 + v22)2

, 0), (
v12v

2
22

(v12 + v22)2
,

v12v
2
22

(v12 + v22)2
,

v12v
2
22

(v12 + v22)2
, 0)

)

.8

8Armed with the coalition-proof Nash equilibrium concept as an equilibrium selection principle, it would
be an interesting question to study the group-size effect in the contest, i.e., whether the larger group is advan-
taged or disadvantaged, by comparing the case in which m1 = m2 = 3 with the case in which m1 = 3,m2 = 4
in our examples. We have found that the larger group is indeed disadvantaged in the symmetric setting where
players in each group have the same valuation, and that the same is true under certain conditions in the
asymmetric setting. We leave a rigorous analysis on the group-size effect in our average-opinion group contest
for future research. We are grateful to the anonymous reviewer for giving this interesting question.
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Appendix: The proof of Lemma 2

Proof. (a) We show that each player in group i does not have any incentive to change its
effort level stipulated in the mi-tuple vector of effort levels above, given the other players’
effort levels within its group and X−i. First, any player ik ∈ B does not have an incentive
to increase its effort level, because increasing its effort level does not change its group effort
level Xi, which is equal to xi. Now let us consider the deviation incentive of each player
ik ∈ A. Since Xi = xi ≤ min

{
xb
ik(X−i)

}

ik∈A
, the player(s) whose valuation is the lowest in

subgroup A has no incentive to decrease its effort level, and does not have any incentive to
increase due to the invariant Xi. The other players in subgroup A have the imaginary best
responses (to X−i) that are greater than or at least equal to xi, and thus they do not have
any incentive to decrease their effort level. They do not have any incentive to increase due
to the invariant Xi, either. Therefore, every player in group i has no incentive to change its
effort level stipulated in the vector of effort levels in (a). Lastly, we show that |A| = mi+1

2

should be held in equilibrium. Suppose that |A| > mi+1
2

and xi > 0. Then, in subgroup
A, there exists at least a player who has an incentive to reduce his effort level to 0. Now
suppose that |A| < mi+1

2
. In this case, the median value Xi is 0 and thus every player in

subgroup A has the incentive to decrease his effort level to 0. So, in equilibrium, |A| should
be equal to mi+1

2
.

(b) The vector of effort levels says that half of the players in group i, i.e., player i(mi +
2)/2, i(mi + 4)/2, . . ., imi, choose zero effort level, and the other half choose an equal effort
level xi. The highest-valuation player in subgroup B is player i(mi + 2)/2, and he has
no incentive to increase its effort level, because xi is greater than or at least equal to his
imaginary best response or equal to zero. The other players in subgroup B do not have
any incentive to increase, for their imaginary best responses are less than or at most equal
to player i(mi + 2)/2’s. Now let us consider the players in subgroup A. Player imi/2 is
the lowest-valuation player in the subgroup, and he has no incentive to decrease its effort
level, because xi is less than or equal to his imaginary best response to X−i. Due to the
invariant Xi, there is no incentive for him to increase his effort level. Since the other players
in subgroup A have imaginary best responses that are higher than or at least equal to player
imi/2’s, they do not have any interest to change their effort levels. All players in group i do
not have any incentive to deviate from the suggested vector of effort levels in (b).

(c) We show that the first vector of effort levels, (xi, xi, · · · , xi, xi, yi, 0, · · · , 0, 0), con-
stitutes the group-i-specific equilibrium. The lowest-valuation player(s) in subgroup A does
not have any incentive to increase or decrease his effort level, because xi + yi is equal to his
imaginary best response to X−i. The other players in subgroup A do not have any incentive
to decrease their effort levels, because their imaginary best responses are greater than or
at least equal to xi + yi. They also do not have any interest to increase their effort levels
because of the invariant Xi. The highest-valuation player who chooses yi in subgroup B has
no incentive to change its effort level because xi + yi is equal to its imaginary best response
to X−i. And the other players in subgroup B have no incentive to increase their effort levels
since their imaginary best responses are less than or at most equal to xi + yi.

Now consider the vector of effort levels, (xi, xi, · · · , xi, xi, xi, 0, · · · , 0, 0). The lowest-
valuation player(s) in subgroup A does not have an incentive to decrease his effort level



because xi is less than or equal to his imaginary best response to X−i. He does not have any
incentive to increase his effort level, either, because of the invariant Xi. The other players in
subgroup A do not have any incentive to decrease their effort levels, because their imaginary
best responses are greater than or at least equal to xi. They also do not have any interest
to increase their effort levels due to the invariant Xi. Similarly, the highest-valuation player
who chooses xi in subgroup B has no incentive to decrease its effort level, because xi is less
than or equal to its imaginary best response to X−i. He has no incentive to increase due to
the invariant Xi. The other players in subgroup B have no incentive to increase their effort
levels because of the invariant Xi.

(d) The lowest-valuation player(s) in subgroup A does not have an incentive to decrease
his effort level because xi is less than or equal to his imaginary best response to X−i. He
does not have any incentive to increase his effort level, due to the invariant Xi. The other
players in subgroup A do not have any incentive to decrease their effort levels, because their
imaginary best responses are greater than or at least equal to xi. They also do not have any
interest to increase their effort levels due to the invariant Xi. The highest-valuation player
who chooses xi in subgroup B has no incentive to decrease its effort level, because xi is less
than its imaginary best response to X−i. Also, due to the invariant Xi, he has no interest to
increase. And the other players in subgroup B have no interest to increase their effort levels
due to the invariant Xi, either.
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(b) The Nash equilibria of the game

Figure 1: m1 = m2 = 3
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(b) The Nash equilibria of the game

Figure 2: m1 = 3,m2 = 4 and v22 > v23
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(b) The Nash equilibria of the game

Figure 3: m1 = 3,m2 = 4, v22 = v23, and (x2, x2, y2, 0)
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(b) The Nash equilibria of the game

Figure 4: m1 = 3,m2 = 4, v22 = v23, and (x2, x2, x2, 0)


