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Abstract
In both universal classes of exact potential games described in the existing literature, congestion games and games with

structured utilities, the players sum up their common local utilities. This paper shows that no other method to

aggregate local utilities could guarantee the existence of an exact potential.
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1 Introduction

The most natural way to explain the motivation for this paper starts with the following
results. Theorems 3.1 and 3.2 of Monderer and Shapley (1996) showed that a finite strategic
game admits an exact potential if and only if it is isomorphic to a congestion game of
Rosenthal (1973); Theorem 3.3 of Voorneveld et al. (1999) provides a more intuitive proof
of the same fact. Theorem 5 of Kukushkin (2007) showed that a strategic game admits an
exact potential if and only if it is isomorphic to a game with structured utilities.

In both universal classes of potential games, the players sum up common local utilities

obtained from the use of certain “facilities”; the two classes differ in exactly what strategic
possibilities are open to the players and in some other details. In a sense, those differences
are of little import since Kukushkin (forthcoming), generalizing Le Breton and Weber (2011),
defined a class of potential games including both as particular cases.

One can, theoretically, imagine similar models where local utilities would be aggregated
in any number of different ways. However, Theorem 1 of Kukushkin (2007) showed that
addition (possibly combined with monotone transformations of a certain kind) is the only
way to ensure the existence of a Nash equilibrium regardless of other characteristics of the
“generalized congestion” game, albeit under an a priori assumption that only continuous and
strictly increasing functions can aggregate local utilities. Theorem 3 of Kukushkin (2007)
established the necessity of addition in the same sense for games with structured utilities.

The strict monotonicity assumption was not accidental in either theorem. For instance,
the minimum (“weakest link”) aggregation also ensures the existence of Nash equilibrium in
both cases. Moreover, in games with structured utilities it even ensures the existence of a
strong Nash equilibrium (Kukushkin, 2017); actually, the minimum aggregation was used in
the first models of this kind (Germeier and Vatel’, 1974). In “bottleneck congestion games,”
a strong Nash equilibrium exists if every user negatively affects each facility (Fotakis et al.,
2008; Harks et al., 2013; Kukushkin, 2017).

Theorems 2 and 4 of Kukushkin (2007) showed additive aggregation of local utilities to
be necessary and sufficient for the ensured existence of an exact potential in a generalized
congestion game or, respectively, in a generalized game with structured utilities. However,
that a priori restriction to continuous and strictly increasing aggregation rules was carried
over from Theorems 1 and 3. Thus, the question of whether there may exist other aggregation
rules also ensuring the existence of an exact potential remained, strictly speaking, open.

This paper finally closes the gap. The necessity of addition is shown without any super-
fluous assumptions. The following section contains basic definitions. In Section 3, our main
result is formulated, and in Section 4 proved.

2 Basic definitions

A strategic game Γ is defined by a finite set N of players, and, for each i ∈ N , a set Xi of
strategies and a real-valued utility function ui on the set XN :=

∏

i∈N Xi of strategy profiles.
We denote N := 2N \ {∅} and XI :=

∏

i∈I Xi for each I ∈ N . Given i, j ∈ N , we use



notation X−i instead of XN\{i} and X−ij instead of XN\{i,j}.
A function P : XN → R is an exact potential of Γ (Monderer and Shapley, 1996) if

ui(yN)− ui(xN) = P (yN)− P (xN)

whenever i ∈ N , yN , xN ∈ XN , and y−i = x−i.
The notion of a game with (additive) common local utilities (a CLU game) was introduced

in Kukushkin (forthcoming). The defining feature of such a game is the following structure of
utility functions. There is a set A of facilities ; the set of all (nonempty) finite subsets of A is
denoted B. For each i ∈ N , there is a mapping Bi : Xi → B describing what facilities player i
uses having chosen xi. For every α ∈ A, we denote I+α := {i ∈ N | ∃xi ∈ Xi [α ∈ Bi(xi)]}
(the set of players able to use facility α) and I−α := {i ∈ N | ∀xi ∈ Xi [α ∈ Bi(xi)]} (the set of
players unable not to use α). Given xN ∈ XN , we denote I(α, xN) := {i ∈ N | α ∈ Bi(xi)}
(the set of players who actually use α under strategies xN); obviously, I

−
α ⊆ I(α, xN) ⊆ I+α .

For each i ∈ I+α , we denote Xα
i := {xi ∈ Xi | α ∈ Bi(xi)}. Then we define Iα := {I ∈

N | I−α ⊆ I ⊆ I+α } and Ξα := {⟨I, xI⟩ | I ∈ Iα & xI ∈ Xα
I }. The local utility function at

α ∈ A is ϕα : Ξα → R. The total utility function of each player i in a CLU game is

ui(xN) :=
∑

α∈Bi(xi)

ϕα(I(α, xN), xI(α,xN )). (1)

A facility α ∈ A is trim if ϕα only depends on the number of users unless the facility is
used by all potential users. More technically, α ∈ A is trim if there is a real-valued function
ψα(m) defined for integer m between minI∈Iα #I = max{1,#I−α } and #I+α − 1 such that

ϕα(I, xI) = ψα(#I)

whenever I ∈ Iα, I ̸= I+α , and xI ∈ Xα
I . A CLU game is trim if every facility is trim.

By Theorem 1 of Kukushkin (forthcoming), every trim CLU game admits an exact po-
tential.

Both congestion games (Rosenthal, 1973) and games with structured utilities (Kukushkin,
2007) are trim CLU games. In the former case, Xi ⊆ B for each i ∈ N , each Bi is an identity
mapping, and hence the second argument of ϕα can be dropped; besides, ϕα only depends
on #I. In the latter case, for each i ∈ N , the set Bi(xi) is the same for all xi ∈ Xi; hence
I(α, xN) does not depend on the second argument and hence the first argument of ϕα can
be dropped.

The definition of a generalized game with common local utilities (a GCLU game) differs
from that of a CLU game in just one point: each player’s total utility is an arbitrary aggregate
of local utilities over Bi(xi). In other words, for every i ∈ N and xi ∈ Xi, there is an
aggregation rule Uxi

i : RBi(xi) → R. The total utility function of each player i in a GCLU
game is

ui(xN) := Uxi

i

(⟨

ϕα(I(α, xN), xI(α,xN ))
⟩

α∈Bi(xi)

)

.



3 Main Theorem

The same symbol “
∑

” can be employed in (1) regardless of the set Bi(xi) because addition
is commutative and associative. If we want to contemplate the replacement of addition with
another function, or other functions, possibly devoid of those properties, we have to fix some
technical details.

An abstract aggregation rule over a set R ⊆ R is a mapping from a (finite) Cartesian
power of R to R, U : RΣ(U) → R, where Σ(U) is a finite set (of the names for the arguments).
To use an abstract aggregation rule U as Uxi

i (given a GCLU game, i ∈ N , and xi ∈ Xi), we
need two conditions to hold: First, Σ(U) and Bi(xi) must have the same cardinality. Second,
all values of ϕα(I(α, xN), xI(α,xN )) for all α ∈ Bi(xi) must belong to R. If both conditions
hold, a bijection µ : Σ(U) → Bi(xi) has to be chosen, which would indicate, for each position
among the arguments of U , which value of ϕα(I(α, xN), xI(α,xN )) should take this position;
a complete description of relevant formalism can be found in Kukushkin (2017, Section 6).

Given a set of abstract aggregation rules U and a GCLU game Γ, we say that a player
i uses aggregation rules from U in Γ if, for every xi ∈ Xi, there are U ∈ U and a bijection
µxi

i : Σ(U) → Bi(xi) such that Uxi

i is obtained from U by the substitution described by µxi

i .

Theorem 1. Let N be a finite set with #N ≥ 2. Let R be a subset of R. Let Ui, for each

i ∈ N , be a nonempty set of abstract aggregation rules over R. Let U denote
∪

i∈N Ui. Then

the following conditions are equivalent.

1.1. Every trim GCLU game where N is the set of players and each player i uses aggregation
rules from Ui admits an exact potential.

1.2. Every generalized congestion game where N is the set of players and each player i uses
aggregation rules from Ui admits an exact potential.

1.3. Every generalized game with structured utilities where N is the set of players and each

player i uses aggregation rules from Ui admits an exact potential.

1.4. There is a mapping λ : R → R and, for every U ∈ U, a constant C(U) ∈ R such that

U(vΣ(U)) = C(U) +
∑

s∈Σ(U)

λ(vs) (2)

for all U ∈ U and vΣ(U) ∈ RΣ(U).

Remark. In contrast to Kukushkin (2007, 2017), the set R here need not be an open interval
in R; e.g., the theorem remains valid if the attention is restricted to games with integer values
of local utility functions.

In simple words, Theorem 1 delivers on the promise made in Introduction: The existence
of an exact potential in every game of this kind is ensured if and only if each player sums up
the relevant utilities. To be more precise, (2) also allows a strictly monotone transformation
λ, the same for all strategies of all players, and adding a constant C(U), which may depend
on the player and the strategy.



4 Proof

The implications Condition 1.1 ⇒ Condition 1.2 and Condition 1.1 ⇒ Condition 1.3 are
trivial.

Assuming Condition 1.4 to hold, let us prove Condition 1.1. Let Γ be a trim GCLU
game where N is the set of players and each player i uses aggregation rules from Ui. We
have to show that Γ admits an exact potential. We define a CLU game Γ∗ by: N∗ := N ;
A∗ := A ∪

∪

i∈N({i} × Xi); X
∗
i := Xi for each i ∈ N ; B∗

i (xi) := Bi(xi) ∪ {(i, xi)} for each
i ∈ N and every xi ∈ Xi; ϕ

∗
α(I, xI) := λ ◦ ϕα(I, xI) for all α ∈ A, I ∈ Iα, and xI ∈ Xα

I ;
ϕ∗
(i,xi)

({i}, xi) := C(Uxi

i ) for each i ∈ N and every xi ∈ Xi. These two facts are easy to
check: first, Γ∗ is trim, and hence admits an exact potential by Theorem 1 of Kukushkin
(forthcoming); second, u∗i (xN) = ui(xN) for all xN ∈ XN , and hence every exact potential of
Γ∗ is an exact potential of Γ as well.

Now let us turn to the implications Condition 1.2 ⇒ Condition 1.4 and Condition 1.3 ⇒
Condition 1.4; the two proofs only differ in the first step.

Claim 1. Let Condition 1.2 hold. Let i, j ∈ N , i ̸= j, U ∈ Ui, V ∈ Uj, s ∈ Σ(U), t ∈ Σ(V ),
u, u′ ∈ R, vΣ(U), v

′
Σ(U) ∈ RΣ(U), vs = u, v′s = u′, v−s = v′−s, wΣ(V ), w

′
Σ(V ) ∈ RΣ(V ), wt = u,

w′
t = u′, w−t = w′

−t. Then

U(v′Σ(U))− U(vΣ(U)) = V (w′
Σ(V ))− V (wΣ(V )).

Proof of Claim 1. For each h ∈ N \{i, j}, we fix a Uh ∈ Uh and denote Ui := U and Uj := V .
Then we consider a generalized congestion game where: A := {α, β} ∪

∪

h∈N [{h} × Σ(Uh)],
assuming {α, β}∩

∪

h∈N [{h}×Σ(Uh)] = ∅; Xi := {xi, yi} with xi := {α}∪({i}× [Σ(U)\{s}])
and yi := {β}∪ ({i}× [Σ(U)\{s}]), Xj := {xj, yj} with xj := {α}∪ ({j}× [Σ(V )\{t}]) and
yj := {β} ∪ ({j} × [Σ(V ) \ {t}]), and Xh := {{h} × Σ(Uh)} for each h ∈ N \ {i, j} (having
singleton strategy sets, players h ̸= i, j participate in the game only in a purely technical
sense); player i uses aggregation rule U with both strategies, player j uses aggregation rule
V with both strategies, each player h ̸= i, j uses aggregation rule Uh; µ

xi

i (s) := µ
xj

j (t) :=

α, µyi
i (s) := µ

yj
j (t) := β, µxi

i (s
′) := µyi

i (s
′) := (i, s′) for all s′ ∈ Σ(U) \ {s}, µ

xj

j (t′) :=

µ
yj
j (t′) := (j, t′) for all t′ ∈ Σ(V ) \ {t}, µxh

h (s′) := (h, s′) for all h ̸= i, j and s′ ∈ Σ(Uh);
ψα(2) := ψβ(2) := u, ψα(1) := ψβ(1) := u′, ψ(i,s′)(1) := vs′ [= v′s′ ] for all s′ ∈ Σ(U) \ {s},
ψ(j,t′)(1) := wt′ [= w′

t′ ] for all t
′ ∈ Σ(V ) \ {t}.

Since only players i and j matter, the game is adequately described by the following 2×2
matrix (player i chooses rows, player j columns):

xj yj
xi ⟨U(vΣ(U)), V (wΣ(V ))⟩ ⟨U(v′Σ(U)), V (w′

Σ(V ))⟩

yi ⟨U(v′Σ(U)), V (w′
Σ(V ))⟩ ⟨U(vΣ(U)), V (wΣ(V ))⟩.

Straightforward calculations show that 0 = [P (yi, xj)−P (xi, xj)]+[P (yi, yj)−P (yi, xj)]+
[P (xi, yj)−P (yi, yj)]+[P (xi, xj)−P (xi, yj)] = [U(v′Σ(U))−U(vΣ(U))]+[V (wΣ(V ))−V (w′

Σ(V ))]+

[U(v′Σ(U))−U(vΣ(U))] + [V (wΣ(V ))−V (w′
Σ(V ))]; therefore, U(v

′
Σ(U))−U(vΣ(U)) = V (w′

Σ(V ))−

V (wΣ(V )) indeed.



Claim 2. Let Condition 1.3 hold. Let i, j ∈ N , i ̸= j, U ∈ Ui, V ∈ Uj, s ∈ Σ(U), t ∈ Σ(V ),
u, u′ ∈ R, vΣ(U), v

′
Σ(U) ∈ RΣ(U), vs = u, v′s = u′, v−s = v′−s, wΣ(V ), w

′
Σ(V ) ∈ RΣ(V ), wt = u,

w′
t = u′, w−t = w′

−t. Then

U(v′Σ(U))− U(vΣ(U)) = V (w′
Σ(V ))− V (wΣ(V )).

Proof of Claim 2. There is much similarity with the proof of Claim 1. For each h ∈ N\{i, j},
we fix a Uh ∈ Uh, denote Ui := U and Uj := V , and consider a generalized game with
structured utilities where: A := {α}∪

∪

h∈N [{h}×Σ(Uh)], assuming α /∈
∪

h∈N [{h}×Σ(Uh)];
Xi := {xi, yi}, Xj := {xj, yj}, Xh := {xh} for each h ∈ N \ {i, j} (again, players h ̸= i, j
participate in the game only in a purely technical sense); Bi := {α} ∪ ({i} × [Σ(U) \ {s}]),
Bj := {α} ∪ ({j} × [Σ(V ) \ {t}]), Bh := {h} × Σ(Uh) for each h ̸= i, j; player i uses
aggregation rule U with both strategies, player j uses aggregation rule V with both strategies,
each player h ̸= i, j uses aggregation rule Uh; µ

xi

i (s) := µyi
i (s) := µ

xj

j (t) := µ
yj
j (t) := α,

µxi

i (s
′) := µyi

i (s
′) := (i, s′) for all s′ ∈ Σ(U) \ {s}, µ

xj

j (t′) := µ
yj
j (t′) := (j, t′) for all t′ ∈

Σ(V ) \ {t}, µxh

h (s′) := (h, s′) for all h ̸= i, j and s′ ∈ Σ(Uh); ϕα(xi, xj) := ϕα(yi, yj) := u,
ϕα(xi, yj) := ϕα(yi, xj) := u′, ϕ(i,s′)(xi) := ϕ(i,s′)(yi) := vs′ [= v′s′ ] for all s′ ∈ Σ(U) \ {s},
ϕ(j,t′)(xj) := ϕ(j,t′)(yj) := wt′ [= w′

t′ ] for all t
′ ∈ Σ(V ) \ {t}.

Since only players i and j matter, the game is adequately described by the same 2 × 2
matrix as in the proof of Claim 1:

xj yj
xi ⟨U(vΣ(U)), V (wΣ(V ))⟩ ⟨U(v′Σ(U)), V (w′

Σ(V ))⟩

yi ⟨U(v′Σ(U)), V (w′
Σ(V ))⟩ ⟨U(vΣ(U)), V (wΣ(V ))⟩.

The same calculations show that U(v′Σ(U))−U(vΣ(U)) = V (w′
Σ(V ))− V (wΣ(V )) again.

The rest of the proof is the same under Condition 1.2 or Condition 1.3.

Claim 3. Let U, V ∈ U, s ∈ Σ(U), t ∈ Σ(V ), u, u′ ∈ R, vΣ(U), v
′
Σ(U) ∈ RΣ(U), vs = u,

v′s = u′, v−s = v′−s, wΣ(V ), w
′
Σ(V ) ∈ RΣ(V ), wt = u, w′

t = u′, w−t = w′
−t. Then

U(v′Σ(U))− U(vΣ(U)) = V (w′
Σ(V ))− V (wΣ(V )).

Proof of Claim 3. We consider two alternatives. If i, j ∈ N can be found such that i ̸= j,
U ∈ Ui and V ∈ Uj, then we just invoke Claim 1 or Claim 2 and are home immediately.

Suppose the contrary: both U and V only belong to the same Ui (i ∈ N). Then we pick

h ∈ N \ {i}, Ũ ∈ Uh and s̃ ∈ Σ(Ũ) arbitrarily, and define ṽΣ(Ũ), ṽ
′
Σ(Ũ)

∈ RΣ(Ũ) in this way:

ṽs̃′ := u for all s̃′ ∈ Σ(Ũ); ṽ′s̃ := u′; ṽ′s̃′ := u for all s̃′ ∈ Σ(Ũ)\ s̃. Applying Claim 1 or Claim 2
to i, h, U , Ũ , etc., we obtain U(v′Σ(U))−U(vΣ(U)) = Ũ(ṽ′

Σ(Ũ)
)− Ũ(ṽΣ(Ũ)). Applying Claim 1

or Claim 2 to h, i, Ũ , V , etc., we obtain Ũ(ṽ′
Σ(Ũ)

)− Ũ(ṽΣ(Ũ)) = V (w′
Σ(V ))− V (wΣ(V )).

Remark. The assumption #N ≥ 2 played a crucial role here.



Now we may define a function ∆: R2 → R by ∆(u, u′) := U(v′Σ(U))− U(vΣ(U)) provided

there is s ∈ Σ(U) such that vs = u, v′s = u′, and v−s = v′−s. Claim 3 ensures that the choice
of U ∈ U, s ∈ Σ(U) and v−s = v′−s is irrelevant.

Claim 4. For every U ∈ U and vΣ(U), v
′
Σ(U) ∈ RΣ(U), there holds

U(v′Σ(U))− U(vΣ(U)) =
∑

s∈Σ(U)

∆(vs, v
′
s). (3)

Proof of Claim 4. Ordering Σ(U) in an arbitrary way, we assume that Σ(U) = {1, . . . ,m}.
For each k ∈ {0, . . . ,m}, we define vkΣ(U) ∈ RΣ(U) by vks := vs for s > k and vks := v′s for

s ≤ k. Obviously, v0Σ(U) = vΣ(U), v
m
Σ(U) = v′Σ(U), and U(v

′
Σ(U))−U(vΣ(U)) =

∑m

k=0[U(v
k+1
Σ(U))−

U(vkΣ(U))]. Since U(v
k+1
Σ(U))− U(vkΣ(U)) = ∆(vs, v

′
s) by Claim 3, we have (3).

To finish the proof, we pick u0 ∈ R arbitrarily and set λ(u) := ∆(u0, u) for every
u ∈ R; for every U ∈ U, we define v0Σ(U) ∈ RΣ(U) by v0s := u0 for all s ∈ Σ(U), and set

C(U) := U(v0Σ(U)). Now (3) immediately implies (2).

References

Fotakis, D., Kontogiannis, S., and P. Spirakis (2008) “Atomic congestion games among
coalitions” ACM Transactions on Algorithms 4 (4), Art. 52

Germeier, Yu.B. and I.A. Vatel’ (1974) “On games with a hierarchical vector of interests”
Izvestiya Akademii Nauk SSSR, Tekhnicheskaya Kibernetika, 3, 54-69 [in Russian; English
translation in Engineering Cybernetics 12(3), 25-40 (1974)].
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