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Abstract
An analytic function method is applied to illustrate Geweke's (2010) three econometric interpretations for a generic

rational expectations (RE) model. This delivers an explicit characterization of the model's cross-equation restrictions

imposed by the RE hypothesis under each interpretation. It is shown that the degree of identification on the deep

parameters is positively related to the strength of the underlying econometric interpretation, and observationally

equivalent models may arise once the cross-equation restrictions are interpreted in a minimal sense. This offers

important insights into the econometric modeling and evaluation of dynamic economic models.
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1 Introduction

Rational expectations models typically produce cross-equation restrictions on the implied
reduced-form models that are useful for making inferences about the deep parameters of
the original behavioral models [Hansen and Sargent (1991)]. Because these RE models
abstract sufficiently from their measured economic behavior, it is important to articulate
the dimensions of reality that they are intended to mimic. This note applies an analytic
function method to explore three alternative econometric interpretations, as proposed in
Geweke (2010), for the relation between a generic univariate RE model and its measured
economic behavior.
The method provides an explicit characterization of the cross-equation restrictions imposed

by the RE hypothesis under each interpretation, which sheds new light on parameter identifi-
cation in RE models. Early notable contributions in this area include Wallis (1980), Pesaran
(1981), and Blanchard (1982), while recent progress can be found in Qu and Tkachenko
(2013). It is important to note that identification in the existing work is often discussed as
if its associated cross-equation restrictions are interpreted in a unique, conventional, sense.
This ignorance of alternative, probably unconventional, senses in which identification is in
less urgent need renders the endeavor to achieve identification absolute. As argued forcefully
by Hurwicz (1962), however, both the degree of and the need for identification are relative

notions, and they are meaningful only relative to the purpose for which the model is de-
signed.1 It is well known that economic models oftentimes have certain deep parameters
that are left undetermined from the restrictions imposed by the models alone so that some
a priori information is needed. If we denote by Θ0♣Iq the identified set of parameters after
imposing a priori information I, and by Θ0♣Eq the identified set of parameters relative to the
purpose E for which the model is designed, then Hurwicz’s insight on parameter identifica-
tion instructs us to impose a priori information sufficiently to eliminate all those parameter
values that are at odds with our purpose so that Θ0♣Iq ❸ Θ0♣Eq. The rest of this arti-
cle is devoted to providing an explicit accounting for the content of Θ0♣Eq by couching the
modeler’s purpose E in terms of the three econometric interpretations outlined by Geweke
(2010). This explicit characterization of Θ0♣Eq turns out to offer important insights into the
econometric modeling and evaluation of dynamic economic models.

2 Generic Model

We consider the following generic univariate linear RE model

yt ✏ 1

α
Etyt�1 �B♣Lqyt✁1 � xt, E♣Lqxt ✏ F ♣Lqǫt, ǫt ✒ i.i.d. N ♣0, σ2

ǫ q (1)

in which yt is the observed endogenous variable, xt is the exogenous driving process, and
Et represents the mathematical expectation conditional on information available at time t,
including the model’s structure and all past and present realizations of the exogenous and

1In Hurwicz (1962), identification—the need for knowledge of the true old behavioral pattern—is dis-
cussed relative to the purpose of prediction. Another standard textbook paradigm is that the unidentified
parameters of a linear regression model will not cause any trouble if the purpose for the model is not to give
a partial effect interpretation but make prediction.



endogenous processes. Moreover, we parameterize the polynomials in the lag operator L

that appear in (1) as follows

B♣Lq ✏ B0 �B1L� ☎ ☎ ☎ �BmL
m (2)

E♣Lq ✏ 1✁ E1L✁ ☎ ☎ ☎ ✁ EpL
p (3)

F ♣Lq ✏ 1� F1L� ☎ ☎ ☎ � FqL
q (4)

where m, p, q are all finite nonnegative integers. Finally, we assume that both E♣zq and F ♣zq
do not have roots inside the unit circle ♣⑤z⑤ ✏ 1, z P Cq and they have no common roots.
This ensures that xt follows a covariance stationary ARMA♣p, qq process. Economic models
in the form of (1) can easily arise in many contexts. With B♣Lq ✏ 0, for example, (1) may
be resulted from a simple monetary model by combining a sort of “Fisher relation” and a
monetary policy rule with α understood to be the degree to which policy rate leans against
inflationary winds. We collect all the model parameters in the vector

θ ✏ rα,B0, . . . , Bm, E1, . . . , Ep, F1, . . . , Fqs✶

where θ P Θ ❸ R
2�m�p�q. For the remaining analysis we will restrict our attention to

the parameter space Θ that delivers a unique solution to (1), and seek a subspace of Θ
in which different parameter values generate observationally equivalent model implications
under identification failure.2

To fully characterize the cross-equation restrictions imposed by (1), we closely follow the
solution principle advocated in Whiteman (1983). In particular, we seek a solution in the
space spanned by time-invariant square-summable linear combinations of the process ǫ fun-
damental for the driving process x, yt ✏ C♣Lqǫt, where C♣Lq is assumed to be a polynomial in
nonnegative powers of L with square-summable coefficients. Under the Gaussianity assump-
tion on the innovation ǫ, the conditional expectation coincides with the linear projection and
thus can be conveniently evaluated via the Wiener-Kolmogorov optimal prediction formula

Etyt�1 ✏
✒
C♣Lq
L

✚
�
ǫt ✏ L✁1rC♣Lq ✁ C0sǫt

where r s� is the annihilation operator that ignores negative powers of L. Because (1) holds
for all realizations of ǫ, we can rewrite (1) in its z-transform as

C♣zq ✏ 1

α
z✁1rC♣zq ✁ C0s � zB♣zqC♣zq � F ♣zq

E♣zq
and solving for C♣zq gives

C♣zq ✏ ✁ zF ♣zq ✁ C0

α
E♣zq✏

z2B♣zq ✁ z � 1

α

✘
E♣zq

2The observational equivalence result between an indeterminate model driven by nonfundamental
(sunspot) shocks and a determinate model driven by fundamental shocks can be found, for example, Beyer
and Farmer (2007) and Leeper and Walker (2011). In addition, Lubik and Schorfheide (2006) and Leeper
and Walker (2011) show that even two determinate models can be made observationally equivalent. Note
that all the aforementioned models can be nested in the form of (1) in this note.



Clearly, indeterminacy of equilibrium would emerge if the undetermined coefficient C0 were
allowed to take any finite value. Nevertheless, recall that we seek a moving-average repre-
sentation for y with square-summable coefficients of ǫ in the time domain. Appealing to
the Riesz-Fisher Theorem, this is tantamount to the analyticity of C♣zq on the unit disk, a
requirement which may provide additional restrictions just sufficient to pin down the value
of C0. Specifically, we assume that z2B♣zq ✁ z � 1

α
✏ ♣z ✁ ρqD♣zq where ⑤ρ⑤ ➔ 1 and D♣zq

has no root inside the unit disk. In this case, the free parameter C0 can be used to remove
the singularity of C♣zq at ρ by setting C0 in such a way as to casue the residue of C♣zq at ρ
to be zero

lim
zÑρ

♣z ✁ ρqC♣zq ✏ ✁ρF ♣ρq ✁ C0

α
E♣ρq

D♣ρqE♣ρq ✏ 0

Solving for C0 yields C0 ✏ αρ
F ♣ρq
E♣ρq . Therefore, the unique RE equilibrium is given by

yt ✏ ✁
LF ♣Lq ✁ ρ

F ♣ρq
E♣ρqE♣Lq✏

L2B♣Lq ✁ L� 1

α

✘
E♣Lqǫt (5)

Note that the solution in (5) clearly captures all cross-equation restrictions imposed by (1)
that are the “hallmark of rational expectations models” [Hansen and Sargent (1980)]. We
direct interested readers to Tan and Walker (2015) who generalize the analytic function
method of Whiteman (1983) for solving linear RE models to the multivariate setting.

3 Three Econometric Interpretations

Following Geweke (2010), this section explores three alternative econometric interpretations
for the relation between model (1) and its measured economic behavior by making the cross-
equation restrictions imposed by (1) explicit under each category.
To sharpen the analysis, we focus on two parameterizations of (1) that are potentially

observationally equivalent, one assumed to be the true data generating process and the
other being the econometrician’s misspecified approximating model.3 In particular, suppose
that the true model is parameterized under θ0 where α ✏ α0 ✘ 0, B♣Lq ✏ B0 ✘ 0, and
E♣Lq ✏ F ♣Lq ✏ 1.4 This restricts the propagation mechanism of the exogenous disturbances
to be purely endogenous. We denote the z-transform of the unique equilibrium under θ0 by

Cθ0♣zq ✏ ✁ 1

B0z ✁ 1�
❄

1✁4B0④α0

2

(6)

We further assume that the econometrician mistakenly believes that the propagation mecha-
nism is purely exogenous and parameterizes her model under θ1 where α ✏ α1 ✘ 0, B♣Lq ✏ 0,
E♣Lq ✏ 1✁E1L and F ♣Lq ✏ 1�F1L.

5 Accordingly, we denote the z-transform of the unique

3See also Lubik and Schorfheide (2006) for a similar comparison.

4To ensure determinacy, we need to impose

✞
✞
✞
✞

1✁
❄

1✁4B0④α0

2B0

✞
✞
✞
✞
➔ 1 and

✞
✞
✞
✞

1�
❄

1✁4B0④α0

2B0

✞
✞
✞
✞
→ 1.

5Again to ensure determinacy, we need to impose ⑤α1⑤ → 1. In the context of a monetary model, this
means that monetary policy obeys a Taylor-type rule.



equilibrium under θ1 by

Cθ1♣zq ✏
F1z � 1�F1④α1

1✁E1④α1

1✁ E1z
(7)

where θ1 ✏ rα1, E1, F1s✶ P Θ ❸ R
3. In what follows, we explicitly characterize the content of

Θ0♣Eq—the identified set for the misspecified model under interpretation E—in terms of the
valid cross-equation restrictions. The cardinality of Θ0♣Eq should be naturally interpreted
as the degree of identification relative to interpretation E .

3.1 Strong Interpretation

The strong interpretation (E ✏ S) of RE econometrics is that the model provides a predictive
distribution for the observables, leading to the likelihood-based econometrics. A natural
measure that evaluates the “distance” of the probability distribution over yt produced by the
misspecified model from that implied by the true model is given by the so-called Kullback-
Leibler (K-L) divergence. To make it operational here, we propose to use the frequency-
domain expression of the K-L divergence6

DKL♣θ0, θ1q ✏ 1

4π

➺ π

✁π

1A♣wq
✏
tr♣S✁1

θ1
♣wqSθ0♣wqq ✁ log det♣S✁1

θ1
♣wqSθ0♣wqq ✁ ny

✘
dw

where Sθ0♣wq and Sθ1♣wq are the spectral density matrices associated with θ0 and θ1, and
summarize all relevant information under normality as assumed in (1). The indicator func-
tion 1A♣wq is symmetric about zero and specifies a subset of frequencies by which the K-L
divergence is evaluated. The above expression is also utilized by Qu and Tkachenko (2013)
as a computational device for checking global identification of DSGE models as well as a
measure for the empirical closeness between two DSGE models. To couch the above expres-
sion in terms of the z-transformed solutions Cθ0♣zq and Cθ1♣zq derived earlier, we make the
change of variable z ✏ e✁iw to get

DKL♣θ0, θ1q ✏ 1

4πi

➽
1B♣zq

✒ ⑤Cθ0♣zq⑤2
⑤Cθ1♣zq⑤2

✁ log
⑤Cθ0♣zq⑤2
⑤Cθ1♣zq⑤2

✁ 1

✚
dz

z
(8)

where
➯
denotes the contour integral on the positively oriented unit circle and ny ✏ 1 in our

case. The indicator function 1B♣zq is again symmetric about the origin with B being the
image of A under the mapping z ✏ e✁iw. For the remaining analysis we will focus on the full
spectrum and therefore, the identified set of parameters for the misspecified model under
the strong interpretation can be characterized as

Θ0♣Sq ✏ tθ1 P Θ : DKL♣θ0, θ1q ✏ 0✉ (9)

To see the content of Θ0♣Sq, we minimize DKL♣θ0, θ1q over Θ by taking the first-order con-
ditions with respect to θ1

1

2πi

➽
∇Cθ1♣z✁1qCθ1♣zq

✒
1

⑤Cθ1♣zq⑤2
✁ ⑤Cθ0♣zq⑤2

⑤Cθ1♣zq⑤4
✚
dz

z
✏ 0 (10)

6This expression was first obtained by Pinsker (1964) as the entropy rate of one stationary vector Gaussian
process with respect to another.



where

∇Cθ1♣z✁1q ✏

☎
✝✝✆

❇Cθ1
♣z✁1q

❇α1❇Cθ1
♣z✁1q

❇E1❇Cθ1
♣z✁1q

❇F1

☞
✍✍✌✏

☎
✝✝✝✆

✁
E1�F1

♣α1✁E1q
2
z

z✁E1
α1�F1

♣α1✁E1q
2
z2� ♣α1�F1q♣α1✁2E1q

♣α1✁E1q
2

z�F1

♣z✁E1q2
1

α1✁E1
z�1

z✁E1

☞
✍✍✍✌

Because each component of ∇Cθ1♣z✁1q contains a pole at z ✏ E1 that cannot be removed
from the integrand in (10), it must be that

1

⑤Cθ1♣zq⑤2
✁ ⑤Cθ0♣zq⑤2
⑤Cθ1♣zq⑤4

✏ 0

and hence Cθ1♣zqCθ1♣z✁1q ✏ Cθ0♣zqCθ0♣z✁1q. In the univariate case, this implies that
Cθ1♣zq ✏ Cθ0♣zq. That is, Θ0♣Sq contains all those values of θ1 P Θ such that

F1z � 1�F1④α1

1✁E1④α1

1✁ E1z
✏ ✁ 1

B0z ✁ 1�
❄

1✁4B0④α0

2

which has a unique solution given by

α1 ✏ α0, E1 ✏ 2B0

1�❛1✁ 4B0④α0

, F1 ✏ 0 (11)

In this case θ1 is just identified.7

The above result also extends to the more general specification of B♣Lq in (2), which
will produce m � 1 roots outside the unit circle in the denominator of (6), and these roots
can be fully replicated by specifying an autoregressive process of order m � 1 for x.8 Two
important implications are in order. If the econometrician’s misspecified model featured
an autoregressive component of order smaller than m � 1 for x, then the requirement that
DKL♣θ0, θ1q ✏ 0 would turn out to be overly restrictive, forcing Θ0♣Sq to be an empty set.
This underlies the essence of strong econometric interpretation of RE models—it requires
an explicit accounting for all the dimensions of variation observed in the data that can
hardly be accounted for in the model—and partly explains why many “good” models are
easily rejected under this category. On the contrary, if the autoregressive component has
order larger than m� 1 for x, then there would be possibly more than one set of values for
θ1 satisfying DKL♣θ0, θ1q ✏ 0, making Θ0♣Sq strictly larger than a singleton. This poses a
serious challenge for the identification of key policy parameters in models where policy choices
have substantial impacts on agents’ welfare. As emphasized by Leeper and Walker (2011),
important identifying restrictions might be imposed on the model through the specification
of the exogenous driving processes.

7Note that the true value α0 can be accurately inferred even though the econometrician’s model is largely
misspecified. In the case θ1 is unidentifiable, (9) also makes clear whether or not a particular subvector of
θ1 can be partially and/or conditionally identified.

8In our case m ✏ 0 and this makes the inverse of E1 match exactly the only root outside the unit circle,
1�
❄

1✁4B0④α0

2B0

, that appear in the denominator of (6).



3.2 Weak Interpretation

The interpretation which many macroeconomists work with is indeed the weak one (E ✏
W)—it treats a model as providing a predictive distribution for a set of selected sample
moments of the observables that the model is intended to mimic.9 For our purposes we
assume that the econometrician’s misspecified model is designed to provide a predictive
distribution only for the sample mean of the observables

ȳT ✏ 1

T
♣1� L� L2 � ☎ ☎ ☎ � LT✁1qCθ1♣LqǫT (12)

where the sample ranges from t ✏ 1 to T , and its counterpart implied by the true model
has the same form with Cθ1♣Lq in (12) replaced by Cθ0♣Lq. Again a natural measure that
evaluates the divergence between the two probability distributions over ȳT is given by the
K-L divergence in its z-transformed expression. One can easily verify that this is the same
as (8), thereby the same first-order conditions with respect to θ1. This fact implies that the
identified set of parameters for the misspecified model under the weak interpretation can be
characterized as Θ0♣Wq ✏ Θ0♣Sq, echoing Geweke (2010)’s insights—the weak econometric
interpretation in fact makes assumptions no weaker than those underlying the strong one.
Models interpreted under this category typically impose cross-equation restrictions to the
same extent as the strong one, thereby implying the same degree of identification on the
deep parameters.

3.3 Minimal Interpretation

To avoid the stringent assumptions inherent in the strong and weak interpretations, this
section characterizes the identified set of θ1 by considering a more modest claim for RE
models. Here the econometrician’s misspecified model accounts for a set of selected pop-
ulation moments of the observables; following Geweke (2010) and earlier work by DeJong
and Whiteman (1996), the model is interpreted under the so-called minimal econometric
interpretation (E ✏ M).
Because the true and misspecified models both generate a time series for yt with zero

population mean, we assume that the econometrician’s misspecified model is designed to
account for the volatility of the observables characterized by the population second moment,
m ✏ Eθ1ry2t s, where expectation is taken with respect to the likelihood functions associated
with θ1. Then the identified set of parameters for the misspecified model under the minimal
interpretation can be characterized as

Θ0♣Mq ✏ tθ1 P Θ : Eθ0ry2t s ✏ Eθ1ry2t s✉ (13)

To see the content of Θ0♣Mq, we use the following inversion formula to compute the popu-
lation second moments of the observables implied by both models10

Eθry2t s ✏
σ2

ǫ

2πi

➽
Cθ♣zqCθ♣z✁1qdz

z

✏ σ2

ǫ ✂ sum of residues of Cθ♣zqCθ♣z✁1qz✁1 at poles inside unit circle (14)

9For example, conventional calibration exercise falls under this category and can indeed be viewed as a
special case of the prior predictive analysis.

10Also see Sargent (1987) for a more thorough treatment on these formulae.



where θ P tθ0, θ1✉, and from the theory of residue and the z-transformed solutions derived
earlier we can obtain

Eθ0ry2t s ✏ lim
zÑ 2B0

1�
❄

1✁4B0④α0

✄
z ✁ 2B0

1�❛1✁ 4B0④α0

☛
Cθ0♣zqCθ0♣z✁1qz✁1σ2

ǫ

✏ 2

1�❛1✁ 4B0④α0 ✁ 2B0④α0 ✁ 2B2

0

σ2

ǫ (15)

Eθ1ry2t s ✏ lim
zÑE1

♣z ✁ E1qCθ1♣zqCθ1♣z✁1qz✁1σ2

ǫ

✏

✁
E1F1 � 1�F1④α1

1✁E1④α1

✠✁
F1④E1 � 1�F1④α1

1✁E1④α1

✠
1✁ E2

1

σ2

ǫ (16)

That is, Θ0♣Mq contains all those values of θ1 P Θ such that (15) equals (16), one of which
is given by (11). Indeed there is a continuum of observationally equivalent parameter values
for the misspecified model under the minimal interpretation. In this case, θ1 has a weak
degree of identification.11

Because the minimal interpretation imposes much looser cross-equation restrictions than
the strong/weak one, the set Θ0♣Mq is in general much larger than Θ0♣Sq and Θ0♣Wq,
rendering more parameter points compatible with the modeler’s purpose. This, to a large
extent, explains why model fit under the minimal interpretation improves substantially rel-
ative to the strong/weak one [Del Negro and Schorfheide (2004), DeJong and Whiteman
(1993), Ingram and Whiteman (1994)]. Consequently, observationally equivalent models
may arise once the cross-equation restrictions are interpreted in the minimal sense. For ex-
ample, Geweke (2010) shows that the equity premium puzzle disappears when m consists of
only population means for the risk free rate and the equity premium.

4 Concluding Remarks

This note applies an analytic function approach to characterize the cross-equation restric-
tions imposed by the RE hypothesis under three econometric interpretations outlined in
Geweke (2010) for a generic univariate RE model. The approach provides an explicit char-
acterization of these cross-equation restrictions, and it also sheds new light on parameter
identification in RE models. In particular, it is shown that the degree of identification on
deep parameters is positively related to the strength of the underlying econometric interpre-
tation, and observationally equivalent models may arise once the cross-equation restrictions
are interpreted in the minimal sense. This explains why model fit under the so-called mini-
mal econometric interpretation can improve substantially, thereby offering important insights
into the econometric modeling and evaluation of dynamic economic models. We conclude by
pointing out that an extension of the method used in this note to the multivariate setting is
also straightforward. We address this point in Leeper, Tan and Walker (2014) in the context
of alternative monetary and fiscal policy interactions that are potentially observationally
equivalent.

11The equality of (15) and (16) also indicates that α1, though unidentifiable, becomes conditionally iden-
tifiable once a particular driving process x parameterized by ♣E1, F1q is selected.
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