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Abstract
We show how the two alternative saving motives - life-cycle consumption smoothing and parental bequests -

determine the relation between population growth and R&D-based economic growth, i.e. the sign of the weak scale

effect. We take a textbook R&D-based growth model of infinitely lived agents with no life-cycle saving motive and re-

analyze it in the Overlapping Generations (OLG) framework, which incorporates both life-cycle and bequest saving

motives. We decompose the effect of each saving motive on the sign of the weak scale effect and show that in the

presence of both saving motives it is ambiguous in general.
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1 Introduction

The second and third generations of R&D-based growth models were criticized for presenting a
positive relation between population growth and economic prosperity, i.e. a "weak scale effect",
which does not fit the empirical findings of an ambiguous, possibly non-monotonic, relation between
these variables1. This literature, however, has focused almost exclusively on the analysis of infinitely
lived homogenous agents. We study the implications of this demographic structure for the presence
of the weak scale effects, through a comparative analysis of the Overlapping Generations (OLG)
model of finitely lived agents2.

The two canonical demographic structures of the macroeconomic workhorse models imply dif-
ferent incentives for saving. The infinitely lived agents are assumed to share their assets (patent
ownership in the current context) with their offspring. They fully internalize this into their saving
decisions as they maximize the per-capita or aggregate lifetime utility of their dynasty members.
Therefore, in this framework savings involve bequests, but they lack a life-cycle saving motive as
workers’ labor supply does not change with age3.

By contrast, in the OLG framework saving is aimed to smooth consumption over a finite lifetime,
which spans from working years to retirement period, and there are no intergenerational bequests.
Hence, in this framework saving is motivated purely by life-cycle considerations. Clearly, the exclu-
sive presentation of each saving motive in its corresponding demographic structure is unrealistically
extreme4.

Our analysis decomposes the implications of the two saving motives for the presence of weak
scale effect. First, we show that in the absence of bequest saving-motive, the sign of the weak scale
effect in the OLG economy depends solely on the degree of intertemporal elasticity of substitution
(IES ). Then, we show how when both saving motives are active, the sign of the weak effect depends
also on the relative strength of parents’ utility from bequest vs. utility from their own consumption
during retirement.

Our results contribute to a recent line of modified R&D-based growth model with infinitely
lived agents, which aimed at aligning the role of population growth in R&D-based growth theory
with the empirical evidence5.

Unlike the present work, these modified models introduce human capital as a productive input
in the R&D sector, thereby forming a tension between a positive effect of population growth on
saving in the presence of dynastic altruism and its negative (diluting) effect on human capital
accumulation.

The present study is also related to the work by Dalgaard and Jensen (2009), hereafter "DJ",
on the effect of alternative saving motives on the presence of strong scale effects - that is the effect

1Jones (1999) provides a compact comparative summary of the theoretical literature. Strulik et al. (2013) and
Boikos et al.(2013) summarize the empirical literature.

2Earlier literature already showed that the different demographic structures have immediate implications for tax
policy, convergence patterns, and the feasibility of growth itself. Dalgaard and Jensen (2009, p.1639) summarize
this literature. Sorek (2011), and Diwakar and Sorek (2016c) highlight the implications of the OLG demographic
structure to patent policy.

3The infinitely living agents can be thought equivalently, and more realistically, as finitely living ones with strong
altruism toward their offspring.

4The empirical literature has not yet reached an agreement regarding their relative importance in driving saving
behavior; See De Nardi et al. (2015) for a recent survey.

5See for example Dalgaard and Kreiner (2001), Strulik (2005), Bucci (2008, 2015), Bucci and Raurich (2016),
and Diwakar and Sorek (2016a,b). Two recent works study this topic within the OLG framework. Prettner (2014)
shows that the sign of the weak scale effect depends on the characteristics of the public education sector. Strulik et
al.(2013) developed a unified growth model that incorporates endogenous fertility and human capital accumulation,
and transition from neoclassical technology to R&D-based growth.



of population size on economic growth. Their work adds bequest saving-motive to an otherwise
standard OLG model with capital externalities, that is an AK model.

However, our research question differs from DJ ’s, as we study the effect of alternative saving
motives on the presence of weak scale effects and our modeling approach differs from DJ ’s as
we incorporate a full-fledged textbook model of R&D-based growth within the OLG framework.
Therefore, our results are not fully comparable with those of DJ ’s. Nevertheless, we reconfirm
that the different saving motives implied by the alternative demographic structures are crucial in
determining the role of population in R&D-based growth.

2 The Model

We take the variety-expansion model presented in the textbook of Barro and Sala-I-Martin (2004,
Chapter 6), hereafter "BS", and accommodate it to the OLG framework: each consumer lives for
two periods. In the first period, she supplies one unit of labor and in the second period she retires.
Cohort (generation) size is increasing at an exogenous constant rate n, which is also the growth
rate of the labor force and overall population.

2.1 Production and Innovation

The final good Y is produced by perfectly competitive firms with labor and differentiated inputs,
to which we refer as "machines"

Yt = AL
1−α
t

Mt∫

0

Kα
i,t di α ∈ (0, 1) (1)

where A is a productivity factor, Lt and Ki,t are labor input and the utilization level of machine
i in period t, respectively, and Mt measures the number of available machine varieties. The final
good price is normalized to one. Machines are capital goods, and thus they are formed one period
ahead of utilization, and we assume they fully depreciate after one period. Once invented, the
new machine variety is eternally patented. Under symmetric equilibrium, utilization level for all
machines is uniform, i.e. Ki,t = Kt ∀ i , and thus total output is

Yt = AMtKt
αL1−αt (1a)

The labor market is perfectly competitive, and therefore the equilibrium wage and aggregate labor
income are wt = A(1 − α)MtKt

αL−αt and wtLt = A(1 − α)MtKt
αL1−αt , respectively. The profit

for the final good producer is πi,t = AL
1−α
t

Mt∫

0

Kα
i,t di−

Mt∫

i=1

pi,tKi,t di− wtLt , where pi,t is the price

of input i. Profit maximization yields the demand for each machine: Kd
i,t = A

1
1−αLt

(
α
pi,t

) 1
1−α
, for

which the periodic producer-surplus from machine i, denoted PSi, is
6 PSi,t = [pi,t − (1 + rt)]K

d
i,t.

This surplus is maximized by the standard monopolistic price pi,t =
1+rt
α
∀i, t7.

6Total surplus is the given by per-unit surplus times demand, and per-unit surplus is the selling price minus the
marginal cost of capital, that is δ + r (full depreciation is assumed here).

7BS abstract from the timing of investment, setting the cost of each machine (in terms of output units) to one and
therefore having the optimal monopolistic price p = 1

α
(equations 6.9-6.10 on pp. 291-292 there). In their continuous

time framework this abstraction has no effect on any of the results.



Plugging this price in Kd
i,t, and then back in (1a), we obtain per-worker output, yt :

yt ≡
Yt

Lt
= A

1
1−α

(
α2

1 + rt

) α
1−α

Mt (1b)

The innovation technology follows the specification of BS in the analysis of scale effects (see p.302
in sub-chapter 6.1.7 there)8:

ηt = ηA
1

1−α

(
α2

1 + rt

) α
1−α

Lt (2)

where ηt the cost of innovating a new variety (η > 0 ). This innovation technology implies that
variety expansion (i.e. productivity growth) in this model depends positively on the share of output
devoted to R&D9. As we assume machine-varieties are patented forever, patents are being traded
inter-generationally - young buy patents from old. New and old varieties play equivalent roles in
the production, as reflected in their symmetric presentation in (1). Therefore the market value of
old varieties equals the cost of inventing a new one - ηt. Hence the return on patent ownership -

over old and new technologies is 1 + rt+1 =
PSi,t+1+ηt+1

ηt
. Plugging the explicit expressions for the

surplus and the innovation cost, we obtain the stationary interest rate10:

1 + r = (1 + n)

[
α(1− α)

η
+ 1

]
, ∀t (3)

Hence, population growth works to increase the rate of return on capital, due increased demand
for patented machines. Following (1b), per-capita output growth (which coincides with per-worker
output growth), denoted gy, is determined by the expansion rate of machine-varieties range, gM :

1 + gy,t+1 ≡
yt+1

yt
= 1 + gM,t+1 (4)

2.2 Preferences

Lifetime utility, for an agent born in period t, is derived from consumption over two periods, and
bequest:

u(ct,1, ct,2, bt) =
(ct,1)

1−θ

1− θ
+ β





(ct,2)

1−θ

1− θ
+ κ

(
bt
1+n

)1−θ

1− θ




 (5)

8Equation (2) implies that variety expansion rate, which defines productivity growth in this model, depends
positively on the share of output devoted to R&D. This specification aligns with the empirical regularities summarized
in that chapter, which were originally presented by Jones (1995). See chapter6.1.7 in Barro and Sala-I-Martin (2004)
for a detailed discussion.

9This specification aligns with the empirical regularities summarized in that chapter, which were originally pre-
sented by Jones (1995). See chapter6.1.7 in Barro and Sala-I-Martin (2004) for a detailed discussion.
10Any non-staiotnary interest rate path should satisfy (1 + rt+1)

1

1−α = (1 + n) α(1−α)+η
η

(1 + rt)
α

1−α . Our results
would hold if we assume that patents ownership is transferred from parents to offspring, like in the model with
infinitely living agents. Then, however, the interest rate would be 1+ r = (1+n)α(1−α)

η
, which corresponds to the one

presented in BS (adjusted for continuous time).



where β ∈ (0, 1) is the subjective discount factor, 1
θ
is the IES 11, c1, c2 denote consumption when

young and old, respectively, and bt is the total bequest left by a representative parent in period
t (hence bt

1+n denotes per-child bequest). The parameter κ ≥ 0 measures the weight placed on
utility from the bequest. This specification of the bequest motive for saving, which resembles a
’joy-of-giving’ is similar to DJ and is common to the literature written in the OLG framework (see
for example Strulik et al. 2013). It implies that parents care about the per-child bequest level,
which is in line with the Millian type of parental preferences employed by BS. In the extended
working-paper version of this study12 we explore also the Benthamite and "Beckerian" types of
parental preferences.

3 Life-Cycle Saving

In the absence of bequest saving motive, which is the case we analyze first, we have κ = 0 and
lifetime utility boils down to the standard form:

U(ct,1,ct,2) =
c1−θt,1

1− θ
+ β

c1−θt,2

1− θ
(5a)

Under (5a) young agents allocate their labor income between consumption and saving, denoted
s. The solution for the standard optimal saving problem is st =

wt

1+β−
1
θ (1+r)

θ−1
θ

. Hence, aggregate

saving is St =
wtLt

1+β−
1
θ (1+r)

θ−1
θ

, which after substituting the explicit expressions for wt becomes

St =
Mt(1− α)A

1
1−α

(
α2

1+r

) α
1−α

Lt

1 + β−
1
θ (1 + r)1−

1
θ

(6)

The saving from labor income in (6) is allocated to three types of investment: buying patents
over old varieties, inventing new varieties, and forming specialized machines. Hence aggregate
investment in each period, It , satisfies

It =Mt+1

[

ηt +A
1

1−αLt+1

(
α2

1 + r

) 1
1−α

]

(7)

Notice that a higher population growth rate between period t and t+1, has a direct positive effect
on the demand for each machine variety - due to the increase in L. However, following (3), a higher
population growth rate also increases the interest rate, which thereby increases machine prices and
therefore decreases the demand for each machine variety. By equalizing (6) and (7), we impose the
equilibrium condition It = St, to obtain the dynamic equation that governs the variety expansion
rate:

1 + gy =
(1− α)A

1
1−α

(
α2

1+r

) α
1−α

Lt
[
ηt +A

1
1−αLt+1

(
α2

1+r

) 1
1−α

] [
1 + β−

1
θ (1 + r)1−

1
θ

] (8)

Plugging (2) and (3) in (8) yields

11The empirical literature suggests that the IES is lower than one; See Hall (1988), Beaudry and Wincoop (1996),
Ogaki and Reinhart (1998), Engelhardt and Kumar (2009).
12Available at: http://cla.auburn.edu/econwp/Archives/2016/2016-12.pdf



1 + gy =

(
α(1−α)
η

+ 1
)
(1− α)

(α+ η)

[
1 + β−

1
θ

[
(1 + n)

(
α(1−α)
η

+ 1
)]1− 1

θ

] (8a)

Proposition 1 With no bequest motive, the sign of the weak scale effect depends on the IES ≡ 1
θ
:

for 1
θ
< 1 ( 1

θ
> 1) there is negative (positive) weak scale effect, i.e.

∂gy
∂n
< 0 (

∂gy
∂n
> 0).

Proof. Proof is by inspection of equation (8a).

The counterpart model with infinitely lived agents (presented in BS ) yields no relation between
population growth and economic growth regardless of the IES value13. In both models, population
growth increases future demand for patented machines, thereby increasing the equilibrium interest
rate. However, for the infinitely lived agents, population growth works also as a demographic
discounting factor which discourages saving, and thus the two effects cancel out. In the OLG
economy, population growth does not generate direct negative effects on saving and, due to the
life-cycle structure of this framework, the effect of the increased interest rate on saving depends on
the IES.

4 Bequests

In the presence of bequest saving motive, each young agent maximizes her lifetime utility (5),

subject to the budget constraint: wt +
bt−1
1+n = ct,1 +

ct,2+bt
1+r . Applying this budget constraint to (5)

we write the indirect utility function

u(st, w t, bt−1, bt, r) =
(wt +

bt−1
1+n − st)

1−θ

1− θ
+ β





[st(1 + r)− bt]

1−θ

1− θ
+ κ

(
bt
1+n

)1−θ

1− θ




 (9)

Differentiating (9) with respect to s and b we obtain the following first order conditions

st =
wt +

bt−1
1+n

β
−
1
θ (1+r)

θ−1
θ

1+(1+n)
θ−1
θ κ

1
θ

+ 1

, bt = st
1 + r

(1+n)
1−θ
θ

κ
1
θ

+ 1

(10)

Optimal saving is still a fraction of the resources available to the young (worker), which now
combine labor income and her inherited bequest. Hence, the operative bequest motive relaxes the
former dependency of saving (and thereby investment and innovation rate) on labor income. Saving
depends now not only on the interest rate and the IES, but also on the bequest motive parameter

κ, through the expression (1 + n)
θ−1
θ κ

1
θ .

The effect of population growth rate on this expression (and thereby on saving) depends on
the IES. Here, the population growth rate works as a depreciation rate that erodes the per-child
bequest level. Hence, its effect is inverse to the effect of the interest rate. This effect has life-cycle
saving properties due to the timing of parents utility from bequest-giving during the second period
of life. The second factor has a positive effect on saving, due to the increased marginal utility from
per-child bequest.

13The growth equation for this model, defined by the regular Euler condition, are presented in the following section.



The optimal per-child bequest level is a certain fraction of capital income, st(1 + r). This
fraction is a function of the population growth rate and the bequest motive. As explained above,
the population growth rate erodes the per-child bequest level, and thus works like a decrease in the
interest rate: as the utility from bequest takes place during retirement, the effect of lower return
on the bequest per-child depends on the IES. The effect of the strength of bequest motive, κ, on
per-child optimal bequest is positive.

The first condition in (10) implies that aggregate savings is given by

St =
(1− α)A

1
1−αMt

(
α2

1+r

) α
1−α

Lt +Bt−1

β
−
1
θ (1+r)

θ−1
θ

1+(1+n)
θ−1
θ κ

1
θ

+ 1

(11)

where Bt−1 =
Ltbt−1
1+n , is aggregate bequests given to workers who were born in period t. Notice

that for κ = 0 the aggregate saving level defined in (11) falls back to the one presented in (6). The
second condition in (10) implies that Bt−1 =

1+r

(1+n)
1−θ
θ κ

−
1
θ+1

St−1, and the equilibrium condition

St−1 = It−1 requires

Bt−1 =
1 + r

(1 + n)
1−θ
θ κ−

1
θ + 1

Mt

(

ηt−1 +A
1

1−αLt

(
α2

1 + r

) 1
1−α

)

(12)

Substituting (12), along with (3), back into (11) and equalizing to (7), i.e. setting St = It, we
obtain

1 + gy =

[
α(1−α)
η

+ 1
] [

(1−α)
α+η (1 + n)

1−θ
θ + (1+η)

α+η κ
1
θ

]

β−
1
θ

(
α(1−α)
η

+ 1
) θ−1

θ
+
[
(1 + n)

1−θ
θ + κ

1
θ

] (13)

Proposition 2 In the presence of bequest saving-motive, the sign of the weak scale effect,
∂gy
∂n

is
positive (negative) for θ > 1 (θ < 1) and sufficiently strong (weak) bequest motive.

Proof. Differentiating (13) for n reveals that, for θ > 1 (θ < 1),
∂gy
∂n
> 0 iff β−1

(
1−α
α+η

)θ [
α(1−α)
η

+ 1
]θ−1

<

κ (β−1
(
1−α
α+η

)θ [
α(1−α)
η

+ 1
]θ−1

> κ). for θ = 1, we have
∂gy
∂n
= 0 independently of κ.

In the counterpart model of infinitely lived agents, presented in BS, households maximize per-
capita utility of their dynasty members (following Millian preferences). Hence, aggregate consump-

tion growth follows the standard Euler equation14:
·

C
C
= 1

θ
(r − β), and per-capita consumption

follows
·

c
c
= 1

θ
(r − β − n) where the interest rate is given by15 r = n+ α(1−α)

η
. Combining the two

latter conditions yields the stationary growth rates for per-capita income: gc,y =
1
θ

[
α(1−α)
η

− β
]
.

Hence, in the counterpart economy of infinitely lived homogeneous agents the IES plays no role in
the presence (or sign) of the weak scale effect. Notice that, by Proposition 2, for θ = 1 the weak
scale effect is also muted in our model, for any κ.

In reference to the results obtained by DJ, it is worthwhile noting that under the technological
parameters used in our model, they find a strong scale-effect will prevail for any for θ ≤ 1. However,

14Equation (6.22) on p.295 there, in which the parameter ρ the time preference parameter (denoted here as β).
15Equation (6.35) on p. 302 there.



if θ < 1 is sufficiently larger (smaller) than one, strong scale effect in their model will prevail only
if κ is sufficiently large ( small)16.

5 Conclusion

This study highlights the implications of alternative demographic structures, and the saving motives
they imply, to the presence of weak scale effect on R&D-based growth models. To this end, we
have placed a basic variety-expansion textbook model (without human capital accumulation) in the
overlapping-generations demographic framework, and showed how the interaction between the two
alternative saving motives - life-cycle consumption smoothing and parental bequests - determine
the sign of the weak scale effect. In particular, for the empirically valid degree of the IES, positive
(negative) weak scale effect presents in the OLG economy only if parental-bequest saving motive
is sufficiently strong (weak).
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