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Abstract
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1. Introduction

Income inequality is regarded by many as one of the most significant current public pol-

icy issues. Consequently, quantitative measures that compare income distributions have

a significant role to play in the current discussions concerning income inequality. Various

measures have been proposed for measurement of inequality (Cowell [2], Cowell and Kuga

[3], Shorrocks [14], Lugo [13], Fields and Fei [6]). Recently there has also been an up-

surge in the measurement of inter-distributional inequality, IDI (Yalontezky [18] and also

[17]). Classically IDI indices have been considered by Gastwirth [9], Dagum [4], Ebert

[5], Vinod [16], to name a few, and more recently by Breton et al. [1]. In this paper, we

propose a measure of discrimination based on Lp-norm. We also introduce the idea of

level sensitivity in the context of IDI measures which essentially captures the idea that

an IDI is less affected by change in the distributional inequality at higher margins of the

distributions than at the lower margins. This might be true of variables like income and

literacy levels, for instance. Our proposed IDI measure, in addition to satisfying some

standard properties of IDI measures, also satisfies the axiom of level sensitivity.

Consider the issue of comparing variations in distributions of an attribute. For example,

consider two groups of population. These could be men and women within a country, or

could be populations of two different countries. At any given point in time, each group

may be described by its own distribution of a given attribute (like income, wealth, life

expectancy, duration of unemployment). If attribute of one group is systematically differ-

ent than the other, we say that the pair of distributions shows a ‘discrimination pattern’

or inter-distributional inequality (IDI). Measuring such IDI meaningfully through a new

Lp-norm based index is the attempt of this paper.

Besides the usual axioms that a desirable IDI measure should satisfy (Yalonetzky [18]),

we also mathematically formalize an axiom of level sensitivity, which is an adaptation of

the axiom of translation invariance (see below). The basic idea of this can be found in

thoughts of some earlier authors like Kakwani [10] in the context of poverty measures,

Kolm [11], [12], and others, but, to the best of our knowledge, it has not been discussed

in the context of IDI measures. Moreover our proposed measure also satisfies some other

standard axioms of IDI indices.

The rest of the paper is organized as follows: In Section 2 we lay down some plausible

axioms that an IDI index should ideally satisfy. In Section 3 we establish how our proposed

Lp-norm based measure satisfies the axioms. Section 4 summarizes and concludes.
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2. Axioms for inter-distributional inequality (IDI) indices

Let

F0 =
{

F : R → [0, 1] : non-decreasing, right continuous,

F ((−∞, 0)) = {0}, lim
x→∞

F (x) = 1
}

be the set of income distribution functions. The condition F ((−∞, 0)) = {0} reflects our

assumption that the income function is non-negative. However F (0) is allowed to take

any non-negative value. In particular we may have F (0) > 0 which means that a positive

proportion of population has zero income. One may characterize the above set as the

collection of all distribution functions of non-negative random variables. If the income

distribution function of a population consisting of N individuals is F ∈ F0, then the

income vector (X1, . . . , XN) consists of N i.i.d. random variables Xi ∼ F .

An inter-distributional inequality (IDI) index is a function

∆ : F0 ×F0 → R≥0 ∪ {∞},

which assigns a non-negative number (including infinity) to every pair of distribution

functions. The following are some of the desirable properties that such a measure should

possess (Breton et al., 2011 [1], Yalonetzky [17], Yalonetzky [18]):

Axiom S: Symmetry For any pair of distribution functions F1 and F2,

we have ∆(F1, F2) = ∆(F2, F1).

The symmetry axiom means that the measure of discrepancy between two distributions

should remain the same, no matter in which order they are considered. In other words,

an IDI index should not change when distributions are switched around1 2.

Axiom M: Monotonicity Suppose F1, F2, F3 are three distribution func-

tions satisfying the following:

min{F1(t), F2(t)} ≤ F3(t) ≤ max{F1(t), F2(t)} ∀t.

Then

max{∆(F1, F3),∆(F2, F3)} ≤ ∆(F1, F2).

1Notice that the property of symmetry immediately rules out any kind of ‘group-specific’ disadvantage
focus (GDF) as discussed in greater detail in Yalonetzky [18].

2See Shorrocks [15] for a critique of Dagum’s measure (Dagum [4]) and other desirable properties of a
‘distance function’. It was also adapted by Ebert [5]. Many discrimination measures are not symmetric
and specifically measure discrepancy in the distribution of the ‘comparison’ population with respect to
the distribution of the ‘reference’ population’ (see Breton et. al [1] for example).



This means that if F3 lies between F1 and F2 at every point then the measure of discrep-

ancy between F1 and F3, and that between F2 and F3, must be smaller than that between

F1 and F2. (Note that the standard convention for the extended non-negative real axis

R≥0 ∪ {∞} is x < ∞ for all x ∈ R≥0.)

Axiom WSI+: For λ ∈ R+, and F ∈ F0, let F [λ](t) = F (t/λ). Then

F [λ] ∈ F0. The index is said to be SI+ if for all F1, F2 ∈ F0 the map

λ 7→ ∆(F
[λ]
1 , F

[λ]
2 ) is non-decreasing.

Axiom WSI–: The index is said to be SI– if for all F1, F2 ∈ F0 the map

λ 7→ ∆(F
[λ]
1 , F

[λ]
2 ) is non-increasing.

We say that an IDI is scale invariant (SI) if it is both SI+ and SI–, i.e.

∆(F
[λ]
1 , F

[λ]
2 ) = ∆(F1, F2).

for all positive λ. This means that if the income function of both the populations are

scaled up by the same factor then the index remains unchanged.

Axiom TI: Translation Invariance For L ∈ R+, and F ∈ F0, let

F {L}(t) = F (t − L). Then F {L} ∈ F0. The index is said to be transla-

tion invariant if for all F1, F2 ∈ F0 and L ∈ R+ we have

∆(F
{L}
1 , F

{L}
2 ) = ∆(F1, F2).

Under this axiom if two income functions are translated by the same factor then the

index remains unchanged. This axiom is not compatible with scale invariance. One way

to resolve this issue is to sacrifice SI in exchange of Linear Homogeneity, as was done,

for example, by Ebert [5]. Since SI seems to be a more natural concept, we propose a

variation of TI which is more intuitive. We call this Level Sensitivity.

Axiom LS: Level Sensitivity An IDI index is said to be level sensitive

if for any two distribution functions F1 and F2 we have ∆(F
{L}
1 , F

{L}
2 ) is

non-increasing in L.

Level sensitivity w.r.t. a translation of incomes means that if everyone’s income increased

by a certain amount from an initial level, then the measure of discrepancy is smaller for

the change at the translated incomes. For example, suppose we are interested in compar-

ing the discrimination index between income distributions of men and women in India,

with that between men and women in the US. Assume, as an example, it is known that

income of all individuals in the US are L units (say Rs. 50,000) higher than those in India

(and the men-women population structure in India and the US are the same). Then this

axiom says that the discrimination index is higher for India than the US.



Axiom SSDE: Strong Sensitivity to Distributional Equality An IDI

index is said to be strongly sensitive to distributional equality if:

F1(t) = F2(t) ∀t ⇐⇒ ∆(F1, F2) = 0.

Next, we propose an IDI index based on Minkowski’s distance3 4.

3. An Lp-norm based measure of IDI

Let us define a natural metric of ‘distance’ between distributions as follows: For p ∈ R+,

(1) ∆p
w(F1, F2) :=

(
∫

R

|F1(t)− F2(t)|
p w(t)dt

)
1

p

,

where w(t) is a non-negative weight function. Note that the integral on the right may not

be finite, in which case we just put ∆p
w(F1, F2) = ∞. We will naturally be interested in

the various properties of ∆p
w(F1, F2) given various assumptions concerning w.

Theorem 1. The above measure of discrimination ∆p
w has the following properties.

(i) ∆p
w satisfies axioms S, M and SSDE if w > 0.

(ii) ∆p
w satisfies LS if w is decreasing.

(iii) Suppose w ∈ C1(0, 1), then ∆p
w satisfies WSI+ if and only if w(x) + w′(x)x ≥ 0,

and it satisfies WSI– if and only if w(x) + w′(x)x ≤ 0.

(iv) Suppose w ∈ C1(0, 1), then ∆p
w satisfies both WSI+ and WSI– (i.e. it satisfies SI)

if and only if w(x) + w′(x)x = 0

(v) In particular if the weight function is taken to be w(t) = t−1, then ∆p
w satisfies S,

M, SSDE, SI and LS.

The theorem relates the properties of the discrimination measure with the analytic prop-

erties of the weight function w. Before we present the formal proof of the theorem, let us

motivate the analysis as follows. Fix 0 < ǫ < 1
2
and consider the income distributions G1

3Hence our proposed measure is very close to Ebert’s measure [5] which takes the form

dr(X,Y ) =

(
∫

1

0

|F−1

X (v)− F−1

Y (v)|rdv

)1/r

, r ≥ 1,

where F−1

X and F−1

Y are the inverse distribution functions of the income distributions of X and Y . Notice
that it satisfies, TI but not SI and LS.

4We are formulating the IDI index in terms of the distribution function F . Usually IDI indices are
defined in terms of the income vector (X1, . . . , Xn) of the population with n members. Here Xi are
random variables with cumulative distribution function F . Starting from a income data X ∈ R

n
≥0

, we

consider the sampling distribution function FX. Then we define ∆(X,Y) = ∆(FX, FY).



and G2 defined as follows:

G1(x) =











0, x < ǫ

x; ǫ ≤ x < 1

1; 1 ≤ x.

G2(x) =











0, x < 0

x; 0 ≤ x < 1− ǫ

1; 1− ǫ ≤ x.

The following figure gives a graph of these income distributions.
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ε
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We wish to compare these two distributions with the “perfect equality” distribution

E(x) = x for all x ∈ [0, 1]. If one applies the simple unweighted L1 inequality mea-

sure ∆, it follows that
∫ 1

0

|x−G1(x)|dx =

∫ 1

0

|x−G2(x)|dx.

If
∫ 1

0
|x−Gi(x)|dx is interpreted as a measure of the deviation of Gi from “perfect equal-

ity”, i.e., the uniform distribution, then G1 and G2 would seem to exhibit the same degree

of inequality. However one could argue that G1 exhibits a greater degree of inequality

than does G2 if one feels that income disparities at low income levels correspond to greater

inequality than income disparities at high income levels. The “problem” with the simple

unweighted L1 inequality measure stems from the fact that each income level x ∈ [0; 1]

is treated symmetrically by ∆. Hence a more general weighted version of ∆ that places

greater weight on income disparities at low income levels than at high income levels can

result in a more refined inequality measure. If for example w is any strictly decreasing

function on [0; 1]; then
∫ 1

0

|x−G1(x)|w(x)dx >

∫ 1

0

|x−G2(x)|w(x)dx.



and we could conclude that F1 exhibits a greater degree of inequality than F2. This ex-

plains the statement (ii) of the theorem.

Proof. Axioms S and M are easily verified as follows:

Axiom S: Clearly ∆p
w(F1, F2) = ∆p

w(F2, F1) =
(∫

R
|F1(t)− F2(t)|

p w(t)dt
)

1

p .

Axiom M: Suppose Fi ∈ F0 for i = 1, 2, 3, satisfying

min{F1(t), F2(t)} ≤ F3(t) ≤ max{F1(t), F2(t)} ∀t.

It follows from the given condition that,

|F1(t)− F2(t)| ≥ max {|F2(t)− F3(t)|, |F1(t)− F3(t)|}

and hence
(
∫

R

|F1(t)− F2(t)|
pw(t)dt

)
1

p

≥ max

{

(
∫

R

|F2(t)− F3(t)|
pw(t)dt

)
1

p

,

(
∫

R

|F1(t)− F3(t)|
pw(t)dt

)
1

p

}

.

So we conclude that

∆p
w(F1, F2) ≥ max{∆p

w(F1, F3),∆
p
w(F2, F3)}.

Note that if the right hand side is ∞, so is the left hand side.

Axiom SSDE: Cleary F1(t) = F2(t) ∀t ⇒ ∆p
w(F1, F2) = 0. In the reverse direction we

see that ∆p
w(F1, F2) = 0 implies that F1(t) = F2(t) except possibly a measure zero set

w.r.t the measure w(t)dt. So that SSDE is satisfied if w(t) > 0 for t ≥ 0 5.

Axiom LS: Suppose the weight function w ∈ C1(R) is decreasing. We have to show that

H(L) := ∆p
w(F

{L}
1 , F

{L}
2 ) is non-increasing in L. Now, by definition

∆p
w(F

{L}
1 , F

{L}
2 ) =

(
∫

R

|F1(t− L)− F2(t− L)|pw(t)dt

)
1

p

.

Setting t− L = z, we get
(
∫

R

|F1(z)− F2(z)|
pw(z + L)dz

)
1

p

.

5This is true for Ebert’s measure as well and is called the reflexivity property in Ebert [5].



Suppose L1 < L2, then we have w(z + L1) ≥ w(z + L2), and consequently
(
∫

R

|F1(z)− F2(z)|
pw(z + L1)dz

)
1

p

≥

(
∫

R

|F1(z)− F2(z)|
pw(z + L2)dz

)
1

p

,

i.e. H(L1) ≥ H(L2). So ∆p
w(F

{L}
1 , F

{L}
2 ) is non-increasing in L.

Axiom WSI+ and WSI–: Let λ > 0 and consider

H(λ) = [∆p
w(F

[λ]
1 , F

[λ]
2 )]p =

∫

R

|F1(t/λ)− F2(t/λ)|
pw(t)dt.

Let u = t/λ, so that the right hand side reduces to
∫

R

|F1(u)− F2(u)|
pw(uλ)λdu.

Differentiating within the integral sign with respect to λ (which is allowed as w ∈ C1) we

get

∂

∂λ
H(λ) =

∫

R

|F1(u)− F2(u)|
p{w(uλ) + uw′(uλ)λ}du,

which is ≥ 0 (resp. ≤ 0) if w(t) + tw′(t) ≥ 0 (resp. w(t) + tw′(t) ≤ 0).

Axiom SI: It follows that if w(t)+tw′(t) = 0 for all t, then the derivative ofH(λ) vanishes

and hence H(λ) is constant, i.e. ∆p
w is scale invariant. Conversely, scale invariance implies

that H ′(λ) = 0 for all possible choices for F1 and F2. If w(t) + tw′(t) is not identically

zero (almost sure), then one of the following two sets will have positive measure

W± = {t : ±[w(t) + tw′(t)] > 0}.

Without loss of generality suppose W+ has positive measure. Since we are assuming that

w(t) + tw′(t) is continuous, this set should contain an interval, say [a, b] ⊂ W+. We can

further assume that w(t) + tw′(t) > δ > 0 for all t ∈ [a, b] and some small enough δ > 0.

Now consider

F1(x) =

{

0 for x < b

1 for x ≥ b

and

F2(x) =











0 for x < a

1/2 for a ≤ x < b

1 for x ≥ b.

For this pair of F1 and F2, we have H(λ) > 0 for λ = 1, contradicting the fact that it is

identically zero for all pairs of distributions.



Axiom TI: Let L > 0 and consider

[∆p
w(F

{L}
1 , F

{L}
2 )]p =

∫

R

|F1(t− L)− F2(t− L)|pw(t)dt

=

∫

R

|F1(u)− F2(u)|
pw(u+ L)du.

The last integral equals [∆p
w(F1, F2)]

p if and only if w(u + L) = w(u). So the weight

function has to be a constant. Again observe that the argument holds even if ∞ is

allowed as a possible value for the index. �

4. Conclusion

In this paper, we propound an Lp-norm based index of inter-distributional inequality. We

also introduce a variation of the standard translation invariance property of IDI indices

(called level-sensitivity) which requires that IDI measures are decreasing and convex. This

captures the idea that an IDI is less affected by change in the distributional inequality

at higher margins of the distributions than at the lower margins which might be true in

case of some variables like income. None of the usual IDI indices like those propounded

by Gastwirth [9], Dagum [4], Ebert [5], Vinod [16], and Breton et al. [1], satisfies all the

axioms.
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