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Abstract
In the literature related to choice theory an important problem which has been dealt with at length is the

rationalizability of the choice function of an individual. In the literature a number of choice consistency conditions

have been postulated which are proven to be necessary and sufficient for a choice function to have an ordering

rationalization. In this paper a necessary and sufficient condition has been derived for the domain to be such that every

possible choice function defined over the domain has an ordering rationalization.
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1 Introduction

Domain conditions have played an important role in social choice theory1. Domain
conditions were formulated under which the paradox of voting does not take place. These
conditions restricted the set of admissible profiles of individual orderings. Black’s (1948)
single-peakedness condition provides an example.

Domain condition of a nature, as would be shown in this paper, is also relevant in the
theory of rational choice2. The analysis of rational choice behaviour in the context of set
valued choice functions gives rise to an interesting problem namely, the rationalizability
of choice functions. The problem investigated is whether it is possible to find a prefer-
ence relation which would generate the given choice pattern of an individual in different
environments.

If it is observed that an individual chooses x from {x, y}, {x, z}, {x, y, z} and y from
{z, y}, it is immediate that the preference relation xRx, yRy, xPy, xPz, yPz3 can
generate such choice behaviour. The best element(x)4 in the sets {x, y}, {x, z}, {x, y, z}
according to the aforesaid preference relation is the same as the chosen element in the
sets. Similarly, y is the best as well as the chosen element in the set {z, y}. We, therefore,
say that such a choice function5 is rationalizable. In other words, a choice function is
rationalizable if and only if it is possible to find a preference relation such that only the
most preferred elements of a set according to that preference relation are chosen from
that set.

The notion of rational choice, however, has been improvised further in the literature to
capture different aspect of choice. Gaertner and Xu (2004) tries to incorporate the proce-
dural aspect of choice where the available alternatives are linked to a procedure by which
they came into existence. Bossert et al. (2005) invokes the notion of maximal-element6

rationalizability that requires an existence of a preference relation such that chosen ele-
ments are same as the maximal elements for every set in the domain according to that
preference relation. Manzini and Mariotti (2007), Hung Au and Kawai (2011) consider
an environment where choices are made sequentially. Under such consideration a decision
maker uses more than one preference relations in a fixed order to remove non-preferred
alternatives. This procedure sequentially rationalizes the choice function of the decision
maker if a unique choice is made for every set belonging to the domain. Apesteguia
and Ballester (2013) also considers choices by sequential procedure wherein a decision
maker makes a choice by ruling out inferior alternatives through binary comparisons in
a particular order.

Going by the definition of rationalizability as discussed above It may be noticed
that not all choice functions are rationalizable7. In the literature a number of choice
consistency conditions thus have been introduced, which ensure the rationalizability of

1For an illuminating discussion on domain conditions in social choice theory, see Gaertner (2001).
2Rational choice requires that choice behaviour is purposive and consistent.
3Read xRx as ‘x is at least as good as x’ and xPy as ‘x is preferred to y’.
4The definition of best element has been given in the next section.
5Here we use the phrases ‘choice function’ and ‘choice pattern’ interchangeably and with the same

interpretation. The formal definition of choice function is given in the next section.
6x is said to be a maximal element of a set S with respect to a preference relation R iff no element

in S is preferred to x.
7Consider following choice function:

X = {x, y, z},C({x, y}) = {x}, C({x, z}) = {z}, C({z, y}) = {y}, C({x, y, z}) = {x}, where X is the set
of alternatives. This choice function is not rationalizable.



choice functions. It has been established that choice functions defined over the general
domain8 have ordering rationalization if and only if they satisfy the Houthakker axiom of
revealed preference (HOA). Choice functions defined over the full domain have ordering
rationalization if and only if they satisfy Arrow’s axiom (AA)9. Bossert et al. (2005) has
introduced conditions- Direct Exclusion and Direct Irreversibility which have been proven
to be necessary and suffient for Maximal element rationalizability of a choice function.
Likewise, Manzini and Mariotti (2007) and Hung Au and Kawai (2011) have introduced
Weak WARP and No Binary Chain Cycles Axiom (NBCC) in the context of sequential
rationalizable choice respectively.

The nature of these choice consistency conditions is such that they impose restrictions
on the choice behaviour of an individual and implications of choice consistency conditions
also change as the domain of the choice function changes10.

Furthermore, if there exists a domain over which all choice functions are rationalizable
i.e., in whatever way an individual makes her choice it always becomes rational then
it seems difficult to find any meaningful interpretation of ‘purposive behaviour’ of an
individual in that particular domain, which, as discussed before, is at the core of the
notion of rational choice. It is, therefore, worth investigating the nature of domains in
relation to the rationalizability of the choice function.

In this paper we shall introduce a domain condition C.1 and show that this condition
is necessary and sufficient for a domain over which all choice functions have ordering
rationalization, which in turn provides complete characterization of domain for ordering
rationalizability. This paper is divided into four sections. Second section contains basic
notations and definitions which have been used in the succeeding sections. Section three
provides the characterization result. Section four concludes the paper.

2 Notations And Definitions

Let X be a non-empty finite set of alternatives and 2X the power set of X. For a set
S, #S denotes the cardinality of the set S. Let D be a nonempty collection of nonempty
subsets of X, D ⊆ 2X − {∅}. A choice function C is a mapping from D to 2X − {∅},
C : D 7→ 2X − {∅} such that C(S) ⊆ S for all S ∈ D.

Let R be a binary relation defined over X. Let I and P denote symmetric and
asymmetric parts of R respectively. R defined on S is said to be
reflexive iff (∀x ∈ S)(xRx)
connected iff (∀ x, y ∈ S)(x 6= y → xRy ∨ yRx)
transitive iff (∀ x, y, z ∈ S)(xRy ∧ yRz → xRz)
quasi-transitive iff (∀ x, y, z ∈ S)(xPy ∧ yPz → xPz).

We say that R is an ordering iff it is reflexive, connected and transitive. It is a
quasi-ordering iff it is reflexive and transitive. Let R and R

′

be binary relations on a set
S. R

′

is called an extension of R iff [R ⊆ R
′

∧ P (R) ⊆ P (R
′

)].
Define binary relation Rc

Rc = {(x, y) ∈ X ×X| (∃S ∈ D)(x ∈ C(S) ∧ y ∈ S)}.

8The general domain is a nonempty collection of nonempty subsets of the set of alternatives. The full
domain is the collection of all nonempty finite subsets of the set of alternatives.

9See: Arrow(1959), Suzumura(1983).
10Take AA for instance, under full domain AA is necessary and sufficient for a choice function to have

ordering rationalization. When the domain is not full AA fails to be sufficient for ordering rationalization.



x is said to be a greatest element (best) in a set S with respect to a binary relation
R iff (∀y ∈ S)(xRy). Let G(S,R) denote the set of greatest elements of a set S with
respect to R.

3 Rationalizability and Domain Condition

We introduce domain condition C.1. We first establish that this condition is necessary
and sufficient for a domain over which every choice function has transitive rationalization
and subsequently we show that the same condition is necessary and sufficient for domains
over which every choice function has ordering rationalization.

C.1: ∀n ∈ N−{1}, ∀ distinct xo, x1, x2, ..., xn ∈ X, and ∀S1, S2, ...., Sn ∈ D, it should not
be the case that [S1 6= Sn ∧ ({xo, x1} ⊆ S1 ∧ {x1, x2} ⊆ S2 ∧ ...... ∧ {xn−1, xn} ⊆
Sn) and (∃S

′

∈ D)({xo, xn} ⊆ S
′

)]

This condition requires that for distinct elements xo, x1, x2, ..., xn and sets S1, S2, ...., Sn,
where S1 6= Sn, if it is the case that xo, x1 belong to S1, x1, x2 belong to S2, and so on and
xn−1, xn belong to Sn then it would not be the case that there exists a set S

′

such that
xo, x1 belong to that set. The underlying intuition of this condition is if we have a chain
like {xo, x1} ⊆ S1, {x1, x2} ⊆ S2, ......, {xn−1, xn} ⊆ Sn and have a choice function such
that following chain is obtained xoRcx1, x1Rcx2, x2Rcx3, ..., xn−2Rcxn−1, xn−1Rcxn then
existence of a set S

′

containing element xo, xn may give rise to the case {xn} = C(S
′

)
which would ensure, by the virtue of transitivity, that xo belongs to the set of best
elements of S

′

with respect to Rc but xo /∈ C(S
′

). The condition C.1 prevents such cases.

3.1 Transitive Rationalizability and Domain Condition

In the previous section we have defined binary relation Rc. We now define following
binary relations:

R2 = {(x, z) ∈ X ×X| (∃y1, y2, .., yn ∈ X)(xRcy1 ∧ y1Rcy2 ∧ ...∧
ynRcz) ∧ (∀T ∈ D)({x, z} * T ), for some n ∈ N}

R̄ = Rc ∪R2

Lemma: Let choice function C be defined over D. If D satisfies condition C.1 then
∀n ∈ N, ∀ distinct xo, x1, x2, ..., xn ∈ X : [xoRcx1∧x1Rcx2∧x2Rcx3∧ .....∧xn−1Rcxn →
xoR̄xn].
Proof :

Let choice function C be defined overD andD satisfy condition C.1. Let xo, x1, x2, ..., xn ∈
X be distinct, for some n ∈ N , and
xoRcx1 ∧ x1Rcx2 ∧ x2Rcx3 ∧ ..... ∧ xn−1Rcxn.
If n = 1 then xoRcxn is immediate and hence xoR̄xn by definition of R̄.
Let n ∈ N − {1}.

xi−1Rcxi → (∃Si ∈ D)(xi−1 ∈ C(Si) ∧ xi ∈ Si), for 1 ≤ i ≤ n.

If xn ∈ S1 then we have xoRcxn and hence xoR̄xn.
xn /∈ S1 → S1 6= Sn

C.1 → (∄S
′′

∈ D)({xo, xn} ⊆ S
′′

)



→ xoR2xn

→ xoR̄xn.

Theorem 1: Every choice function defined over D has a transitive rationalization iff D
satisfies condition C.1.
Proof :

Suppose D violates condition C.1, i.e.,
∃n ∈ N − {1}, ∃ distinct xo, x1, x2, ..., xn ∈ X and ∃S1, S2, ...., Sn ∈ D such that (S1 6=
Sn ∧ ({xo, x1} ⊆ S1∧{x1, x2} ⊆ S2∧ ......∧{xn−1, xn} ⊆ Sn)∧(∃S

′

∈ D)({xo, xn} ⊆ S
′

)).
Now we have four cases to consider:

(i) S1 = S
′

; (ii) Sn = S
′

; (iii)Si = S
′

, for some i ∈ {2, 3, 4, ..., n − 1}; (iv)S
′

6= Si, for
i ∈ {1, 2, 3..., n}.
It is given that {xo, x1} ⊆ S1 ∧ {x1, x2} ⊆ S2 ∧ ...... ∧ {xn−1, xn} ⊆ Sn.
Define the sets P1, P2, ..., Pn in the following way:
P1 = {xo, x1} ⊆ S1∧P2 = {x1, x2} ⊆ S2∧..∧Pi = {xi−1, xi} ⊆ Si∧...∧Pn = {xn−1, xn} ⊆
Sn Define, S∗

i = {Pj | Sj = Si, for j ∈ {1, 2, ..., n}}, for i ∈ {1, 2, ..., n}.
Case (i): Let S1 = S

′

.
Consider the following choice function: C̃(Si) =

⋃
Pj∈S

∗

i
Pj, for i ∈ {1, 2, ..., n}

This choice function does not have any transitive rationalization.
Case (ii): Let Sn = S

′

.
With the help of previous example we can show that there exists a choice function which
does not have any transitive rationalization.

Case (iii): Let Si = S
′

for some i ∈ {2, 3, 4, ..., n− 1}.
If {xo, xn} ⊆ S1 ∨ {xo, xn} ⊆ Sn then previous cases hold again.
Let ∼ ({xo, xn} ⊆ S1 ∨ {xo, xn} ⊆ Sn).
With the help of previous example we can show that there exists a choice function which
does not have any transitive rationalization.

Case (iv): Let S
′

6= Si for i ∈ {1, 2, 3..., n}.
Consider the following choice function:
C̃(Si) =

⋃
Pj∈S

∗

i
Pj, for i ∈ {1, 2, ..., n}; and C̃(S

′

) = {xn}
This choice function does not have any transitive rationalization.

Let D satisfy condition C.1. Let C be any choice function defined over D. We show
that R̄ rationalizes choice function C i.e., we show that C(S) = G(S, R̄).

Let x ∈ C(S)
→ (∀y ∈ S)(xRcy)
→ x ∈ G(S, R̄) by definition of R̄.

Let x ∈ G(S, R̄).
Suppose x /∈ C(S)
→ (∃y ∈ S)(y ∈ C(S))
→ {x, y} ⊆ S.
x ∈ G(S, R̄) → (∀z ∈ S)(xR̄z).
Since (∀z ∈ S)({x, z} ⊆ S)
→ (∀z ∈ S)(∼ xR2z)
→ (∀z ∈ S)(xRcz)
→ (∃T ∈ D − {S})({x, y} ⊆ T ).
It is evident that x, y are distinct elements and S, T are distinct sets.



→ #S ≥ 3 ∨#T ≥ 3
→ (∃x, y, z ∈ X)(∃S1, S2 ∈ D)(x, y, z are distinct ∧ S1 6= S2 ∧ ({x, y} ⊆ S1 ∧ {y, z} ⊆
S2) ∧ (∃S

′

∈ D)({x, z} ⊆ S
′

)).
This implies violation of condition C.1.

Now, we show that R̄ is transitive.
Let x, y, z ∈ X ∧ (xR̄y ∧ yR̄z).

There are four cases to consider: (a) xRcy ∧ yRcz, (b) xRcy ∧ yR2z, (c) xR2y ∧ yRcz,
(d) xR2y ∧ yR2z.

Case (a): Let x, y, z ∈ X ∧ (xRcy ∧ yRcz).
If x = y or y = z then xRcz follows immediately. If x = z then xRcz follows from the
definition of Rc.
Let x, y, z be distinct elements.
xRcy → (∃S ∈ D)(x ∈ C(S) ∧ y ∈ S).
yRcz → (∃T ∈ D)(y ∈ C(T ) ∧ z ∈ T ).
If {y, z} ⊆ S then xRcz follows by definition of Rc.
Suppose {y, z} * S.
→ S, T are distinct sets.
Suppose (∃S

′′

∈ D)({x, z} ⊆ S
′′

)
→ violation of condition C.1.
Let ∼ (∃S

′′

∈ D)({x, z} ⊆ S
′′

).
→ (x, z) ∈ R2

→ xR̄z.
Case (b): Let x, y, z ∈ X ∧ (xRcy ∧ yR2z).

yR2z → (∃w2, w3, ..., wn−1 ∈ X)(yRcw2 ∧ w2Rcw3 ∧ .... ∧ wn−2Rcwn−1 ∧ wn−1Rcz).
So we have: xRcy ∧ yRcw2 ∧ w2Rcw3 ∧ .... ∧ wn−2Rcwn−1 ∧ wn−1Rcz. (1)
Now if z = y ∨ z = x then xRcz is immediate and hence xR̄z.
If y = x then xR2z is immediate and hence xR̄z.
Suppose z, x, y are distinct. (2)
(1) ∧ (2) imply that there exists a following chain of distinct elements.
xRcv1 ∧ v1Rcv2 ∧ v2Rcv3 ∧ .... ∧ vm−2Rcvm−1 ∧ vm−1Rcz, for m ≤ n ∈ N.
Hence by lemma we have xR̄z.

For Case (c) and Case (d), showing xR̄z is analogous to the Case (b).
Hence the theorem is established.

3.2 Ordering Rationalizability and Domain Condition

Before we state and prove the result we introduce following definitions:
Define △X as follows: △X = {(x, x) | x ∈ X}.
We have defined R2 in the previous theorem. Now define R3: R3 = △X ∪Rc ∪R2

Theorem 2: Every choice function defined over D has an ordering rationalization iff D
satisfies condition C.1.
Proof :

In Theorem 1 we have shown if all choice functions defined over a domain have a
transitive rationalization then the domain satisfies condition C.1. We show that if domain
of choice functions satisfies condition C.1 then every choice function defined on that
domain is rationalizable by a reflexive, connected and transitive preference relation.

In the previous theorem it has been established that Rc ∪ R2 is transitive. Hence R3



is reflexive and transitive i.e., quasi-ordering. This implies that there exists an ordering
extension of R3

11.
Let R̄ be an ordering extension of R3. We show that R̄ rationalizes choice function.

Let C be any choice function defined over D which satisfies condition C.1.
Let S ∈ D. We show: C(S) = G(S, R̄).
Let x ∈ C(S)
→ (∀y ∈ S)(xRcy)
→ (∀y ∈ S)(xR3y).
Since R̄ is an extension of R3

∴ (∀y ∈ S)(xR̄y)
→ x ∈ G(S, R̄).

Let x ∈ G(S, R̄).
Suppose x /∈ C(S) (3)
→ (∃y ∈ S − {x})(y ∈ C(S)).
→ yRcx
→ yR3x
→ yI(R3)x ∨ yP (R3)x.
Since {x, y} ⊆ S, we have ∼ (xR2y ∨ yR2x)
→ [(yI(R3)x → yI(Rc)x) ∧ (yP (R3)x → yP (Rc)x)].
Now there are two cases to consider:(i) yI(R3)x (ii) yP (R3)x.

Case (i): Suppose yI(R3)x
→ yI(Rc)x (4)
→ yI(R̄)x
(3) ∧ (4) → (∃T ∈ D − {S})(x ∈ C(T ) ∧ y ∈ T ).
It is evident that x, y are distinct elements and S, T are distinct sets.
→ #S ≥ 3 ∨#T ≥ 3
→ (∃x, y, z ∈ X)(∃S1, S2 ∈ D)(x, y, z are distinct ∧ S1 6= S2 ∧ ({x, y} ⊆ S1 ∧ {y, z} ⊆
S2) ∧ (∃S

′

∈ D)({x, z} ⊆ S
′

)).
This implies violation of condition C.1.

Case (ii): Suppose yP (R3)x
→ yP (R̄)x, since R̄ is an extension of R3. (5)
Again, x ∈ G(S, R̄) → (∀z ∈ S)(xR̄z)
→ xR̄y (6)
(5) ∧ (6) lead to a contradiction.
Hence x ∈ C(S).

4 Conclusion

Domain conditions in the context of rationalizability of choice function are impor-
tant, not only because they provide a new set of conditions for rationalizability but also
because they do not constrain the ‘act of choice’ or the choice behaviour of an individual.
Unlike choice consistency conditions which characterize the partition between two classes
of choice functions: rationalizale choice functions and nonrationalizable choice functions,
domain conditions make a partition of domains. On one side there is a class of domains
over which any choice function is rationalizable and on the other side there is a class of

11See: Szpilrajn, E (1930).



domains over which not all choice functions are rationalizable. These domain conditions
characterize the partitions of the domains. This paper provides complete characteriza-
tion domains for ordering rationalizability. Full characterizations of quasitransitive and
acyclic rationalizability are yet to be obtained.
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