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Abstract
I propose a simple simulation procedure for large games with multiple equilibria. The simulation procedure is based on

a best-response dynamic. The implied equilibrium selection mechanism is intuitive: more stable equilibria are selected

with higher probability.
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1 Introduction

Equilibrium refinements are often used when games feature many Nash equilibria. The choice of the appro-
priate refinement is motivated by its theoretical properties and its ability to predict observed behavior (e.g.
Govindan et al. (2005), Kim (1996)). However, in large games, most equilibrium refinements are not feasible
due to a curse of dimensionality (e.g. in network formation models, see Chandrasekhar (2015)).

In this paper, I present a simple, simulation-based, equilibrium selection mechanism (i.e. equilibrium
refinement) based on a best-response dynamic. I focus on generalized ordinal potential (GOP) games (Mon-
derer & Shapley, 1996) with finite strategy spaces.

I provide that a simple and intuitive simulation procedure, based on a best-response dynamic. I show
that the likelihood of an observation under this simulation procedure is equal to its expected relative stability
(which is formally defined in section 2.1).

I present two simple examples. The first one is a two-by-two game and allows to compare this new
equilibrium selection mechanism with alternative mechanisms. The second one is a network formation game
and allows to see how the curse of dimensionality is alleviated.

In the next section, I present the game, the main results, as well as the two examples. I conclude in
section 3 by discussing potential extensions.

2 The Game

Consider a finite set N of n individuals, each of whom chooses a strategy ai ∈ Ai and has preferences
represented by the utility ui. I assume that Ai is finite for all i, and denote A = ×i∈NAi and a =
(a1, ..., an) ∈ A. I consider the following random utility model:

ui(a; ε) (1)

where ε has a known probability density function f . Note that in most cases, ui(a; ε) may have detailed
structure such as ui(a; ε) = u(ai, a−i;xi, θ, ε), where xi is some series of observed characteristics and θ is a
parameter of interest. I denote the set of Nash equilibria (NE) of the game Γε = 〈Ai, ui(·; ε)〉

n
i=1 by A∗

ε ⊆ A.
For simplicity, I assume no indifference, in the sense that for all i ∈ N , whenever ai 6= a′i, we have that

ui(a; ε) 6= ui(a
′

i, a−i; ε). Note that this assumption can be replaced by an arbitrary tie-breaking rule. Note
also that in many interesting cases, this will hold almost surely since f is absolutely continuous. An example
is provided in section 2.2

I’m interested in the empirical content of Γε, which is summarized by its likelihood function. When
the game has more than one equilibrium (for a positive measure of ε), the likelihood must be completed
by an equilibrium selection mechanism (Tamer, 2003; Galichon & Henry, 2011). An equilibrium selection
mechanism is a probability distribution π with support on A∗

ε. The likelihood is therefore:

L(a) =

∫

π(a|A∗

ε)✶{a ∈ A∗

ε}f(ε)dε

In essence, this is the likelihood that a is a NE of Γε, and that it is the selected equilibrium among all
equilibria in A∗

ε.
1

In this paper, I present an intuitive equilibrium selection mechanism, based on a simple simulation
procedure. The procedure goes as follows, for a fixed ε.

Algorithm 1 (Uniform Best-Response Dynamic)

1. Draw uniformly a ∈ A. Draw uniformly a permutation λ on N . Set t = 0.

2. Sequentially for all i and according to the order in λ, let:

• at+1
i = argmaxai

ui(ai, a
t
−i;x, ε) and

• at+1
−i = at

−i.

1Note that the indicator function can be omitted since π has support on A∗

ε .



Let t → t+ 1.

3. Repeat step 2 until at = at+n.

As shown in section 2.3, even if the cardinality of A is large, uniform sampling may not be computationally
intensive. Also, provided that this simulation procedure is well defined and meaningful (see section 2.1), one
can easily perform well-known simulation-based inference methods, such as (in a classical setting) simulated
General Method of Moments, or simulated Maximum Likelihood (see Gourieroux & Monfort (1996)), or (in
a Bayesian setting) approximate Bayesian computation (see Marin et al. (2012)).

I now describe the properties of the uniform best-response dynamic.

2.1 Results

I now study the properties of the likelihood function implied by the uniform best-response dynamics. The
first result follows directly from literature, and ensures that the procedure is well defined.

I assume that the game has a generalized ordinal potential (Monderer & Shapley, 1996), i.e. a function
Q(a; ε), such that, for all i ∈ N and any ai, a

′

i ∈ Ai,

ui(ai, a−i; ε)− ui(a
′

i, a−i; ε) > 0 implies Q(ai, a−i; ε)−Q(a′i, a−i; ε) > 0.

For generalised ordinal potential games, best-response dynamics never get stuck in infinite loops.

Proposition 1 (Monderer & Shapley (1996)) If the game has a generalized ordinal potential, then the
simulation procedure converges to a Nash equilibrium (NE) in finite time.

Of course, if the procedure converges, it necessarily converges to a NE, by construction. One of the properties
of GOP games is that the procedure always converges. This convergence happens in finite time since the
strategy space is finite. Monderer & Shapley (1996) also show that if all better-response paths converge (i.e.
not just the ones based on best-response for a specific order of play), then the game is necessarily a GOP.
This therefore implies that there is little hope for the convergence of the uniform best-response dynamic for
non-GOP games.

I now turn to the attractiveness of the uniform best-response dynamic as an equilibrium refinement. I
need to introduce some additional definitions. Given ε and λ, an improvement path from a to a′, is a finite
sequence of strategy profiles a1, ..., am ∈ N such that a1 = a and am = a′, and such that for (ak, ak+1), there
is a unique individual ik such that ak+1

−ik
= ak

−ik
and ak+1

ik
= argmaxaik

ui(aik , a
k
−ik

; ε), where ik follows the
sequence of play λ. That is ik = λ(k) and in+k = λ(k) for k ≤ n. I will let z∗(a, a′; ε, λ) = 1 if a′ can be
reached from a using some improvement path, given λ and ε. I let z∗(a, a′; ε, λ) = 0 otherwise. One can
easily see that any improvement path stops once it reaches a NE.

For each NE a∗ε ∈ A∗

ε, the basin of attraction is defined as the set of strategy profiles which necessarily
lead to a∗ε.

B∗(a∗ε; ε, λ) = {a′ ∈ A : z∗(a′, a∗ε; ε, λ) = 1}

Note that any NE belongs to its own basin of attraction, i.e. B(a∗ε; ε, λ) ∋ a∗ε. Note also that since it is
impossible to have an improvement path from one NE to another, B(a∗ε; ε, λ) only contains one NE.

This notion of basin of attraction is quite standard, for instance, in the literature on evolutionary dynamics
(see, Ellison (2000) among others). Here, for convenience, I will extend the notion of basin of attraction to
all strategy profiles by letting B∗(a; ε, λ) = ∅ for all a ∈ A \A∗

ε, so the basin of attraction of a is non-empty
iff a ∈ A∗

ε.
I define the stability index of a strategy profile as follows

Definition 1 Fix ε, then for any strategy profile a ∈ A, its stability index (SI) is given by:

SI∗(a; ε) =
∑

λ

#B∗(a; ε, λ).

In essence, SI(a), for a strategy profile a gives the number of combinations of strategy profiles and sequences
of play such that the best-response dynamics ends at a. We have the following:



Figure 1: A Two-by-Two Example
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Proposition 2 (Main Result) Under the uniform best-response dynamic, the likelihood of each strategy
profile is proportional to its expected stability index:

L(a) =
1

C

∫

SI∗(a; ε)f(ε)dε

where C =
∑

a′ SI∗(a; ε) > 0 is independent of ε.

See Appendix for a proof.
An interesting special case is when there exists a unique stable equilibrium asε ∈ A∗

ε such thatB∗(a∗ε; ε, λ) =
A\ (A∗

ε \{a
s
ε}), for all λ. That is, a

∗

ε attracts all improving paths that did not originate from another NE. In
this special case, the unique stable equilibrium is selected with probability going to 1 as |A| → ∞ (provided
that the set of equilibria is bounded).

I now present two simple examples.

2.2 A Two-by-Two Example

Consider the following (somewhat classical) game.2 There are two individuals with strategies ai ∈ {0, 1},
i = 1, 2. Their utility are as follows for i, j = 1, 2: ui(a) = (θaj − εj)ai, where εi and εj are distributed
according to the cumulative distribution F , with full support on [0, 1]2, and where θ ∈ (0, 1] is an exogenous
parameter. The following matrix summarizes the game:

0 1
0 0, 0 0,−ε1
1 −ε2, 0 θ − ε2, θ − ε1

This game has (potentially) two NE: a∗ = (0, 0), irrespective of the value of ε, and a∗ = (1, 1) if ε ∈ [0, θ]2

(see Figure 1).
This game has many interesting properties. It is supermodular (Topkis, 1979), a (non-symmetric) coor-

dination game, as well as a potential game (Monderer & Shapley, 1996). A potential game is a special case
of GOP, where Q(a; ε) is such that

ui(ai, a−i; ε)− ui(a
′

i, a−i; ε) = Q(ai, a−i; ε)−Q(a′i, a−i; ε).

2The game was first proposed by Jovanovic (1989), and more recently used by Tamer (2003) and Galichon & Henry (2011),
among others.



Table 1: Alternative Equilibrium Selection Mechanism

Equilibrium Selection Mechanism L(0, 0) L(1, 1)

Risk-dominance 1− F̂ (θ) F̂ (θ)

Maximum of Q(a) 1− F̂ (θ) F̂ (θ)
Payoff-dominance 1− F (θ, θ) F (θ, θ)

One can easily check that Q is also a generalized ordinal potential. The potential function for this game is:

Q(a1, a2) = θa1a2 − ε1a2 − ε2a1.

As shown by Ui (2001) and Carbonell-Nicolau & McLean (2014), the maximum of the potential function
offers an attractive equilibrium refinement. Indeed, this simple game allows for many natural equilibrium
selection mechanism. Let F̂ be the cumulative distribution of ε1 + ε2. Table 1 shows the likelihood of the
two NE, under alternative equilibrium refinements.

I now look at the likelihood implied by the uniform best-response dynamic. The basins of attraction (for
the two potential NE) are as follows:

• B∗((0, 0); [0, θ]2, (1, 2)) = {(0, 0), (1, 0)}

• B∗((0, 0); [0, θ]2, (2, 1)) = {(0, 0), (0, 1)}

• B∗((0, 0); [0, 1]2 \ [0, θ]2, λ) = {(0, 0), (0, 1), (1, 0), (1, 1)} for any λ

• B∗((1, 1); [0, θ]2, (1, 2)) = {(0, 1), (1, 1)}

• B∗((1, 1); [0, θ]2, (2, 1)) = {(1, 0), (1, 1)}

Then, the stability indices (for the two potential NE) can be computed:

• SI∗((0, 0); [0, θ]2) = 4

• SI∗((0, 0); [0, 1]2 \ [0, θ]2) = 8

• SI∗((1, 1); [0, θ]2) = 4

while the sum is:
∑

a SI
∗(a; ε) = 8, for all values ε.

The likelihood function is therefore:

L(0, 0) =
4

8
F (θ, θ) +

8

8
(1− F (θ, θ)) = 1− F (θ, θ)/2

L(1, 1) =
4

8
F (θ, θ) +

0

8
(1− F (θ, θ)) = F (θ, θ)/2

Note that in the special case where (ε1, ε2) are independently and uniformly distributed on [0, 1], we have

that F (θ, θ) = θ2 and F̂ (θ) = θ2

2 . The likelihood for the uniform best-response dynamic is therefore the
same as the likelihood of the maximum of the potential function, and risk-dominance.

I now present an example of a game typically affected by the curse of dimensionality.

2.3 Network Formation

There is a population of n ≥ 3 individuals, each of whom has a strategy ai ∈ Ai = {0, 1}n−1. The strategy
profile A = ×iAi represents a (directed) network and has a cardinality of 2n(n−1). See Chandrasekhar (2015)
for a discussion of the empirical challenges of network formation games.

In order to implement the uniform Best-response dynamic, one has to sample uniformly from a set of
2n(n−1) networks (i.e. from the set of strategy profiles A). This can be done in two steps.

1. Draw k from a binomial distribution B(k;n(n− 1), 1/2).



2. Create each link independently with probability p = k/n(n− 1).

The second step is simply an Erdos-Reni random network (Erdös & Rényi, 1959), which draws uniformly
among networks with pn(n − 1) links (as n becomes large). To understand why the first step draws the
number of links k coherently, note the number of networks with k links is given by the binomial coefficient:
(

n(n− 1)
k

)

. That is, the number of possibilities for having k links in a population of n(n − 1) pairs.

However, as n increases, drawing from a binomial distribution is computationally intensive. Fortunately, a
simple (and very precise) approximation is to draw from a normal distribution with mean n(n − 1) − 1/2
and variance n(n− 1)/4 (e.g. Schader & Schmid (1989)).

Therefore, combining steps 1 and 2 allows to sample uniformly from A. I now conclude with some
remarks.

3 Remarks and Extensions

This paper presents a simple, and intuitive equilibrium selection mechanism. It, however, relies on two
important assumptions, namely that the sampling procedure is uniform, and that the strategy space is
finite.

The simulation procedure can be applied to more general strategy spaces. For example, to compact
strategy space. In such a case, even if the simulation procedure may not converge in finite time, it converges
to an ǫ-NE in finite time. (Monderer & Shapley, 1996) Therefore, in practice, the simulation procedure could
be used to simulate relatively good approximations of the games’s NE (given some tolerance threshold).

Also, here, the sampling of the initial strategy profile, and of the order of play is assumed to be uniform.
If this is intuitive (and necessary for the result of proposition 2 to hold), the simulation procedure can easily
be extended to any distribution, potentially depending of a parameter of interest. In section 2.2 for instance,
one could assume that one of the two individuals (assuming it is identifiable) plays first with probability
β ∈ (0, 1). Similarly, in section 2.3, the initial network could be selected using a random network formation
model (e.g. Pin & Rogers (2016)).

Overall, the method is simple, flexible and intuitive and could be applied to a wide range of games and
economic applications.



4 References

Carbonell-Nicolau, O., & McLean, R. P. (2014). Refinements of nash equilibrium in potential games. Theo-
retical Economics , 9 (3), 555–582.

Chandrasekhar, A. (2015). Econometrics of network formation. In The Oxford Handbook of the Economics
of Networks, (pp. 303–357).

Ellison, G. (2000). Basins of attraction, long-run stochastic stability, and the speed of step-by-step evolution.
The Review of Economic Studies, 67 (1), 17–45.
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5 Appendix: Proof of Proposition 2

Fix ε. It is sufficient to show that

π(a|A∗

ε)✶{a ∈ A∗

ε} =
SBε(a)

∑

a′ SBε(a)
.

If a is not a NE , then both expressions are equal (to 0). If a is a NE, then we have:

π(a|A∗

ε) =
SBε(a)

∑

a′ SBε(a)
.

Fix λ, then I show that it is possible to partition the set of strategy profiles using the basins of attraction.
Under proposition 1, it is sufficient to show that if a ∈ B∗(a′; ε, λ), then a /∈ B∗(a′′; ε, λ). Suppose otherwise.
Since the improvement path must follow the order of play λ, it implies that, starting from the same strategy
profile, and using the same sequence of play, the improvement paths would lead to different NE. This is
impossible since preferences are strict.

We therefore have: B∗(a; ε, λ) ∩ B∗(a′; ε, λ) = ∅ for all a 6= a′. This implies that π(a|A∗

ε, λ) =
#B∗(a; ε, λ)/#A since starting strategy profiles are drawn uniformly.

Then, we have:

π(a|A∗

ε) =
1

n!

∑

λ

π(a|A∗

ε, λ) =
1

n!

1

#A

∑

λ

#B∗(a; ε, λ)

or equivalently:

π(a|A∗

ε) =
1

n!

1

#A
SI∗(a; ε)

And since π(a|A∗

ε) is a probability, we must have:
∑

a′ SI∗(a′; ε) = #A · n!, which completes the proof.3

QED

3Note that alternatively, one can see that
∑

a′ SI∗(a′; ε) =
∑

λ

∑
a
#B∗(a; ε, λ) =

∑
λ
#A = n!#A.
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