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Abstract
In the standard search-matching model, the effect of an increase in the productivity growth rate on the unemployment

rate is quantitatively much smaller than that found in the data. This paper revisits this issue by considering the

selection effect, through which an increase in the rate of disembodied technological progress induces firms with low

productivity levels to exit and increases the average productivity. With this effect, one percent-point increase in the

rate of technological progress decreases the unemployment rate by 0.28 percent, which is about 40 times as strong as

the effect in the corresponding model without the selection effect.
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1 Introduction

It is widely believed that a slowdown in the productivity growth rate is a major source of
persistent high unemployment. Indeed, the empirical evidence suggests that the produc-
tivity growth rate and the unemployment rate are negatively correlated. Theory con�rms
the evidence. In the standard search-matching model of unemployment, an increase (de-
crease) in the growth rate of disembodied technological progress increases (decreases) the
value of job creation and as a result decreases (increases) the unemployment rate, known
as the capitalization e¤ect.
While the standard model can replicate this negative correlation, it fails to replicate

the magnitude of this e¤ect. In the textbook model, one percent-point increase in the
productivity growth rate decreases the unemployment rate by only 0.007 percent. In the
data, however, one percent-point increase in the productivity growth rate decreases the
unemployment rate by 0.25�0.71 percent (Blanchard and Wolfers, 2000). An important
challenge in the literature is to �ll this gap.
In this paper, I revisit this important issue by focusing on the selection e¤ect. The

selection e¤ect has been the central issue in the international trade literature, in which
�rms with heterogeneous productivity levels self-select into trade �rms, domestic �rms,
and exit �rms (Melitz, 2003; Felbermayr et al., 2011). The novelty of this paper is to
introduce the selection e¤ect into the growth-unemployment literature. To be concrete, I
develop a search-matching model with monopolistic competition and heterogeneous �rms
similar to Felbermayr and Prat (2011). The key new assumption is that each �rm�s
productivity is the product of the level of disembodied technology common to all �rms
and an idiosyncratic component that is unique to each �rm.
Consider a scenario in which the rate of technological progress increases from 2 percent

to 3 percent. An increase in the rate of technological progress decreases the unemployment
rate through two e¤ects. One is the conventional capitalization e¤ect, through which the
value of job creation increases for all �rms. The other is the selection e¤ect. A higher
rate of technological progress induces more �rms to enter the market and create jobs,
which reduces the vacancy-�lling rate they face and reduces their pro�t prospects. Since
more �rms enter and draw their productivity levels, there are more high-productivity
�rms. This induces the marginal �rms at the 2 percent growth rate to exit. In the new
equilibrium, there are more �rms, and the �rms are on average more productive.
Using the model, I study the quantitative impact of disembodied technological progress

on the unemployment rate, and I �nd a strong e¤ect. With the selection e¤ect, one
percent-point increase in the rate of technological progress decreases the unemployment
rate by 0.28 percent while the corresponding model without the selection e¤ect implies
that the impact is 0.007 percent. The e¤ect is reduced to 0.14 when the calibration target
for the unemployment bene�t is reduced to an alternative level and when the elasticity
of substitution parameter is increased to an alternative level. However, the e¤ect is still
much greater than the one typically reported in the literature, which is below 0.01. Thus,
the main result reported in this paper is robust.

2 The Model

The structure of the model is closely related to Felbermayr and Prat (2011). The economy
consists of a continuum of homogeneous individuals with a unit mass and a continuum of
monopolistically competitive �rms. Each �rm produces a di¤erentiated �nal consump-



tion good. As in Melitz (2003) and Felbermayr and Prat (2011), each �rm has a distinct
productivity level. Total measure of operating �rms, n, is determined as part of equilib-
rium by entry and exit of these �rms. Time is discrete and horizon is in�nite. All agents
are risk neutral and discount the future at the common rate r.
Each �rm has a linear production technology and output in period t is given by

'atlt, where lt is the labor input. The novel assumption in this paper is that the level
of productivity 'at consists of two components. The �rst component, ', captures the
idiosyncratic part of productivity that is unique to each �rm. The second component,
at, is the level of disembodied technology that is common to all �rms. I assume that
this component grows exogenously at rate g > 0. Each operating �rm must pay a �xed
operation cost, wages, and vacancy costs.
The key ingredient of the model is entry and exit of heterogeneous �rms in a growing

economy. Each potential �rm pays a once-and-for-all entry cost at the time of entry and
draws its productivity ' from distribution function F (') with density f('). I assume that
while there is disembodied technological progress, the distribution function is constant
over time. Throughout, I assume a Pareto distribution, F (') = 1� ('min=')

�.
The labor market is frictional. The aggregate number of matches made is determined

by the standard constant-returns-to-scale matching function m(ut; Vt), where ut denotes
the measure of the unemployed and Vt denotes the aggregate vacancies posted by all �rms.
From the matching function, the vacancy �lling rate is given by m(ut; Vt)=Vt = q(�t),
where �t = Vt=ut. Similarly, the job �nding rate is given by m(ut; Vt)=ut = �tq(�t).
Throughout, I specify the matching function as m(u; V ) = m0u

�V 1��.
Timing is as follows. At the beginning of each period, there is a disembodied tech-

nological progress. Given the new technology level, each �rm and its employees bargain
over the wage rate Wt and produce a di¤erentiated consumption good. The �rm posts
vt units of vacancies, each of which is �lled with probability q(�t). Separations occur
after production so that �lt of the employees become unemployed in the next period. In
addition, each �rm faces an exit shock with probability � at the end of each period.
Throughout, I focus on the balanced growth equilibrium in which all values grow at

the same rate. To ensure the existence of a balanced growth equilibrium, I follow the
literature to assume that the vacancy cost, the unemployment bene�t, the �xed cost of
production, and the entry cost all grow at rate g. Speci�cally, I assume that the unit
vacancy cost is atc, the unemployment bene�t is atz, the �xed cost of production is atI,
and the entry cost is atK, where c, z, I, andK are parameters (Mortensen and Pissarides,
1998). In addition, I assume g < r.
In this economy, individuals are either employed or unemployed. The employed earns

the wage rate Wt and the unemployed earns the unemployment bene�t atz � Zt. In
each period, individual j chooses the demand for each consumption good Qj (!) so as to
maximize the following utility function

�

n�
1

�

Z

!2


[Qj (!)]
��1

� d!

�
�

��1

; (1)

subject to the budget constraint
R

!2

Qj (!) p(!)d! = PYj, where p(!) denotes the price

of variety !, 
 is the set of product varieties, � > 1 denotes the elasticity of substitution
between any two varieties, P = fn�1

R

!2

[p(!)]1��d!g1=(1��) is the price index, and Yj is

income.1 Evidently, Yj = W for the employed and Yj = Z for the unemployed.

1I follow Felbermayr and Prat (2011) to discount the level of utility by n1=(1��).



The aggregate demand for variety ! is given by
R

Qj (!) dj = [p(!)=P ]
�� Y=n, which

is decreasing in p(!), where Y =
R

Yjdj. Given the demand schedule, each monopolistic
�rm sets its price p(!). However, the �rm�s problem is dynamic because of search frictions.
As in the model of Felbermayr and Prat (2011), the �rm optimally chooses the level of job
vacancies to in�uence the level of employment in the next period. This in turn in�uences
the level of production and the price.
Now consider a �rm with productivity '. The inverse demand function for the �rm

is p(')=P = (n'al=Y )�1=� and therefore the revenue for the �rm is [p(')=P ]'al =
('al)(��1)=�(n=Y )�1=� � R(l;'; a). Thus, the �ow pro�t for the �rm in each period
is given by �(l;'; a) = R(l;'; a) �W (l;'; a)l � acv � aI, where W (l;'; a) is the wage
function to be determined. The value of an operating �rm with idiosyncratic productivity
' when the level of technology is a satis�es

J(l;'; a) = max
v

�

�(l;'; a) +
1� �

1 + r
J(l0;'; a0)

�

(2)

subject to l0 = (1 � �)l + q(�)v, where a0 = (1 + g)a. The �rst-order condition and the
envelope condition imply

ac

q(�)
=
1� �

1 + r

@J(l0;'; a0)

@l0
; (3)

@J(l;'; a)

@l
= ('a)

��1

�

� n

Y

��
1

� � � 1

�
l�

1

� �W 0(l)l �W (l) +
(1� �) ac

q (�)
: (4)

For a worker, the value of being employed by a �rm with productivity ' when the
level of technology is a is given by

E(l;'; a) = W (l;'; a) +
1

1 + r
[(1� s)E(l0;'; a0) + sU(a0)] ; (5)

and the value of being unemployed is given by

U(a) = az +
1

1 + r

�

�q(�)

Z

1

'�
E(l0; '; a0)�(')d'+ (1� �q(�))U(a0)

�

; (6)

where s = �+ ���� is the probability that either an exogenous separation occurs or the
�rm is hit by an exit shock, and �(') is the equilibrium density of �rms.
I follow Felbermayr and Prat (2011) to assume that the wage rate is determined by

intra-�rm bargaining. Speci�cally, the wage rate is determined so that

(1� �) [E(l;'; a)� U(a)] = �
@J(l;'; a)

@l
; (7)

where � is the exogenous bargaining power of the worker.

Proposition 1 The wage rate satis�es

W (l;'; a) = �
� � 1

� � �

R(l;'; a)

l
+ (1� �)

�

az +
�

1� �

ac�

1� �

�

: (8)

Proof. In the appendix.



Use ('al)(��1)=�(n=Y )�1=� = R(l;'; a) and (8) to rewrite (4) as

@J(l;'; a)

@l
= (1� �)

� � 1

� � �

R (l;'; a)

l
+ (1� �)

ac

q(�)
� (1� �)

�

az +
�

1� �

ac�

1� �

�

: (9)

Note that (3) and (9) jointly give the job-creation condition and imply that the revenue
per worker R(l;'; a)=l is the same for all ', from which l('1)=l('2) = ('1='2)

��1 and
p('1)=p('2) = ('1='2)

�1.
There is a large pool of potential entrants. As in Melitz (2003) and Felbermayr and

Prat (2011), each entrant pays the sunk entry cost atK to realize its type ', and then
decides whether to exit the market. As a result, entry decision is characterized by the
two standard conditions. Namely, the free entry condition and the zero cuto¤ pro�t
condition:

aK =

Z

1

'�
J(0; '; a)f(')d'; (10)

J(0; '�; a) = 0; (11)

where '� denotes the cuto¤ productivity level and J(0; '; a) is the value of entry for a
type-' �rm:

J(0; '; a) = �ac
l0

q (�)
� aI +

1� �

1 + r
J(l0;'; a0): (12)

Here, the linear vacancy cost implies that each entrant creates a mass of vacancies to
operate with l0 employees in the next period.
In what follows, I focus on a balanced growth equilibrium, in which all values grow at the

same rate as a. Let ~' denote the average productivity, which is de�ned by p( ~') = P . As
in the literature, '� pins down the level of ~' such that ~'('�) = [

R

1

'�
'��1�(')d']1=(��1).

In the case of Pareto, this expression implies ( ~'='�)��1 = �=(� + 1� �).

Proposition 2 A balanced growth equilibrium is de�ned by a pair (�; '�) that satis�es

��1 � (1� �)

1� �

c

q(�)
+ z +

�

1� �

c�

1� �
=
� � 1

� � �
~' ('�) ; (13)

1� �

1� F ('�)

K

I
=

�

~' ('�)

'�

���1

� 1; (14)

where � = (1� �)(1 + g)=(1 + r).

Proof. In the appendix
In the case of Pareto, (14) has a closed-form solution,

'� =

�

I=K

1� �

� � 1

� + 1� �

�1=�

'min: (15)

Given the equilibrium level of �, the equilibrium unemployment rate u is derived from
the fact that the �ows in and out of employment must equate, u�q(�) = (1 � u)s, from
which u = s=[�q(�) + s]. Evidently, u decreases with �. Similarly, since the aggregate
employment satis�es nl( ~') = 1 � u, the equilibrium mass of �rms is given by n =
(1 � u)=l( ~'), where l( ~') denotes the equilibrium level of employment for the �rm with



Table 1: Parameter Values
Variable Symbol Value

Interest rate r 0:05
Rate of technological progress g 0:02
Probability of being unemployed s=12 0:036
Probability of �rm destruction � 0:087
Elasticity of matching function � 0:5
Worker�s bargaining power � 0:5
Scale of matching function m0 8:40
Flow value of unemployment z 0:58
Cost of posting a vacancy c 0:28
Elasticity of substitution among di¤erentiated goods � 3:5
Shape of �rm-speci�c productivity distribution � 2:65
Minimum level of �rm-speci�c productivity 'min 0:05
Entry cost K 0:24
Flow �xed cost I 0:18

the average productivity ~'. In what follows, I denote the wage rate in the balanced
growth equilibrium as W=a � w.

3 Quantitative Analysis

The main result of this paper is that the model with the selection e¤ect outperforms
the corresponding model without it in generating the realistic impact of technological
progress on unemployment. In this section, I describe how the model parameters are
chosen and present the quantitative results. The details are presented in the appendix.
The model is calibrated to the US economy, and its time period is chosen to be

one year. I follow the standard calibration procedure whenever possible. The baseline
parameter values are summarized in Table 1.
I choose the annual interest rate to be r = 0:05 and the rate of technological progress

to be g = 0:02. I follow Pissarides (2009) to set the monthly job separation rate as
s=12 = 0:036. The annual �rm destruction rate � = 0:087 is computed as the sample mean
over the 1977-2014 period from the Business Dynamics Statistics.2 I follow Petrongolo
and Pissarides (2001) to set the elasticity in the matching function to be � = 0:5. As in
the literature, I set the exogenous bargaining power to satisfy � = �.
According to Ebell and Haefke (2009), the entry cost in the US in 1997 equals 0:6

months of per-capita income, and the entry cost in 1978 amounts to 5:2 months of per-
capita income. This suggests that there is a large variation in the entry cost over time.
Here, I simply use the mean value of these estimates: K = [(0:6 + 5:2)=2]� 1=12 = 0:24.
I obtain the scale parameter of the matching function, m0 = 8:40, the �ow value of

unemployment, z = 0:58, and the cost of posting a vacancy, c = 0:28, from the three
targets: � = 0:72 (Pissarides, 2009), z=w = 0:71 (Hall and Milgrom, 2008) and �q(�) =
0:594 (Pissarides, 2009). The implied recruitment cost c=q(�) from these parameters is
14:0 percent of the quarterly wage, which is consistent with Elsby and Michaels (2013).

2The �rm destruction rate in each year is computed as Firmdeath_Firms divided by Firms. These
series are obtained from https://www.census.gov/ces/dataproducts/bds/data_�rm.html



Figure 1: Impacts of productivity growth

It is well known that the estimate for the elasticity of substitution � has a range.
Rather than choosing an arbitrary value, I target the markup to pin down �. Speci�cally,
I choose � = 3:5 so that the implied markup is (�� �)=(�� 1) = 1:2, which is consistent
with the estimates by Martins et al. (1996) and by Christopoulou and Vermeulen (2008).
According to Axtell (2001), the size distribution for US �rms is approximately Zipf. I

follow Axtell (2001) and set the shape parameter for the model�s size distribution function
to be �=(� � 1) = 1:06, from which I obtain � = 2:65. To pin down the minimum
productivity level 'min, I normalize the average productivity level ~' to one, from which
I obtain 'min = 0:10.
The �ow �xed cost, I = 0:18, is chosen to set the average �rm size to be l(') = 21:67,

which is the sample mean for the 1977-2014 period in the Business Dynamics Statistics.3

The model solutions for the wage rate, the unemployment rate, the cuto¤ productivity
level, the mass of �rms, and the aggregate vacancies are w = 0:82, u = 0:057, '� = 0:32,
n = 0:044, and V = 0:04.4

Figure 1 presents the main results of this paper. I compute the average productivity
level, the unemployment rate, the mass of �rms, and the average �rm size for di¤erent
levels of the rate of technological progress. To illustrate the role of the selection e¤ect, in
each panel I present the result from the corresponding model without the selection e¤ect,

3The average �rm size in each year is computed as Emp divided by Firms. These series are obtained
from https://www.census.gov/ces/dataproducts/bds/data_�rm.html

4I used wxMaxima 16.04.2 to obtain the quantitative results. All codes are available upon request.



Figure 2: Balanced growth equilibria under g = 0:02(black) and g = 0:03(gray)

Table 2: Sensitivity to z=w

z=w z c c=q(�)
Quarterly wage

du=dg

0:71 (baseline) 0:58 0:28 0:14 �0:28
0:4 0:32 0:57 0:28 �0:14

in which all �rms have the same productivity ' = 1.
The four panels in Figure 1 clearly show that the impacts of an increase in the rate of

technological progress on these variables are much greater in the model with the selection
e¤ect than without. In particular, the model with the selection e¤ect implies du=dg =
�0:282 at g = 0:02, while the model without the selection e¤ect implies du=dg = �0:007.5

This result is within the range of estimates by Blanchard and Wolfers (2000) and greater
than those obtained by Pissarides and Vallanti (2007) and Miyamoto and Takahashi
(2011).
Figure 2 illustrates why the model with the selection e¤ect generates a strong quan-

titative e¤ect. The upward-sloping curve, labeled JC, shows the equilibrium relationship
de�ned by (13), and its shifts re�ect the conventional capitalization e¤ect. On the other
hand, the vertical line, labeled FE-ZCP, shows the equilibrium relationship de�ned by
(14), and its shifts re�ect the selection e¤ect. The solid black lines represent the equi-
librium under g = 0:02 while the solid gray lines correspond to the same model under
g = 0:03.
Initially, the equilibrium � is at the target level, � = 0:72. When g = 0:03, � increases

to � = 0:80. The key observation is that, without the selection e¤ect, the vertical FE-ZCP
line does not shift. As the �gure shows, in this case the JC curve makes an upward shift
only slightly, and � increases to � = 0:722. With the selection e¤ect, the vertical FE-ZCP
line makes a right-ward shift. This signi�cantly increases � and the e¤ect is enhanced
if the slope of the JC curve is steep. Thus, given the slope of the JC curve, the strong
quantitative results found in this model come mostly from the selection e¤ect.
To assess the robustness of the main results, here I present some sensitivity analyses.

5I also calibrate the textbook Pissarides (2000) model with the same targets and �nd that du=dg =
�0:007. Pissarides and Vallanti (2007) show that du=dg = �0:02 in their model.



Table 3: Sensitivity to �

Markup � � z c du=dg
1:1 6 5:3 0:63 0:31 �0:14

1:2 (baseline) 3:5 2:65 0:58 0:28 �0:28
1:3 2:7 1:80 0:54 0:26 �0:41

In the baseline case, I choose the target for z=w to be 0:71 since the implied vacancy
cost is plausible under this target value. However, it is informative to report the result
under the alternative target, z=w = 0:4, since this value is often used in the literature
(Shimer, 2005). Table 2 presents the result. When the target for z=w is 0:4, the impact
of an increase in the rate of technological progress becomes du=dg = �0:14, which is a
half of the baseline case. However, this is still 20 times as strong as the e¤ect obtained
from the model without the selection e¤ect.
It is also informative to report the results under alternative values of entry cost K and

�xed operation cost I. In the baseline case, I choose K = [(0:6+ 5:2)=2]� 1=12 to target
the average of the estimates of the entry cost in 1997 and 1978. An alternative target
is K = 0:6 � 1=12, as in Felbermayr and Prat (2011). Under my calibration procedure,
any change in the value of K=I changes the value of 'min, leaving the values of c and z
unchanged. As a result, the value of du=dg is the same as in the baseline case.
Finally, Table 3 reports the results under di¤erent targets for the markup. In the

baseline case, the implied value of � is 3:5, which is somewhat below the conventional
range of the empirical estimate in the trade literature, which is in between 5 to 10
(Anderson and Wincoop, 2004). The implied value for � is 6 when the target markup is
1:1. In this case, the impact of an increase in the rate of technological progress becomes
du=dg = �0:14. While reduced, the e¤ect is still 20 times as strong as the e¤ect obtained
from the model without the selection e¤ect. If the target markup is chosen to be 1:3,
then the model generates a signi�cantly strong e¤ect, du=dg = �0:41.

4 Conclusion

An important challenge in the theory of unemployment is to quantitatively understand
the impact of productivity growth on unemployment. In this paper, I focused on the
role of the selection e¤ect (Melitz, 2003; Felbermayr and Prat, 2011) and found a strong
quantitative e¤ect. I also showed that the result is robust to changes in calibration
targets. Thus, I conclude that �rm heterogeneity is an essential ingredient for the study
of growth and unemployment.
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Appendix

A Proof of Proposition 1

Use (7) and (3) to rewrite (5) as

E(l;'; a) = W (l;'; a) +
�

1� �

1� s

1� �

ac

q(�)
+

1

1 + r
U(a0): (16)

Substitute (4) and (16) into (7) to obtain an ordinary di¤erential equation, W 0(l;'; a) +
��1W (l;'; a) = Al�1=� +B, where A and B are terms independent of l. I follow Kudoh
et al. (2017) to solve it as

W (l;'; a) =
�

� � �
�Al�1=� + �B = �

� � 1

� � �

R(l;'; a)

l
� (1� �)

�

1

1 + r
U(a0)� U(a)

�

:

(17)
From (6), (7), and (3),

1

1 + r
U (a0)� U (a) = �az �

�q(�)

1 + r

Z

1

'�
[E(l0; '; a0)� U (a0)]�(')d'

= �az �
�q(�)

1 + r

�

1� �

@J(l0;'; a0)

@l0
= �az �

�q(�)

1 + r

�

1� �

1 + r

1� �

ac

q(�)
:

Thus,

W (l;'; a) = �
� � 1

� � �

R(l;'; a)

l
+ (1� �)

�

az +
�

1� �

ac�

1� �

�

:

B Proof of Proposition 2

The average productivity ~' is de�ned by p( ~') = P . This implies R (l; ~'; a) =l = ~'a.
Thus, (9) becomes

@J(l;'; a)

@l
= a

�

(1� �)
� � 1

� � �
~'+ (1� �)

c

q(�)

�

� (1� �) a

�

z +
�

1� �

c�

1� �

�

: (18)

Thus, (3) and (18) imply that in any balanced growth equilibrium,

ac

q(�)
=
1� �

1 + r
J 0(l0;'; a0) =

1� �

1 + r
a0
�

(1� �)
� � 1

� � �
~'+ (1� �)

c

q(�)
� (1� �) z �

�c�

1� �

�

;

from which

c

q(�)
=
1� �

1 + r
(1 + g)

�

(1� �)
� � 1

� � �
~'+ (1� �)

c

q(�)
� (1� �) z �

�c�

1� �

�

;

and �nally
��1 � (1� �)

1� �

c

q(�)
+

�

z +
�

1� �

c�

1� �

�

=
� � 1

� � �
~': (19)

This obtains (13).



Now consider the wage function (8). Use (19) to rewrite the second term to obtain

W (l;'; a) = �
� � 1

� � �
~'a+ (1� �) a

�

� � 1

� � �
~'�

��1 � (1� �)

1� �

c

q(�)

�

:

Thus, in any BGE,

�(l;'; a) = ~'al � �
� � 1

� � �
~'al � (1� �)

� � 1

� � �
~'al +

[��1 � (1� �)] ac

q(�)
l �

ac�

q (�)
l � aI

=

�

1�
� � 1

� � �

�

~'al +
[��1 � 1] ac

q(�)
l � aI

=
1� �

� � �
~'al (') +

[��1 � 1] ac

q(�)
l (')� aI � � (') a:

Thus, the value of a �rm in any BGE satis�es

J(l;'; a) = �(')a+
1� �

1 + r
J(l0;'; a0),

J(l;'; a)

a
= �(') +

1� �

1 + r

a0

a

J(l0;'; a0)

a0
;

from which I de�ne ~J(') � J(l;'; a)=a recursively as ~J(') = �(') + � ~J('), from which
~J(') = �(')=(1� �). Note that ~J(') is independent of a. In any BGE, the value of an
operating �rm of type ' is J(l;'; a) = �(')=(1��)a. Substitute this into (12) to obtain
the value of entry for a type-' �rm in a BGE as:

J(0; '; a) = �
acl

q (�)
� aI +

1� �

1 + r

�(')

1� �
a0 =

�

�
cl

q (�)
� I +

�

1� �
�(')

�

a

=

�

�
cl

q (�)
� I +

�

1� �

�

1� �

� � �
~'l (') +

[��1 � 1] c

q(�)
l (')� I

��

a

=

�

�

1� �

1� �

� � �
~'l (')�

1

1� �
I

�

a:

Thus, J(0; '�; a) = 0 implies
1� �

� � �
~'l ('�) =

I

�
: (20)

The free entry condition implies

K =

Z

1

'�

�

�

1� �

1� �

� � �
~'l (')�

1

1� �
I

�

f(')d'

=
�

1� �

1� �

� � �
~'

Z

1

'�
l (') f(')d'�

I

1� �

Z

1

'�
f(')d'

=
�

1� �

1� �

� � �
~' [1� F ('�)] l ( ~')�

I

1� �
[1� F ('�)]

=
[1� F ('�)]

1� �

�

�
1� �

� � �
~'l ( ~')� I

�

:



Substitute (20) into the above to obtain

K

1� F ('�)
=

I

1� �

�

l ( ~')

l ('�)
� 1

�

=
I

1� �

"

�

~'

'�

���1

� 1

#

;

where I have used the fact l('1)=l('2) = ('1='2)
��1. Finally, since F is Pareto, F (') =

1� ('min=')
� and ( ~'='�)��1 = �=(� + 1� �). Thus,

K

('min='�)
� =

I

1� �

"

�

~'

'�

���1

� 1

#

=
I

1� �

� � 1

� + 1� �
:

This is (14).

C Calibration Details

The parameter values for r, g, s, �, �, �, and K are exogenously given. With � = 0:5,
� is the solution to (� � 0:5)=(� � 1) = 1:2, which equates the markup in the model
to its target value. Thus, I obtain � = 3:5. The value of � is calculated as � =
[�=(� � 1)]� (� � 1) = 1:06� (3:5� 1), where �=(� � 1) is the the shape parameter of
the �rm size distribution, which is 1:06 from Axtell (2001). With � = 0:5, I obtain the
value of m0 as m0 = m0�

1�� � ���1 = 0:594� 12� 0:720:5�1, where m0�
1�� = 0:594� 12

and � = 0:72. The parameter values of z and c are given by solving the wage equation
and (13):

w =
� z

w

��1

z = z +
�

1� �

�

1� �
c+

�

1� �

c

q(�)
[��1 � 1 + �];

� z

w

��1

z =
� � 1

� � �
~'�

c

q(�)
[��1 � 1 + �]:

where z=w = 0:71 and ~' = 1. To obtain the value of I, use l('1)=l('2) = ('1='2)
��1

and ( ~'='�)��1 = �=(� + 1� �) to rewrite(20) as

I

�
=
1� �

� � �
~'l ('�) =

1� �

� � �
~'

�

'�

~'

���1

l( ~') =
1� �

� � �

� + 1� �

�
~'l( ~');

where ~' = 1 and the target value of l( ~') is given as 21:76. Finally, given I and K, the
value of 'min is given by the solution to (15) and ( ~'='

�)��1 = �=(� + 1� �).


