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1 Introduction

Many authors in real options modeling have argued about the importance of choosing an
adequate stochastic process to describe the price dynamics of the underlying asset. One of
the favorites of real options theorists and practitioners is the geometric Brownian motion
(GBM) process, which has been commonly used in financial derivatives valuation (Black and
Scholes, 1973; Cox et al., 1979), and in corporate project valuation (Schwartz and Trigeorgis,
2001).

Since the seminal work by Pindyck (1980, 1984), the GBM process has also been largely
used in natural resource applications. One example is Olsen and Stensland’s optimal shut-
down problem (Olsen and Stensland, 1988), which reveals one of the main advantages of
using a GBM process: its mathematical simplicity. In particular, the GBM assumption
results in differential equations whose analytical solutions are relatively easy to find and
interpret. Another advantage of using a GBM is that its parameters are very easy to find
by maximum likelihood estimation. This is particularly relevant to more empirical oriented
models such as that of Detert and Kotani (2013).

Despite its advantages, the GBM lacks some important characteristics present in typ-
ical asset price data, and particularly those of special commercial commodities, such as
oil. Specifically, typical data are usually leptokurtic and heteroscedastic, and could exhibit
skewed distributions (Finlay, 2009). Several alternative processes have been used in the lit-
erature to circumvent some of these problems. These processes include the mean reverting
—Ornstein-Uhlenbeck— process (MR), and the geometric mean reverting (GMR) process
(Dixit and Pindyck, 1994). For instance, Gibson and Schwartz (1990), Dixit and Pindyck
(1994), and Schwartz (1997) argue that, for oil and similar commodities, the MR would be
more appropriated than the GBM, as it assumes that prices present random behavior in the
short run, whereas, in the long run, they converge to equilibrium level, reflecting produc-
tion marginal cost. As the GBM, the MR, and the GMR processes are very convenient, in
the sense that they are (mathematically) very easy to handle and calibration requires no
more than running an ordinary least squares regression (Dixit and Pindyck, 1994). There
are other possibilities, such as processes combining MR and GBM with Poisson processes
(Schwartz, 1997; Pindyck, 1999; Schwartz and Smith, 2000). However, these tend to be more
complicated to use in theoretical and empirical applications.

In this paper, we propose using the variance-gamma (VG) process (Madan et al., 1998;
Seneta, 2004). This process has been recently introduced in the financial literature, and it
has proved to be superior to the GBM in fitting several asset prices (Finlay, 2009). Mathe-
matically speaking, the VG process is very similar to the GBM, in that both have drift and
volatility parameters. The former, however, is evaluated at a random time rather than being
evaluated at a natural time.

Given its relative simplicity, we are able to compare the performance of the VG process
to that of the classical GBM when modeling fossil fuel prices. To do this, we calibrate the
IMF’s fuel energy index as an example. This index summarizes the evolution of several fossil
fuel indexes, such as crude oil, natural gas and coal. To compare both processes, we com-
pute their goodness-of-fit by performing Chi-squared, Anderson-Darling, and Kolmogorov-
Smirnov tests. We show that, in these tests, the null of VG cannot be rejected. We also
compute the Value-at-Risk for both the GBM and VG process, and use it to measure the



distribution adequacy for tail fits. We again show that VG process fits better the data that
GBM. Our results are particularly relevant to real options modeling using exhaustible re-
sources as underlying assets as, to our knowledge, not much work has been done on this
subject.

The rest of the paper is as follows. After this introduction, we describe the essentials
of the VG process in Section 2. In Section 3 we calibrate the IMF’s fuel energy index and
perform the above mentioned goodness-of-fit tests. We conclude the paper in Section 4.

2 The variance gamma process

In this section, we examine the main theoretical characteristics of the VG process. As with
the GBM, the VG process is characterized by a deterministic linear trend and a stochastic
component that captures random deviations of prices from its mean. The latter component
is driven by a standard Wiener process. The key difference between the GBM and the VG
process is that, in the latter, time t is replaced by the gamma process {gt}t≥0. The gamma
process starts at zero, and has stationary and independent increments following the gamma
distribution (Schoutens, 2003):
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Assume that {Gt}t≥0 = gt − gq, and that time period increments are given by ∆t = t − q,
with t > q. Then:

E(Gt) = ∆t

Var(Gt) = ν∆t.

The random time given by the VG process is usually interpreted as business time, rather
than calendar time. It incorporates either the information flow or trading activity into the
model: the more frenzied trading becomes, or the more information released to the market
on a given day, the faster time flows (Finlay, 2009). The gamma process, like the Poisson
process, is a pure jump process. This results in the VG process being a pure jump process
with no diffusion component (Madan et al., 1998; Sullivan and Moloney, 2010).

Let {Pt}t≥0 be a series of asset prices, and define X∆t = ln(Pt)− ln(Pq). Hence, the VG
process can be defined as (Seneta, 2004):

X∆t = µ∆t+ (gt − gq)θ + (Wgt −Wgq)σ. (1)

In equation (1), µ, θ, σ > 0 are real constants, and Wt is the standard increment of a Wiener
process. This is assumed to be independent of Gt. Note that the specification of the VG
process allows us to capture more of the main characteristics shown by typical log returns
data (Heyde and Liu, 2001; Finlay, 2009). As one can see from equation (1), X∆t is described
by two drift parameters: a calendar-time drift parameter, µ, and another parameter that
evolves in time gt, θ. The latter parameter lets us take into account the occasional skewed
distributions of typical log-returns’ data. Also, in equation (1), σ measures the total volatility



of the process, while ν is the variance of the gamma increment, Gt. This latter parameter
enables the process to adjust the usual pronounced leptokurtic distribution of log-returns.

By using the properties of the standard Brownian motion, it is possible to conclude that
the (conditional) distribution of X∆t is:

X∆t − µ∆t |Gt
∼ N

(
θ(gt − gq), (gt − gq)σ

2
)
. (2)

Also, we can compute the non-conditional density function of X∆t as (Brigo et al., 2009):
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for −∞ < x < ∞, and B(·) being the Bessel function of the third class. Our knowledge
of the non-conditional distribution of Xt, equation (3), under the VG assumption, lets us
analyze how well this process fits the data compared to the GBM, whose log-returns follow
a normal distribution, with a mean of (µ− 0.5σ2)∆t and standard deviation equal to σ∆t.1

3 Fossil fuel prices as a variance-gamma process

We consider the IMF’s fuel energy index, which summarizes the evolution of crude oil, natural
gas and coal price indices. We have 304 monthly observations, starting from January 1992.
We plot the data series in Figure 1.
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Figure 1: Evolution of fuel energy index. Source: IMF

As can be seen in Figure 1, the fuel energy index exhibits sudden jumps. For instance,
the sudden increase in the first half of 2008 is due to an oil prices’ spike. Events that explain
this behavior include (Smith, 2009):

1It is possible to verify that, if (µ + θ) = (µ − 1

2
σ2), and σ is the same for both the GBM and the VG

process, the difference between both models is the size of θ and ν. In the VG process, θ and the skewness
are of the same sign. If θ = 0, the skewness is also null, and ν

∆t
is the excess of kurtosis compared to normal

distribution (equal to 3).



• In February, Venezuela cut off oil sales to ExxonMobil during a legal battle over na-
tionalization of the company’s properties there.

• In late March, saboteurs blew up the two main export pipelines in the south, cutting
approximately 300,000 barrels per day from Iraqi exports.

• On April 25, Nigerian union workers went on strike, causing ExxonMobil to shut down
production of 780,000 barrels per day from three fields.

• On April 27, Scottish oil workers walked off the job, leading to closure of the North
Forties’ pipeline, which carries approximately half of the United Kingdom’s North Sea
oil production.

• On May 1, approximately 1.36 million barrels per day of Nigerian production was shut
down, due to a combination of militant attacks on oil facilities, sabotage, and labor
strife. At the same time, it was reported that Mexican oil exports had fallen sharply
in April, due to rapid decline in the country’s massive Cantarell oil field.

• On June 19, militant attacks in Nigeria caused Shell to shut down an additional 225,000
barrels per day.

• On June 20, just days before the price of oil reached its historic peak, Nigerian
protesters blew up a pipeline, forcing Chevron to shut down 125,000 barrels per day.

Events like those mentioned above prevents stochastic models, such as the GMB, from
fitting the data well. However, as we explained in Section 2, the VG process could be more
suitable. In the following section, we calibrate the parameters of both processes by maximum
likelihood estimation. We next compare the fitting to real data.

3.1 Calibration

We first fix ∆t = 1 and compute log-returns as in Section 2. We next run stationarity
and autocorrelation tests. Our first finding is that the series are stationary as suggested
by the very low (less than 1%) p-value of the augmented Dickey-Fuller test. A plot of the
series (see Figure 2) also reveals that there are some heteroscedastic patterns and volatility
clustering. This is a common characteristic of financial returns (Tsay, 2010). We also find
less than 1% p-values of the Ljung-Box test with several lags, indicating that fossil fuel
energy index displays autocorrelation in returns. This is a feature that characterizes many
energy commodities, such as gas, oil and electricity (González-Pedraz et al., 2014). We also
find that X2

t is autocorrelated. This last finding implies that the series are not iid and hence
cannot be used to estimate the VG process parameters.

To deal with dependence of log-returns, we apply a GARCH filter (McNeil and Frey,
2000).2 Let X∗

t = ln(Pt)− ln(Pt−1), Xt = X∗
t −X, and

Xt = (σt)
fYt, (σf

t )
2 = α0 + α1X

2
t−1 + β1(σ

f
t−1)

2,

2For other filters refer to Lo et al. (2016).



i.e. a GARCH(1,1) model. (σf
t )

2 is estimated using quasi maximum likelihood. We next

compute the filtered return series bYt = Xt/(bσt)
f , where (bσt)

f is the estimated GARCH(1,1)

volatility. Autocorrelation test on bY 2
t confirm that this is not autocorrelated. Hence, we can

use bY 2
t to calibrate the process.3
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Figure 2: Evolution of log-returns of the fuel energy index and dynamic VaR estimation.

We now estimate the VG parameters by following the procedure in Seneta (2004).4 We
compute the first four moments of the variance-gamma distribution by the method of mo-
ments. As ∆t = 1 we get:

bµm = x− bθm; bσm = s; bθm = Sbσm; bνm =
K

3
− 1, (4)

where x, s2, S and K are mean, variance, skewness, and kurtosis sample estimates, respec-
tively. Equation (3) is then maximized by using the results in equation (4) as an initial
guess. Our resulting estimates are shown in Table I. To facilitate comparison, we also show
the GBM estimated parameters in Table I.5

3.2 Goodness of fit

To analyze the performance of the VG process, we follow the recommendation in Göncü
et al. (2013) and perform several goodness-of-fit tests. In particular, we perform Chi-squared,
Anderson-Darling (A-D), and Kolmogorov-Smirnov (K-S) tests.6

3Autocorrelation functions of both X2
t

and bY 2
t

, as well as results from the augmented Dickey-Fuller test
are available from the authors.

4See also Skindilias and Lo (2013) for calibration using the VG and other processes.
5To calibrate the GBM process see Dixit and Pindyck (1994), for instance.
6We also compared the GBM and VG process densities to the empirical density function. The VG

distribution fits extremely well to data, specially in the right tail. QQ-Plots confirm this observation.
Density plots and QQ-Plots are available from the authors.



Table I: Estimated parameters by using GBM and VG process (filtered data).

Log-Returns

Normal distribution Variance-Gamma distribution
µ 0.0015 2.3091
σ 0.9979 0.6181
θ — -2.3106
ν — 0.1184

The Chi-squared goodness-of-fit test is a non-parametric test that is commonly used
to compare the observed sample distribution with its expected probability distribution. It
allows us to determine how well the theoretical distribution (in our case normal, or variance
gamma) fits the empirical distribution. To perform the Chi-Square goodness-of-fit test,
sample data is divided into K subintervals. Then, the number of points that fall into the
k-th subinterval, for k = 1, . . . , K, is compared with the expected number of points in that
subinterval. Here, we follow Madan and Seneta (1987) and consider seven subintervals given
by the bounds:

{−∞,−0.05,−0.025,−0.01, 0, 0.01, 0.025, 0.05,+∞}.

The relevant statistic is:

χ2
K−1−m =

KX

i=1

(ob.f.i − ex.fi)
2

ex.fi

where ob.fi and ex.fi refer to the observed and expected frequencies at cell i, respectively.
The expected frequency is defined as Npi, where N is the sample size and pi is the probability
of a randomly drawn value to fall into the i cell; m is the number of parameters of the
model. As usual, the value of the relevant statistic is compared with the critical value. If the
calculated value of Chi-squared goodness-of-fit statistic is greater than the critical value, we
reject the null hypothesis that there is no difference between the observed and the expected
frequency at some chosen significance level. If the calculated value of Chi-squared goodness-
of-fit statistic is less than the critical value, we do not reject the null hypothesis and conclude
that there is no significant difference between the observed and the expected value.

Another non-parametric test to compare the observed sample distribution with its ex-
pected probability distribution is the K-S goodness-of-fit test. Contrary to the Chi-squared
test, K-S is applied to unbinned data, i.e. it does not require discretization. In particular,
the K-S test is based on the largest vertical difference between the empirical cumulative
distribution and the hypothesized distribution. Given N ordered (from lowest to highest)
data, z1, z2, . . . , zN , the K-S goodness-of-fit test is computed as:

KS = max
1≤i≤n

⇢
F (zi)−

i− 1

n
,
i

N
− F (zi)

}
,

where F (·) is the (theoretical) cumulative distribution function. The hypothesis regarding
the distributional form is rejected at some chosen significance level if the test statistic is



greater than the critical value. However, as noted in Göncü et al. (2013), since we estimate
the model parameters from the same initial data set, the critical values of the K-S test cannot
be used. Nevertheless, the K-S test statistic can be used to quantify the fit of the VG model
in comparison to the normal distribution.

The A-D goodness-of-fit test is a modification of the K-S test that attaches higher weights
to the tails than does the K-S test (Göncü et al., 2013). This is computed as:

A2 = −n−
nX

i=1

2i− 1

n
(lnF (zi) + ln(1− F (zn+i−1))) ,

where F (·) is, as in the K-S test, the cumulative distribution function, and zi, with i =
1, 2, . . . , N , are the ordered (from lowest to highest) log-returns. The A-D statistic can be
compared to the critical values of the normal distribution in Stephens (1974).

Table II: Results from different goodness-of-fit tests. p-values are shown in parenthesis.

χ
2 A-D K-S

Normal VG Normal VG Normal VG
18.594 14.659 1.6313 0.1666 0.0716 0.0304

(0.0199) (0.0484) (0.148) (0.997) (0.0882) (0.9406)

In Table II we show the Chi-squared, K-S, and A-D tests values for both the normal and
VG distributions. We also compute their associated p-values, these are shown in parenthesis.
As we can see, Chi-squared test rejects both normal and VG distributions. A-D barely fails
to reject the normal distribution and fails to reject VG. K-S rejects normal distribution, and
fails to reject VG distribution. At least from the results of A-D and K-S test we have some
evidence in favor of applying the VG process to model the fuel energy index.

3.3 Value at Risk

To further analyze the performance of the VG process, we compute the (1 − α)% dynamic
Value-at-Risk (VaR). This is computed from the filtered data as:

VaR1−α = (bσt)
f bF−1(α),

where bF−1 is the quantile function corresponding to the estimated parameters of the VG
distribution, and (bσf

t ) is the estimated GARCH standard deviation of Section 3. VaR can
be used to measure a distribution’s level of adequacy for tail fits.

Table III: p-values for Kupiec test for several levels of α.

p-values

α Normal distribution Variance-Gamma distribution
0.01 0.0054148 0.9815645
0.05 0.2272968 0.4734198
0.1 0.4985621 0.7614667



We plot the dynamic VaR with α = 0.01 in Figure 2. Figure 2 also gives us an idea
of the relative frequency of VaR violations. To formally test the number of violations to
the corresponding in-sample VaR level we compute the Kupiec likelihood ratio test (Kupiec,
1995). Resulting p-values for the Kupiec test for different levels are shown in Table III.
These results imply that the VG distribution fits well the data, as Kupiec test fails to reject
the hypothesis that VaR is correctly estimated.

4 Conclusion

In this paper, we model the fuel energy index as both a geometric Brownian motion (GBM)
and a variance-gamma (VG) process. The former is more common in the literature of
environmental resource economics, and it is mostly used by practitioners. Our analysis
implies that, although not perfect, the variance-gamma distribution provides a better fit
than does the normal distribution. This is because the VG process can capture the sudden
extreme changes in the fuel energy index. Also, the goodness-of-fit tests we perform suggest
that the null hypothesis of normality is usually rejected.

Our results are particularly relevant to real options models using exhaustible resources
as underlying assets. One advantage of using the VG process is that its parameters are very
easy to estimate. Additionally, because its structure is not too much different from that of
the GBM, closed form solutions to purely theoretical natural resources real options models
could eventually exist.
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