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1. Introduction

Production theory relies to a large extent on the constant elasticity of substitution (CES)
production function. This production function received its first attention when used in
a growth context by Solow (1956), and was developed by Arrow et al (1961). A helpful
feature of this functional form is that it includes the Cobb-Douglas form that assumes a
unity elasticity of substitution. The CES production function can also easily accommodate
technological progress, whether in the form of factor-augmenting technological progress
or raising the total factor productivity. It is thus fair to say that the CES production
function has become a major workhorse in both theoretical and empirical economics.

The specification of the CES function features a share (or distribution) parameter that
is taken as given. This parameter specifies how important a certain factor is within the
production process. What happens if a firm can alter this share parameter? In particular,
what happens if an increase in one share parameter has the cost of reducing the share
parameter of another factor?

The purpose of this note is to scrutinize this question: suppose that a team of engineers
has to plan a production process, starting from a natural well-known plan with given share
parameters. We call this process production planning, and we ask whether the production
planner would like to change the plan and to what extent. This problem is equivalent to
the problem of technology choice in which the firm has to select a production function
out of a range of possible CES functions. The surprising result is that this problem
has no interior solution if factor costs are given: ignoring production planning costs, the
production planner will always want to maximize one share parameter at the expense of
the other. An interior solution is possible only if at least one factor price is uncertain
when planning the production process.

2. Production plans

We consider a two-stage process: in the first stage, the production planner sets the share
parameters, in the second stage the management aims at minimizing the unit cost. We
assume that the technology is such that the production planner’s only freedom is to choose
the share parameterα for the firm’s production function, which must belong to the set of
CES production functions that take the form:

q = A [αxγ
1 + (1− α)xγ

2 ]
h/γ where h > 0, γ ∈ (−∞, 1) and γ 6= 0. (1)

Production according to production function (1) uses two inputs x1 and x2. The degree
of homogeneity is given by h > 0, and the elasticity of substitution σ is related to γ by
γ = (σ− 1)/σ. As Arrow et al. (1961) show, the production function (1) can be regarded
as a transformation of the production function



q = [β1x
γ
1 + β2x

γ
2 ]

h/γ , (2)

where βi > 0 denotes the weight production factor i has in production. Production
function (1) follows from production function (2) by normalizing such that

β1 + β2 = Aγ/h and β1 = αAγ/h (3)

holds. From (3), we observe that

α =
β1

β1 + β2

,

which proves that variations in the share parameter α, leaving A = (β1+β2)
−γ/h constant,

are equivalent to a change in the relative weights of the production factors, keeping β1+β2

constant. We set A = 1 for simplicity. The objective of the production planner is to find
the optimal share parameter α. In doing so, the production planner faces a natural ᾱ,
and we ask whether and how she would like to change it. We suppose that the set of
feasible changes is restricted, such that α ≥ ε and (1 − α) ≥ ε must holds, where ε is a
given small positive number.

Solving backwards, let wi denote the price of factor i. Consider the problem of
finding the least-cost way of producing one unit of output subject to the constraint
[α(x1)

γ + (1− α)(x2)
γ]h/γ = 1. This constraint is equivalent to α(x1)

γ +(1−α)(x2)
γ = 1.

Using standard techniques, optimization implies that the cost-minimizing factor demands,
denoted by x∗

i , are given by

w1x
∗

1 = (α)
1

1−γ (w1)
γ

γ−1

[

α
1

1−γ (w1)
γ

γ−1 + (1− α)
1

1−γ (w2)
γ

γ−1

]

−
1

γ

and

w2x
∗

2 = (1− α)
1

1−γ (w2)
γ

γ−1

[

α
1

1−γ (w1)
γ

γ−1 + (1− α)
1

1−γ (w2)
γ

γ−1

]

−
1

γ

.

Consequently, the unit cost function is given by

w1x
∗

1 + w2x
∗

2 =
[

α
1

1−γ (w1)
γ

γ−1 + (1− α)
1

1−γ (w2)
γ

γ−1

]
γ−1

γ

= c(w1, w2, α).

We find:

Proposition 1. Cost minimization with respect to α leads to corner solutions.

Proof. See Appendix A.1

Proposition 1 does not imply that no critical point exists. But the critical point is
given by

α

1− α
=

w1

w2

,



and cannot qualify for a cost minimum, but only for a cost maximum, as you will want to
put more weight on input 1 with an increase in w1 only in case of a cost maximum. The
CES specification obviously leads to an incentive to specialize on one input as much as you
can: while there is substitution in terms of factor inputs for given share parameters and
factor prices, the CES specification does not allow for substitution of share parameters
for given factor prices.

We now show that uncertainty is the key for a production plan that implies diversi-
fication. We present this result by assuming that one out of the two factor prices is not
known at the stage of production planning. In particular, suppose that w2 is known with
certainty, but w1 is random: it can take one of two possible values, wL and wH where
wL < wH , with probabilities ρ and 1− ρ, respectively. The objective is to minimize, with
respect to α, the expected cost of producing one unit of output:

min
α

E
[

α
1

1−γ (w1)
γ

γ−1 + (1− α)
1

1−γ (w2)
γ

γ−1

]
γ−1

γ

subject to α ≥ ε and 1− α ≥ ε. We find:

Proposition 2. An interior solution for the cost minimization problem is possible if

wL <
1− α

α
w2 < wH .

Proof. See Appendix A.2

Not surprisingly, uncertainty is the key for understanding diversification, but here it
applies to factor shares and the planning of the production process. If the factor price
that is not subject to uncertainty is in between the low and the high realization of the
uncertain factor price, and interior solution may exist. However, Proposition 2 gives only
necessary conditions for an interior solution and does not imply that the second-order
conditions are fulfilled. Appendix A.3 shows that these results also carry over to Cobb-
Douglas production functions, but for the Cobb-Douglas case, the necessary conditions
are also sufficient.

3. Concluding remarks

This note is the first to endogenize the role of share parameters in CES production func-
tions. It has shown that if factor prices are not subject to variability, a firm will always
wish to maximize one share parameter at the expense of the other. If the share parame-
ters were completely flexible, the firm would prefer to use one factor of production only.
These results extend easily to more than one factor, leaving only one factor of production.
However, we could also show that uncertain factor prices may imply an interior solution.



When planning production or selecting a production technology, the CES production
function makes sense if future factor prices are uncertain to begin with.
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Appendix

A.1 Proof of Proposition 1

We have to distinguish two cases: (i) high substitutability, that is, σ > 1 ⇔ 0 < γ < 1,
and (ii) low substitutability, that is, σ < 1 ⇔ γ < 0. In the case of high substitutability,
minimizing w1x

∗

1 +w2x
∗

2 with respect to α is equivalent to maximizing, with respect to α,
the term

α
1

1−γ (w1)
γ

γ−1 + (1− α)
1

1−γ (w2)
γ

γ−1

subject to α ≥ ε and (1 − α) ≥ ε because the exponent (γ − 1)/γ < 0 in this case. Let
λ1 ≥ 0 and λ2 ≥ 0 be the respective Lagrange multipliers, so the first order condition is
given by

1

1− γ
α

γ
1−γ (w1)

γ
γ−1 −

1

1− γ
(1− α)

γ
1−γ (w2)

γ
γ−1 + λ1 − λ2 = 0.

At an interior solution, λ1 = λ2 = 0, and the second derivative is given by

(

1

1− γ

)

γ

1− γ
α−

1

1−γ (w1)
γ

γ−1 +

(

1

1− γ

)

γ

1− γ
(1− α)−

1

1−γ (w2)
γ

γ−1 > 0.

Thus any interior solution does not satisfy the second-order condition.
In case of low substitutability, minimizing w1x

∗

1 + w2x
∗

2 with respect to α is the same
as maximizing, with respect to α, the term

−α
1

1−γ (w1)
γ

γ−1 − (1− α)
1

1−γ (w2)
γ

γ−1

subject to α ≥ ε and (1 − α) ≥ ε. Let λ1 ≥ 0 and λ2 ≥ 0 again denote the Lagrange



multipliers. The first-order condition reads:

−

(

1

1− γ

)

α
γ

1−γ (w1)
γ

γ−1 +

(

1

1− γ

)

(1− α)
γ

1−γ (w2)
γ

γ−1 + λ1 − λ2 = 0.

At an interior solution, λ1 = λ2 = 0 and the second derivative is given by

−γ

(

1

1− γ

)2

α
γ

1−γ
−1 (w1)

γ
γ−1 − γ

(

1

1− γ

)2

(1− α)
γ

1−γ
−1 (w2)

γ
γ−1 .

This is positive (because here γ < 0), and thus any interior solution does not satisfy the
second-order condition.

A.2 Proof of Proposition 2

The problem is equivalent to choosing α to maximize

−ρ
[

α
1

1−γ (wL)
γ

γ−1 + (1− α)
1

1−γ (w2)
γ

γ−1

]
γ−1

γ

−(1− ρ)
[

α
1

1−γ (wH)
γ

γ−1 + (1− α)
1

1−γ (w2)
γ

γ−1

]
γ−1

γ

subject to α ≥ ε and 1 − α ≥ ε. Let µ1 ≥ 0 and µ2 ≥ 0 be the associated Lagrange
multipliers. The first-order condition is given by

ρ

γ
L

−1

γ

[

(

α

wL

)
γ

1−γ

−

(

1− α

w2

)
γ

1−γ

]

+
1− ρ

γ
H

−1

γ

[

(

α

wH

)
γ

1−γ

−

(

1− α

w2

)
γ

1−γ

]

+µ1−µ2 = 0,

where

L ≡ α
1

1−γ (wL)
γ

γ−1 + (1− α)
1

1−γ (w2)
γ

γ−1 ,

H ≡ α
1

1−γ (wH)
γ

γ−1 + (1− α)
1

1−γ (w2)
γ

γ−1 .

Then an interior solution is possible if µ1 = µ2 = 0 so that

ρ

γ
L

−1

γ

[

(

α

wL

)
γ

1−γ

−

(

1− α

w2

)
γ

1−γ

]

+
1− ρ

γ
H

−1

γ

[

(

α

wH

)
γ

1−γ

−

(

1− α

w2

)
γ

1−γ

]

= 0,

Consequently, both terms can add up to zero if



(

α

wL

)
γ

1−γ

−

(

1− α

w2

)
γ

1−γ

(A.1)

has the opposite sign of
(

α

wH

)
γ

1−γ

−

(

1− α

w2

)
γ

1−γ

. (A.2)

Consider the case where 0 < γ < 1. If (A.1) is positive and (A.2) is negative, we find
that wL < (1 − α)w2/α and wH > (1 − α)w2/α, leading to Proposition 2. The opposite
case, that is, a negative (A.1) and a positive (A.2) is impossible as it implied wL > wH .
Using σ = 1/(1− γ) > 0, the second order condition requires

−
ρ

γ2
L−

1+γ
γ σ

[

(

α

wL

)
γ

1−γ

−

(

1− α

w2

)
γ

1−γ

]2

−
1− ρ

γ2
H−

1+γ
γ σ
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α

wH

)
γ

1−γ

−

(

1− α

w2

)
γ

1−γ

]2

+ρL
−1

γ σ

[

1

α

(

α

wL

)
γ

1−γ

+
1

1− α

(

1− α

w2

)
γ

1−γ

]

+(1− ρ)H
−1

γ σ

[

1

α

(

α

wH

)
γ

1−γ

+
1

1− α

(

1− α

w2

)
γ

1−γ

]

≤ 0

which may or may not be satisfied, because the first two terms are negative, but the last
two terms are positive.

Consider next the case where γ < 0 so that γ/(1 − γ) < 0. If (A.1) is negative
and (A.2) is positive, we find that wL < (1 − α)w2/α and wH > (1 − α)w2/α, leading
to Proposition 2. The opposite case, that is, a positive (A.1) and a negative (A.2) is
impossible as it implied wL > wH . Again, the second order condition may or may not be
satisfied, because the first two terms of the second derivative are negative, but the last
two terms are positive.

A.3 Cobb-Douglas production function

A firm uses two inputs, x and y, to produce an output q. The production function is of
the form

q = xαyβ.

Suppose the firm can choose α and β subject to the constraints that (i) α+β = γ (where
γ is an exogenously given constant, γ ≤ 1), (ii) α must lie inside an interval [α, α], where
0 < α < α < γ and (iii) β must lie inside an interval

[

β, β
]

, where 0 < β < β < γ. Since



α+β = γ , it is natural to assume that β = γ−α and β = γ−α, so that when β is equal
to its maximum permissible value, then α is equal to its minimum permissible value (and
vice versa).

For given α and β, and given factor prices v and w, the firm chooses x and y to
minimize the cost of producing q units of output, vx+ wy subject to xαyβ = q.

This minimization problem is standard and leads to the unit cost function

C(v, w) =
α + β

α
α

α+β β
β

α+β

v
α

α+βw
β

α+β .

Using α + β = γ, this function can be rewritten as

C(v, w) =
γ

(γ − β)
γ−β
γ β

β
γ

v
γ−β
γ w

β
γ = γ

[

(

v

γ − β

)γ−β (
w

β

)β
]

1

γ

.

Assume the firm can choose any β such that β ≤ β ≤ β, where β and β are exogenous

upper and lower bounds, with γ− β > 0 (and thus γ− β > 0). The problem is equivalent
to choosing β to maximize

Ω(β) ≡

(

γ − β

v

)γ−β (
β

w

)β

or to maximize lnΩ(β) subject to β − β ≥ 0 and β − β ≥ 0. Let λ1 ≥ 0 and λ2 ≥ 0 be
Lagrange multipliers associated with these constraints. The first-order condition of the
Lagragian function L = (γ − β) ln(γ − β) − (γ − β) ln v + β ln β − β lnw + λ1

(

β − β
)

+
λ2

(

β − β
)

is
dL

dβ
= − ln(γ − β) + ln v + ln β − lnw − λ1 + λ2 = 0,

and it is easy to show that any interior solution β ∈
(

β, β
)

to this condition would not
maximize but minimize lnΩ(β) because the second derivative of the objective function
lnΩ(β) is positive, i.e., the function lnΩ(β) is strictly convex in β for all β ∈

[

β, β
]

:

d2 ln Ω(β)

dβ2
= (γ − β) + 1 > 0

since β ≤ β < γ. For the optimal production plan, we must distinguish three cases: (i) If
w
v
<

β

γ−β
, i.e., factor y is very cheap relative to factor x, and

d ln Ω(β)/dβ = ln

(

β

γ − β

)

− ln
(w

v

)

> 0, for all β ∈
(

β, β
)



shows that the optimal β is at the highest permissible value, i.e., β. (ii) Similarly, if
β

γ−β
< w

v
, the optimal β is at the lowest permissible value β. (iii) If

β

γ − β
<

w

v
<

β

γ − β

a value β# ∈
(

β, β
)

exists such that d ln Ω(β)/dβ = 0 at β#, where

β

γ − β
<

β#

γ − β#
=

w

v
<

β

γ − β

Since d2 lnΩ(β)
dβ2 = (γ − β) + 1 > 0 for all β ∈

[

β, β
]

, we can infer that at β = β#, the

function lnΩ(β) attains its minimum. Then the maximum of lnΩ(β) over the interval
[

β, β
]

must occur either at β = β or at β = β. It occurs at β iff (γ − β) ln(γ − β)− (γ −

β) ln v + β ln β − β lnw > (γ − β) ln(γ − β)− (γ − β) ln v + β ln β − β lnw.
Now suppose that v = 1, but w may take on one of two possible values, wH and wL,

with probability ρ and 1 − ρ respectively. Then the firm’s optimal production planning
problem is to choose β to minimize expected cost of producing one unit of output, i.e.,

EC(β) = ρ

[

(

v

γ − β

)γ−β (
wH

β

)β
]

1

γ

+ (1− ρ)

[

(

v

γ − β

)γ−β (
wL

β

)β
]

1

γ

subject to β − β ≥ 0 and β − β ≥ 0. To simplify, assume γ = 1 and turn the problem
into a maximization problem where the Lagragian is

L = −ρ

(

v

1− β

)1−β (
wH

β

)β

− (1− ρ)

(

v

1− β

)1−β (
wL

β

)β

+ λ1

(

β − β
)

+ λ2

(

β − β
)

and λ1 ≥ 0 and λ2 ≥ 0 are the Lagrange multipliers. Let

U(β) ≡

(

v

1− β

)1−β (
wH

β

)β

, S(β) ≡

(

v

1− β

)1−β (
wL

β

)β

.

For any differentiable function y(x) > 0, 1
y
dy
dx

= d ln y
dx

and dy
dx

= y(x)d ln y
dx

hold, so

dU

dβ
= U(β)

[

ln
(wH

v

)

− ln

(

β

1− β

)]

,
dS

dβ
= S(β)

[

ln
(wL

v

)

− ln

(

β

1− β

)]

.



If there is an interior solution, it must satisfy

−ρU(β)

[

ln
(wH

v

)

− ln

(

β

1− β

)]

− (1− ρ)S(β)

[

ln
(wL

v

)

− ln

(

β

1− β

)]

= 0, (A.3)

which requires

ln
(wH

v

)

− ln

(

β

1− β

)

=
(1− ρ)

ρ

(

wL

wH

)β [

ln

(

β

1− β

)

− ln
(wL

v

)

]

. (A.4)

For condition (A.4) to be satisfied at some β∗ ∈
(

β, β
)

, it is necessary that

ln
(wH

v

)

> ln

(

β∗

1− β∗

)

> ln
(wL

v

)

.

This condition is similar to the condition in Proposition 2. Suppose that there exists a
value β∗ that satisfies eq (A.4), and assume that β∗ ∈

(

β, β
)

. The second-order condition
is also satisfied because differentiation of (A.3) yields
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[
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This expression is clearly negative, because

U ′(β)

[
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v

)
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)]

=

[

ln
(wH
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> 0

and

S ′(β)

[
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(wL

v

)
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β

1− β
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=

[

ln
(wL

v
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> 0.


