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Abstract

In simulating and estimating DSGE models, we typically assume that exogenous shocks exist and that they capture
aggregate uncertainty. Further, they are either interpreted as structural or as measurement error. Therefore, we almost
always assume orthogonality of those shocks restricting the off-diagonal elements of the variance-covariance matrix. In
this paper, we ask the question whether correlated shocks matter when we estimate typical DSGE models and what
we can learn from including them. We argue that using correlated shocks is useful as a robustness test: observing
correlated shocks implies that the underlying DSGE model is misspecified and we can understand the weaknesses of
the underlying model. We find sizable and relevant differences for the three DSGE models estimated when we include
correlated shocks. This holds for the estimation of structural parameters, driving forces of fluctuations, and the size
and sign of the estimated shocks.

We would like to thank the editor, John Conley, and two anonymous referees for comments and suggestions. The views expressed in this
paper are solely those of the authors and do not necessarily represent the views of the Bundesbank or the Eurosystem

Citation: Alexander Falter and Dennis Wesselbaum, (2018) "Correlated shocks in estimated DSGE models", Economics Bulletin, Volume
38, Issue 4, pages 2026-2036

Contact: Alexander Falter - alexander. falter@bundesbank.de, Dernis Wesselbaum - dennis. wesselbaum@otago.ac.nz

Submitted: August 11, 2018. Published: October 30, 2018.



1 Introduction

In this paper, we ask the question whether correlated shocks matter when we estimate typical
Dynamic Stochastic General Equilibrium models (DSGE, for short) and what we can learn
from including them. Put differently, does the arbitrary restriction on non-correlated shocks
has implications for the results of the Bayesian estimation of some typical DSGE models?
Observing correlated shocks implies that the underlying DSGE model is misspecified (cf.
Del Negro and Schorfheide, 2009). Therefore, allowing for correlated shocks can be a useful
inference or robustness test. Further, the obtained correlations can be used to understand
the weaknesses of the underlying theoretical foundation and can help to improve it. We argue
that estimating DSGE models with correlated shocks should become a standard routine to
test for potential misspecification. For example, according to this approach, the workhorse
DSGE model by Smets and Wouters (2007) does not suffer from misspecification, while other
models in the literature do, leading to different results.

Over the last three decades, DSGE models have been the workhorse models in macro-
economic analysis employed by policy makers and academics. They assume, amongst many
other things, that exogenous shocks exist and that they capture aggregate uncertainty. Those
shocks are either interpreted as "structural" (cf. Smets and Wouters, 2007) or as measure-
ment error (cf. Ireland, 2004 and Schorfheide, 2013). In simulating model dynamics or in
estimating those models, we - almost always - assume orthogonality of those shocks. This
creates a restriction on the variance-covariance matrix where all off-diagonal elements are,
therefore, zero.

While this is a strict, convenient assumption, it rules out implications from widely ac-
cepted theories. For example, in a model with multiple, different assets - say bonds and
houses - and risk averse households, portfolio theory could result in an optimum where
households invest in both assets, such that correlated shocks become important (cf. De San-
tis and Gerard, 1997). A second example comes from the findings by Diebold and Yilmaz
(2014). The authors use network theory to track daily changes in the connectedness of US
financial institutions over the Global Financial Crisis. They find sizable time-varying levels
of connectedness in the US financial system. A shock hitting one institution can, as in the
case of Lehman Brothers, spread through the network and affect other institutions. This
epidemic character can lead to correlated shocks.

Empirically, using a vectorautoregression model, Chari et al. (2007) find important cross-
correlations of business cycle shocks. Along this line, Schmitt-Grohé and Uribe (2011) show
that a common shock to productivity and investment-specific productivity drives a large
share of business cycle dynamics. In the open-economy, Justiniano and Preston (2010) and
Rabanal et al. (2011) find that cross-country correlated shocks are an important factor,
for example, in driving exchange rates. Ferndndez-Villaverde et al. (2011) investigate the
correlation between level shocks and volatility shocks for the real interest rate in a set of
latin american countries. They find a high correlation, between 0.69 and 0.89, between level
and correlation shocks.

Our paper is closely related to Curdia and Reis (2011) who, to the best of our knowledge,
started the discussion about correlated shocks in DSGE models. They show that allowing



for correlated shocks does change the results from estimating DSGE models. For example,
they attribute significant parts of business cycle fluctuations to productivity and fiscal policy
shocks rather than variations in mark-ups. Further, Andrle (2014) demonstrates misspec-
ification of a DSGE model by showing that the model fails to (endogenously) explain the
co-movement of investment and consumption without strongly correlated shocks. Ferroni
et al. (2015) focus on the additional assumption that priors on the standard deviation of
structural shocks exclude zero. They show that this creates a downward bias in the in-
ternal persistence of the model and, most interestingly, cluster shocks in fundamental and
non-fundamental.

We find that for the three DSGE models estimated, sizable and relevant differences emerge
when we include correlated shocks. This holds for the estimation of structural parameters,
e.g. changes in Taylor-rule parameters, the driving forces of fluctuations, and the size and
sign of the estimated shocks. Therefore, results derived from the estimation, for example
standard deviations, would be different in the model with correlated shocks vs. the model
without correlated shocks. Most importantly, the differences are not systematical, in the
sense that there is no clear upward or downward bias. This set of results supports using
correlated shocks as an additional test. We also estimate the Smets and Wouters (2007)
model where the model without correlated shocks performs better (higher log-likelihood)
compared to the model with correlated shocks. For this model, the robustness check using
correlated shocks would have been successful.

2 Results

We estimate three influential DSGE model among the myriads of models in the literature.!
We select the paper by Bernanke et al. (1999), as it introduces the now commonly used
financial accelerator, the Iacoviello (2005) paper, as it considers the housing market, and the
Justiniano et al. (2011) paper, as an example of a now standard medium-size DSGE model
with a large number of shocks.

These three papers are all published in top journals, have a large number of citations,
and have also been selected because they have been published six years apart from each
other, representing advances in modelling and estimation techniques. Further, they do con-
sider increasing numbers of shocks (three, four, and six). Overall, they should be a good
representation of the entire population of closed-economy DSGE models.

It should also be stressed that we do not compare the results across models. We are only
interested in whether, for a given model, considering correlated shocks significantly changes
the findings. Therefore, we estimate a different set of parameters for each model, consider
a different set of observed time series (which is also necessary given the different number of
shocks across models), but use the same time period for the estimation. We use Bayesian
methods to estimate all model versions (see Herbst and Schorfheide, 2015 for details of the
method). We check for convergence and use five MCMC chains with 100.000 draws each.

'We also estimate the Smets and Wouters (2007) model but could not find significant differences between
the model with and without correlated shocks.



Bernanke et al. (1999) | Iacoviello (2005) Justiniano et al. (2011)
TAPZ —0.73 | ompcr  —08 | oisz 0.36 GNP 0.73
(—0.89,~0.58) (—0.87,—0.71) (0.24,0.48) (0.62,0.85)
OMP,ME 0.89 OMP,HP 0.11 OIS,PF 0.32 OPFME —0.01
(0.84,0.93) (—0.01,0.25) (0.18,0.46) (—0.16,0.14)
07 ME —0.56 OMP,Z —0.38 OIS, ME —0.17 OPF,FP —0.61
(—0.71,—0.42) (—0.52,—0.22) (—0.34,—0.01) (—0.68,~0.53)
OCP,HP —0.02 OIS, FP —0.32 OPF,MP 0.48
(—0.17,0.12) (—0.46,—0.18) (0.38,0.58)
oCcPZ 0.84 OIS,MP 0.57 OME,FP —0.24
(0.76,0.93) (0.44,0.69) (—0.35,—0.12)
OHP,Z —0.13 07 PF 0.8 OME,MP —0.34
(—0.27,0.02) (0.74,0.87) (—0.46,—0.23)
OZ ME —0.32 OFP,MP —0.02
(—0.47,~0.17) (—0.13,0.09)
OZ FP —0.27
(—0.39,~0.15)

Table 1: Estimated correlation between shocks for all three models considered. Shock names
are: MP: Monetary policy, Z: aggregate technology, ME: marginal efficiency of capital, CP:
Cost-push, HP: housing preference, IS: investment-specific technology, PF: preference, FP:
fiscal policy.

We find that for all three models, judged by the log-likelihood, the version with correlated
shocks is clearly preferred. For the Bernanke et al. (1999) model the values are -940.95 vs.
-1016.79 for the version with correlated shocks vs. the version without correlated shocks.
For the Tacoviello (2005) paper the values are: -1190.33 vs. -1428.28 and for Justiniano et al.
(2011): -1536.95 vs. -1625.79. This shows that the versions with correlated shocks match
the data better. The important, and more interesting, question is whether the differences be-
tween the two versions is significant. In the following, we discuss differences in the estimated
parametes, the driving forces of business cycles, and the estimated shocks.

2.1 Parameter Estimates

We begin by discussing the estimated correlations between the shocks for each model. Table
1 presents our results. First, the results show that most of the correlations are significant.
For example, in the Bernanke et al. (1999) model, we find a negative correlation between
the aggregate technology shock and the shock to the marginal efficiency of investment. In
the Iacoviello (2005) model, we find a negative correlation between monetary policy and
cost-push shocks and a positive correlation between cost-push and technology shocks. The
Justiniano et al. (2011) model features the largest number of shocks and we find various
positive and negative correlations across shocks. For example, investment-specific technology
shocks are positively correlated with aggregate technology shock. In contrast, the marginal
efficiency of capital shock is negatively correlated with the investment-specific technology
shock and the aggregate technology shock, in line with the results from the Bernanke et al.
(1999) model. Interestingly, we do not find a correlation between monetary and fiscal policy
shocks.



Next, we discuss the differences in the estimated parameters shown in figure 1. In this
figure, we plot the difference between the estimated parameter obtained from the model
without correlated shocks minus the one obtained from the model with correlated shocks.
First, we find that there is no clear pattern of over- or underestimating parameters when
considering correlated shocks. In the Bernanke et al. (1999) model, the largest difference is
obtained for the survival probability of entrepreneurs, the inverse of the Frisch elasticity, and
the autocorrelation coefficien of the shock to the marginal efficiency of investment. While
the survival probability is 0.89 in the model with correlated shocks, it is only half as large
without correlated shocks. This has important implications, for example, for the dynamics of
net worth. Further, the inverse of the Frisch elasticity is smaller (by 0.15) in the model with
correlated shocks compared to the model without correlated shocks. This has implications for
the link between wages and labor supply: a lower value implies a lower elasticity of the labor
supply curve with respect to changes in wages. In the Iacoviello (2005) model, the largest
difference is obtained for capital adjustment costs, the Taylor-rule cofficient on inflation, and
the autocorrelation coefficient on the technology shock. Capital adjustment costs are 1.98
in the model with correlated shocks, 2.18 in the model without correlated shocks. Hence,
capital will accumulate more in the model with correlated shocks. Finally, in the Justiniano
et al. (2011) model we fnd the largest differences. The largest ones are obtained for the
inverse Frisch elasticity, habit persistence in consumption, wage stickiness, the Taylor-rule
coefficient on inflation, the autocorrelation parameter for the marginal efficiency of capital
shock. For example, habit persistence is 0.96 and 0.81 in the model with correlated and
uncorrelated shocks, respectively. This implies a much more persistent adjustment path of
consumption in the model with correlated shocks. The inverse of the Frisch elasticity is
slightly larger in the model with correlated shocks (2.86 vs. 2.38, with smaller differences
for the Frisch elasticity: 0.35 vs. 0.42). Wage stickiness, directly affecting the volatility of
wages and, hence, the hiring decision of firms, is 0.77 in the model with correlated shocks
but is 0.65 in the model without correlated shocks.

Overall, we find relatively large differences in some estimated parameters that, impor-
tantly, affect model dynamics. Further, there is no clear pattern whether correlated shocks
lead to an upward or an downward bias in estimating the structural parameters of the three
DSGE models considered. We also stress that not all correlations are significant: in the Ia-
coviello (2005) model, housing preference shocks are not statistically significantly correlated
with the other shocks. Relevant for policy makers, we also find differences in the Taylor-rule
parameters describing monetary policy.

2.2 Variance Decomposition

In the previous section, we have shown that various shocks are significantly correlated and
that this generates relevant differences in the estimated parameters. This section extends the
analysis and considers differences in the driving forces of variations in the key macroeconomic
variables (output and inflation) for the three DSGE models considered. Figure 2 presents
our results.

In the Bernanke et al. (1999) model, we find that not considering correlated shocks
leads to an overestimation of the effect of monetary policy in driving output (by approx. 25
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Figure 1: Difference in estimated parameters across the models with and without correlated
shocks. It is defined as the difference between the estimated parameter obtained from the
model without correlated shocks minus the one obtained from the model with correlated
shocks.
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Figure 2: Difference in the variance decomposition across the models with and without cor-
related shocks. Difference is calculated as without minus with correlated shocks. Horizontal
axes shows percentage points difference.

percentage points) and an understimation of the effect of the aggregate technology shock
(roughly 35 percentage points). A similar results is obtained for the inflation rate. For
the Iacoviello (2005) model, we find that for output the cost push shock (shock to infla-
tion) is overestimated, while the housing preference shock is underestimated. For inflation,
we find the opposite result. Finally, in the Justiniano et al. (2011) model, we find that
the impact of the monetary policy shock on output is overestimated while the investment-
specific technology shock is underestimated. For inflation, we find that the monetary policy
shock is underestimated, giving an overestimate for the government spending and aggregate
technology shock.

Those findings are important as policy makers need to have a good understanding of the
driving forces of business cycle variation in order to tailor a policy response. For example,
supply-side shocks will, in general, have different effects compared to demand-side shocks.

2.3 Estimated Shocks

Finally, in this section we want to document differences in the time series of the estimated
shocks. As an example, we consider the aggregate technology shock that is present in all three
DSGE models. Figure 3 presents the estimated shocks for the baseline and the correlated
shock model. Again, for policy makers it is important to know the source of the business cycle
variation and the size of the shock. Our results show that considering correlated shocks does
lead to different shock sizes and, even more importantly, different signs of the shocks. For the
Bernanke et al. (1999) model, we find relatively small differences except for the early 1980’s,
characterized by the double-dip recession. In the Iacoviello (2005) and the Justiniano et al.
(2011) model, the differences are relatively small, and we do not observe large spikes as in
the Bernanke et al. (1999) model. Correlated shocks also alter the volatility of the estimated
shocks with heterogeneous effects. In the Bernanke et al. (1999) model, the volatility of the



simulated time series increases in the correlated shock specification compared to the baseline
case, while there is a decrease in the Iacoviello (2005) and Justiniano et al. (2011) model.
These are important insights for policy-makers.

Besides the size of the shock, we also find differences in the sign of the shock. This
probably is even more important than the difference in the size of the shock as the policy
response would be different for a positive vs. a negative shock. For all three models, we find
that the sign of the difference does change frequently over time, implying different signs of
the technology shock across the two versions of the model. In the previous section we have
shown that the realtive importance of the driving forces of business cycle variations varies
across the specifications. In this section, we add that for each shock the importance in the
time dimension is affected. For example, in the Justiniano et al. (2011) model we find that
the technology shock in the baseline model is much more volatile and has larger deviations
compared to the correlated shock model. This has implications for policy makers as it
implies that the economy will be hit more frequently with (on average) larger shocks. For
researchers it could affect the interpretation of which shocks drive recessions. For example, in
the Justiniano et al. (2011) model the recession in the early 2000’s appears to be driven by a
negative productivity shock when we look at the model without correlated shocks. When we
look at the model with correlated shocks, the contribution of the technology shock appears
to be much smaller.

These issues have implications for policy makers. First, it implies that the economy will
be hit more frequently with (on average) larger shocks. For researchers it could affect the
interpretation of which shocks drive recessions. Second, the policy response is likely different
for demand- vs. supply-side shocks. For researchers it indicates that the model needs large
variations along the supply-side to match the data. This could help to identify shortcomings
in the model design.

Finally, we find interesting results for the distribution of the difference between the
estimated technology shock with and without correlated shocks. While for the Justiniano
et al. (2011) model, the distribution is close to a normal distribution (skewness: 0.08), the
distributions for the Bernanke et al. (1999) and the Iacoviello (2005) model are not close to
a normal one. For Bernanke et al. (1999), the distribution is right-skewed (skewness: 1.35)
while for the Iacoviello (2005) model we find a left-skewed distribution (skewness: -0.76).
This implies, on average, more positive differences between the two variants for the Bernanke
et al. (1999) model and more negative once for the Iacoviello (2005) model. The implication
of this finding is that in the Bernanke et al. (1999) model we observe more, larger shocks in
the model without correlated shocks. This is important because it implies that technology
shocks will hit the economy more often and their impact will be larger. This is relevant for
policy makes in pinning down optimal policy and for researchers as this could indicate that
the model is dominated by supply-side shocks. It could imply that changes to the demand-
side of the model are needed to improve the model. The opposite holds for the Iacoviello
(2005) model.
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Figure 3: Estimated shocks for the model without correlated shocks (black, solid line) and
the model with correlated shocks (red, dash-dotted line).

3 Conclusion

We investigate whether correlated shocks matter when we estimate workhorse DSGE models.
Observing correlated shocks implies that the underlying DSGE model is misspecified. We
argue that including correlated shocks in the estimation should become a standard routine
to test the model. Further, the results can be used to understand the weaknesses of the
underlying theoretical foundation of the model and can help to improve it.

We find that for the three state-of-the-art DSGE models, representing the majority of
employed DSGE models in a closed-economy setting, results with correlated shocks do vary
from the results without them. In particular, we document that differences in the estimation
of structural parameters, e.g. changes in Taylor-rule parameters, the driving forces of fluctu-
ations, and the size and sign of the estimated shocks. Importantly, there is no clear pattern
of an upward or downward bias introduced by correlated shocks. Our results support our
claim to use correlated shocks as an additional test. This holds true for researchers and for
policy makers: including a correlated shock specification, at least as a robustness check, is
important to avoid mismeasurement of policy responses.

Including correlated shocks implies that the moments of the estimated shocks and their
frequency might be altered. In our analysis, we find that the economy will be hit more
often with larger shocks. This holds true for the Bernanke et al. (1999) model and the
opposite holds true for the Iacoviello (2005) model. These issues might helpfull to identify



shortcomings in the model design. For researchers, results might imply changing the view on
shocks. For instance, the Justiniano et al. (2011) model implies the policy reponse might be
different for demand vs. supply shocks and pinning down the model requires large viations
along the supply-side to match the data. The results on distributive data from Bernanke
et al. (1999) and lacoviello (2005) show that there is no uniform pattern from including
correlated shocks and some models might require fine-tuning the supply or demand-side of
the underlying model.
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4 Appendix

4.1 Data and Priors

We estimate the model using the data set from Smets and Wouters (2007). We use the
following time series: GDP, investment, consumption, inflation, employment, and the Federal
funds rate. Data is on a quarterly frequency for the United States and covers the period
from 1947Q3 to 2004Q4 (230 observations). Non-stationary series are first-differenced.

Given the different number of shocks for each model, we use a different number of time
series. For estimating the Bernanke et al. (1999) model, we use output, investment, and the
interest rate. For the Iacoviello (2005) paper, we use output, investment, interest rate, and
inflation. Finally, for the Justiniano et al. (2011) paper, we use output, investment, interest
rate, inflation, consumption, and employment.

All shocks follow an Inverse Gamma distribution with mean 0.5 and standard error 2.
All correlations between shocks are assumed to be normally distributed within the interval
(-0.9,0.99) with mean 0.7 and standard deviation 0.5. Priors for the estimated parameters
are chosen in line with the literature and are kept for the estimation with correlated shocks.
Details on the prior choice for the other parameters is available upon request. Note that
the choice of priors would only matter if we would believe that the prior choice affects the
outcome if we introduce correlated shocks.



