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Abstract
Applications of hedonic price functions aimed at eliciting implicit prices of environmental goods generally rely on

spatially aggregated measures to proxy for micro-level perceptions of these amenities. This paper provides empirical

evidence of the bias that arises in the elicitation of these implicit prices due to spatial aggregation. Cross-sectional data

on more than 12,000 rental homes is used to derive implicit prices of air quality, using households' perceptions of air

pollution aggregated at different spatial levels. Results show that higher aggregation levels add a downward bias to

marginal willingness-to-pay measures for air quality improvements, increasing point estimates of the price of air

quality. These findings suggest caution when interpreting implicit prices elicited from spatially aggregated measures of

environmental amenities.
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1. Introduction

Common applications of hedonic price functions to the housing market relate the price
of the house to a vector of its structural, neighborhood, and non-market amenities, with
the purpose of capturing the price of these attributes hidden in the overall price of the
house. This price function is an equilibrium outcome that emerges from interactions between
buyers and sellers in this market. The use of hedonic price theory to elicit these implicit
prices should, therefore, consider measures of housing attributes that consistently reflect
what market participants perceive (Michael et al., 2000; Champ et al., 2003). While this is
an easy task for most of the attributes, it is not so for non-market features widely known to
affect housing prices such as environmental quality (Nelson, 1978; Kim et al., 2003). Hedonic
studies all too often rely on aggregated indicators of environmental quality as a proxy for
micro-level perceptions of these amenities, even though their focus is often on localized
externalities for which individual-level information is crucial (Champ et al., 2003). This
paper provides the first approximation aimed towards understanding how well aggregated
measures approximate micro-level perceptions of environmental quality. Specifically, I study
how implicit prices of environmental quality change with different aggregation levels of the
environmental amenity.

The sensitivity of analytical results to the definition of the geographical units is not new
to statistical analysis. The modifiable areal unit problem (MAUP), through its scale effect,
summarizes the consequences that combining areal data into sets of increasingly larger areal
units of analysis has on statistical results and inference (Yule, 1950; Openshaw and Taylor,
1979; Openshaw, 1984). This scale effect has been shown to distort the heterogeneity of
spatial units in a wide variety of empirical applications ranging from economic geography
(Briant et al., 2010), to health economics (Parenteau and Sawada, 2011; Lindo, 2015) and
landscape ecology (Jelinski and Wu, 1996). In environmental economics, however, its impact
is still scarce. Early work by Shultz and King (2001) approximates the consequences that
the scale effect has on land-use data, documenting only minor changes in the implicit prices
of an array of open-space amenities. This paper complements Shultz and King (2001)’s work
by studying the effects of geo-aggregating the environmental amenity while maintaining the
housing information at the household level, which allows me to isolate the scaling of the
amenity as a separate event. In addition, I consider alternative spatial levels for the amenity
variable that are as detailed as at the household level, a feature that is not addressed in
Shultz and King (2001).

I particularly study how several spatial aggregation levels affect marginal willingness-to-
pay (WTP) point estimates for air quality improvements. First, I present the theory of the
scale effect on the WTP calculation. I show that the spatial aggregation of the air pollution
disamenity introduces bias to marginal WTP measures, increasing the price of air quality.1

I corroborate these findings with an empirical exercise that uses households’ perceptions of
the amenity as a benchmark model. From a policy perspective, these results suggest caution
when deriving welfare effects from air quality deteriorations using point estimates elicited
from aggregated measures of air pollution.

1This result is consistent with previous applications of the scale effect to health economics (Lindo, 2015)
and education (Hanushek et al., 1996).



2. Spatial Aggregation Bias

Assume that the researcher is interested in the estimation of the following equation:

yij = γ0 + γ1xij + γ2qij + ǫij, (1)

where yij is the housing price (in logs) faced by household i located at a spatial unit j
(with i = 1, ..., I and j = 1, ..., J ; and J < I); xij is a covariate varying across households and
spatial locations; and ǫij is an error component. The variable of interest in equation (1) is qij,
which measures household i’s perception of some specific environmental amenity. Suppose
qij represents air pollution in the neighborhood where house i is located. The coefficient γ2
is, therefore, the marginal WTP for air quality improvements, implicit in the overall price
of house i.

Consider now that qij is unobservable to the researcher. Instead, he/she only observes q∗j ,
which varies across spatial units but not within them. This paper borrows from Geronimus
et al. (1996) to compare estimates in equation (1) using q∗j as a proxy for qij. Let the
relationship between qij and q∗j be as follows:

qij = βq∗j + νij. (2)

The coefficient β in equation (2) will be equal to one whenever q∗j represents the within-
group mean of qij.

2 In this case, and under the standard assumptions of E(ǫij) = E(νij) = 0,
cov(xij, ǫij) = cov(qij, ǫij) = 0, and cov(q∗ij, νij) = cov(q∗j , ǫij) = 0, Ordinary Least-Square
(OLS) consistently estimates γ1 and γ2 in equation (1).

Inconsistency of OLS arises when β 6= 1, i.e. when the aggregated variable inadequately
represents the i-level variable. Consider the situation of a monitoring station that is located
upstream from a polluting facility, but whose readings are used by the researcher as a proxy
for the air quality conditions that affect downstream households as well. In this case, the air
quality relationship between upstream and downstream households will be systematically
different in alternative units of aggregation (Hammond, 1973). In consequence, hedonic
estimations using q∗j will fail to account for heterogeneities in the air quality amenity within
groups, underestimating air quality perceptions for downstream housing units. Formally, let
the proximity of a house i to a polluting facility P be captured (along the unity) by xij. The
regression of qij on both xij and q∗j can be expressed as follows:

qij = xijβ
′

1
+ β

′

2
q∗j + ν

′

ij. (3)

Under cov(q∗j , ν
′

ij) = cov(xij, ν
′

ij) = 0, and perfect correlation between qij and q∗j , β
′

1
= 0,

and thus, consistency of γ̂1 and γ̂2 holds. When β
′

1
6= 0, however, it is straightforward to

show that γ1 and γ2 in equation (1) will be inconsistently estimated. Let y, q, and q∗ be
N × 1 vectors, x be a N × 2 vector (includes the unity), and Mx be the complementary

2Equation (2) is a special case of the random coefficient model, or sometimes called, the random trend
model (Wooldridge, 2010), where the random coefficient has been discomposed into their mean β and devi-
ations µi, with the latter being captured in equation (2) by the within-group mean q∗j . The consequences of
omitting this additional source of heterogeneity, however, are outside the scope of the present study.



projection matrix of x(xTx)−1xT. Using the Frisch-Waugh-Lovell (FWL) theorem:

γ̂2 = (q∗TMxq
∗)−1(q∗TMxy), (4)

and thus,
plim γ̂2 = γ2β

′

2
. (5)

Equation (5) shows the bias that affects the OLS estimator of γ2, when the spatially
aggregated variable is only imperfectly correlated with the i-level variable. A similar result
can be shown for γ1 (see Appendix for full derivations). The quantity 1 − β

′

2
gives the

proportional bias in γ̂2. As the relationship between qij and yij is expected to be negative
whenever qij represents pollution, a downward bias means that the marginal WTP estimate
for an improvement in the amenity will be higher in magnitude, and so its implicit price.
The Appendix section shows how this bias could be exacerbated due to omitted variables.

3. Data

The data come from the 2015 National Socioeconomic Characteristics Survey (CASEN),
a nationally-representative survey with information on more than 12,000 renting households
in Chile. Households in this survey report information on their dwellings’ structural char-
acteristics, their rent and their neighborhoods’ attributes, including their perceptions of air
pollution. I merge this information with city-level attributes that come from the National
System of Municipal Information (SINIM). I also consider crime rates extracted from the
Crime Prevention Sub-Secretary (SPD). Summary statistics are displayed in Table I.

4. Empirical Strategy

4.1 Perceptions of Air Pollution

Households in CASEN report the frequency with which they observe air pollution in
their neighborhoods using a four-point scale ranging from “never” to “always”. I assign
weights to each of these categories using ridit analysis, a non-parametric tool that allows
comparison of more than two datasets with ordered qualitative data (Bross, 1958). I observe
the distribution of households and construct a numerical quantity (“ridit”), which works as
an index of air pollution perceptions. Formally, let x1, x2, ..., xn be the ordered perception
categories, and p the probability function defined with respect to the reference category
pi = Prob(xi), with i = 1, ..., n. A ridit is calculated as follows:

Riditi =

{

0.5pi +
∑

k<i pk if i > 1
0.5pi if i = 1.

(6)

A low ridit value for category i is interpreted as only a few households choosing a category
k such that k < i. After obtaining ridits for each household, I follow the local geographical
hierarchical structure to aggregate them at both the neighborhood and the county level.



Table I: Descriptive Statistics of Covariates

Variables Mean Sd N Source

Panel A. Dwelling Charateristics (household level)
# of Bedrooms 2.413 0.933 12,913 CASEN
# of Bathrooms 1.193 0.486 12,913 CASEN
Dwelling Type (Base = Precarious) 12,913 CASEN
Proportion Row Units 0.427 -
Proportion Regular Units 0.343 -
Proportion Apartments w/Elevator 0.077 -
Proportion Apartments wo/Elevator 0.135 -

Walls Material (Base = Precarious) 12,913 CASEN
Proportion Reinforced Concrete 0.188 -
Proportion Masonry 0.470 -
Proportion Drywall 0.311 -

Floors Material (Base = Precarious) 12,913 CASEN
Proportion Wood 0.366 -
Proportion Tile 0.485 -
Proportion Carpet 0.050 -
Proportion Cement 0.050 -

Roofs Material (Base = Precarious) 12,913 CASEN
Proportion Roof Tiles 0.096 -
Proportion Concrete 0.171 -
Proportion Sheet Metal/Zincstrips 0.732 -
Proportion Clinkstone 0.000 -

Dimension (Base = Less than 30m2) 12,913 CASEN
Proportion 30-40m2 0.200 -
Proportion 41-60m2 0.398 -
Proportion 61-100m2 0.261 -
Proportion 101-150m2 0.055 -
Proportion +150m2 0.015 -

Urban (%) 0.936 - 12,913 CASEN
Panel B. Neighborhood Attributes (household level)

Proportion Sport Center < 2.5km 0.916 - 12,808 CASEN
Proportion Green Areas < 2.5km 0.927 - 12,862 CASEN
Proportion School < 2.5km 0.959 - 12,860 CASEN

Panel C. City Attributes (city level)
Population 101,549 133,001 315 SINIM
Crime (per 1,000 inab.) 2,503 1,856 320 SPD
Poverty (%) 0.21 0.11 320 SINIM
Waste Disposal (%) 0.23 0.16 316 SINIM

Notes: The crime variable considers criminal offenses of strong social connotation. p.c. = per capita.

Table II contains the descriptive statistics of the air pollution perceptions at each of these
spatial levels.



Table II: Descriptive Statistics for Air Pollution at Different Spatial Levels

Variable Mean S.D. Min Max

Household 0.502 0.253 0.304 0.958
Neighborhood 0.500 0.138 0.304 0.958
County 0.500 0.093 0.304 0.926

4.2 Hedonic Price Estimation

I elicit implicit prices for air quality from the following hedonic price estimation equation:

yhnc = α +Hhncδ + βsAs + φ+ ǫhnc, (7)

where yhnc is the rental price (in natural logs) of house h in neighborhood n in county
c; H is a vector of attributes; φ is a set of dummies at a specific spatial level (i.e. region)
intended to mitigate some of the omitted variable bias that affects hedonic estimations
(Kuminoff et al., 2010); and ǫhnc is an error term. Perceptions of air pollution in equation
(7) are captured with As, where s represents different levels of spatial aggregation, i.e.
s = {h, n, c}. The key parameter in equation (7) is βs that indicates the average marginal
WTP for air quality improvements at a specific aggregation level s. Since micro-level data
can better discriminate between alternative specification models (Arbia and Petrarca, 2011),
I use household-level data as the benchmark model. Consistent with a downward bias derived
in Section 2, βs is expected to decrease relative to the benchmark with higher aggregation
levels. Equation (7) is estimated using an OLS estimator.

5. Spatial Aggregation Bias in Implicit Prices for Air

Quality

Columns (1)-(3) in Table III summarize the point estimates of the marginal WTP for
air quality improvements estimated from equation (7) for alternative aggregation levels (i.e.
household, neighborhood, county) for the air pollution variable. Columns (4)-(6) display the
results for an alternative log-log specification of equation (7). Findings in column (1) for the
benchmark model show that, on average, households are willing to pay 7% per unit-increase
in the air quality index. Point estimates decrease by 6 percentage points (column 2) and
by 10 percentage points (column 3) when this index is aggregated at the neighborhood level
and at the county level, respectively. Results from a chi-square test reject the null of equal
point estimates between the micro-level variable and the aggregated variables at the 5% in
the first case (households vs. neighborhoods, χ2 = 4.09, p− value = 0.043), and at the 10%
in the second case (households vs. counties, χ2 = 3.09, p − value = 0.079). These results
formally reflect the bias affecting point estimates of marginal WTP measures for air quality.
Similar results are found when using a log-log specification in columns (4)-(6), which rejects
the possibility of observing these results due to a misspecification of the functional form.

Figure 2 depicts the point estimates and the 95% confidence intervals (CI), of the marginal



Table III: Marginal Willingness-to-Pay Estimates for Air Quality Improvements

Semi-log Functional Form Log-log Functional Form

Household Neighborhood County Household Neighborhood County

(1) (2) (3) (4) (5) (6)

Air pollution -0.073∗∗∗ -0.128∗∗ -0.165∗∗

(0.018) (0.051) (0.061)
log(Air pollution) -0.037∗∗ -0.053∗ -0.070∗∗

(0.009) (0.026) (0.029)
Obs. 12,619 12,620 12,620 12,619 12,620 12,620
R2 0.46 0.46 0.46 0.46 0.46 0.46

Notes: All regressions include structural characteristics, dummy variables for proximity to a sport center, to
a park, and to a school, an indicator for urban/rural area, city-poverty and -crime rates, population level
(in logs), municipal per capita expenditures in waste removal and region fixed effects, as controls. Clustered
standard errors by region in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001

WTP measures for air quality improvements, while Figure 1 exhibits the estimated implicit
prices from the semi-log specification. Point estimates of the marginal WTP measures in
Figure 1 move to the left with higher aggregation levels, exhibiting larger CI due to the
higher standard errors from the aggregation. As shown by Figure 1, this translates into
higher implicit prices of the amenity. Mainly, the estimated implicit price of air quality is
76% higher at the first aggregation level relative to the benchmark (significant at the 5%),
and 125% higher at the second aggregation level (significant at the 10%). Results for a
likelihood-ratio test on nested models formally indicate that both aggregated models are
nested within the benchmark model that considers the amenity variable at the micro-level
(p− value = 0.000).

6. Robustness Check

The study of air quality, as opposed to other amenities, offers the unique opportunity to
explore the role of spatial spillovers when eliciting implicit prices of environmental ameni-
ties.3 The heterogeneous dispersion of air pollutants across space dictates that households’
exposure to air pollution is not uniquely driven by emissions occurring in their neighbor-
hoods but also by the spread of pollutants released in nearby areas. In this case, changes in
air pollution perceptions in cross-sectional neighboring units are expected to be capitalized
into housing prices of other units, adding an indirect or spillover effect to the implicit price
of air quality. To empirically assess this spatial dependence at different aggregation levels of
the amenity, I estimate a spatial model that considers an exogenous interaction effect of the
air quality variable among spatial units. These spatial lags are captured by the interaction
between the air quality variable, As, and a matrix W of spatial neighbors. I specify this
Spatial Lag of X (SLX) model (Anselin, 2003) as follows:

3I enormously thank an anonymous referee for this suggestion.



Figure 1: Point Estimates and 95% CI of Implicit Prices of Air Quality

Figure 2: Point Estimates and 95% CI of Marginal WTP for Air Quality Improvement



yhnc = α +Hhncδ + βsAs +WhncAsθ
s + φ+ ǫhnc, (8)

where Whnc is the spatial weights matrix identifying the spatial interdependence of units
at the household h, neighborhood n, or county level c. The elicitation of the implicit price of
air quality from equation (8) involves the derivation of a direct effect, βs, at different spatial
levels, and an indirect (spillover) effect, θs, which reflects the influence of the air quality
conditions in neighboring cross-sectional units.

Unfortunately, the lack of data on the geographical location of rental properties and
neighborhoods prevents the calculation of geo distance-based spatial weights matrices for the
first two aggregation levels, h and n. As a solution, I define W to be a first-order contiguity
matrix whenever s captures ones of these two levels. Entries for W, therefore, take the value
of 1 for houses (neighborhoods) located in the same neighborhood (county), and 0 otherwise.
This also precludes the use of the benchmark model defined at the household level, as the
first spatial tier defining dependence occurs now at the neighborhood level. This implies that
the aggregation of the amenity variable, in this exercise, is only feasible at the neighborhood
and at the county level. For a spatial dependence at the county level, I calculate the W

matrix using the inverse of the geographical distance between the center of any two counties.
Table IV displays the results for the SLX model.

Consistent with the results in Table III, the point estimates of the direct effect in Table
IV increase in magnitude with the different aggregation levels of the air pollution amenity,
particularly for the semi-log specification in column (1). Regarding the magnitude and
significance of the indirect (spillover) effects, however, findings in column (2) and (4) show
ambiguous results. For the semi-log specification, results in column (2) indicate that rental
prices are negatively correlated with air pollution levels in contiguous neighborhoods (panel
A), which could be capturing a situation with neighborhoods small in magnitude and close in
proximity such that their air quality conditions are similar across them. Moreover, contiguous
neighborhoods are in most cases part of the same county and, therefore, subject to similar
institutional settings that make the idea of homogeneous air quality across them even more
feasible. Yet, when the spatial dependence is defined at a higher aerial level (panel B), the
estimated indirect effect in column (2) suggests that rental prices are positively affected by
air pollution levels in nearby counties. The intuition behind a negative direct effect and a
positive spillover effect is consistent with households avoiding areas with poor air quality
and, instead, locating themselves in places with less airborne contamination, which pushes
rental prices up in proximate but more pleasant counties that due to their larger size are less
likely to perceive air pollution spillovers. Notwithstanding, the existence of omitted variables
occurring at the same aerial level as the one defining the contiguity (e.g. counties), could add
an upward bias to the spillover estimates in panel B (Hanushek et al., 1996) helping as well to
explain the change in sign between the disaggregated model in panel A and the aggregated
in panel B. Consistent with previous research (Chung and Hewings, 2015) however, the
estimated spillover effects in columns (2) and (4) of Table IV all decrease in magnitude
with higher aggregation levels. In addition, they are all found to be small in magnitude,
and in some cases not statistically different from zero. The ambiguity of these results could
be explained by the two sources of heterogeneity that now change simultaneously (Arbia
and Petrarca, 2011), that is, the aggregation level of the amenity variable as well as the



Table IV: Marginal Willingness-to-Pay Estimates in a SLX Model

Semi-log Functional Form Log-log Functional Form

Direct Effect Indirect Effect Direct Effect Indirect Effect

(1) (2) (3) (4)

Panel A. First-Order Contiguity Defined by Neighborhoods
Amenity Variable at the Neighborhood Level -0.080∗ -0.007∗∗ -0.068∗∗ 0.003

(0.049) (0.003) (0.028) (0.002)
Obs. 12,620 12,620
Likelihood Ratio Test (χ2) 13.15 3.87
p− value 0.000 0.049

Panel B. First-Order Contiguity Defined by Counties
Amenity Variable at the Neighborhood Level -0.145∗∗ 0.0008∗∗∗ -0.040 -0.0006∗∗

(0.052) (0.0001) (0.028) (0.0002)
Obs. 12,620 12,620
Likelihood Ratio Test (χ2) 60.5 48.68
p− value 0.000 0.000

Panel C. Inverse Geo-Distance Across Counties
Amenity Variable at the County Level -0.177∗∗ -0.00001 -0.078∗∗ 0.00006

(0.060) (0.0002) (0.029) (0.0002)
Obs. 12,580 12,580
Likelihood Ratio Test (χ2) 27.57 0.61
p− value 0.000 0.436

Notes: All regressions include structural characteristics, dummy variables for proximity to a sport center, to
a park, and to a school, an indicator for urban/rural area, city-poverty and -crime rates, population level (in
logs), municipal per capita expenditures in waste removal, and region fixed effects, as controls. Clustered
standard errors by region in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001

contiguity matrix, which prevents more straightforward conclusions regarding the expected
sign of the indirect effect on the implicit price of air quality. In any case, likelihood ratio
tests on the goodness of fit of the SLX models relative to the OLS specifications reveal that
in most cases the former outperforms the latter. This situation highlights the need for more
research regarding the impact of the scale effect on hedonic estimations that consider spatial
dependence of their cross-sectional units.

7. Concluding Remarks

This paper studies how the spatial aggregation of environmental amenities can threaten
the unbiasedness of implicit prices in hedonic price applications. Simple comparisons across
point estimates of the price of air quality at alternative aggregation levels show that the use
of spatially-aggregated measures on environmental amenities might substantially affect the
magnitude of their estimated price. This note suggests future researchers should consider
the potential role of aggregation bias when using proxies for environmental amenities and
recommends that policy makers exercise some caution when interpreting past estimates on
implicit prices of environmental quality elicited from aggregated measures of this amenity.
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