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Abstract
Consumer redemption behavior pertaining to coupons, gift certificates, product sampling, rebates, and the like, has

been the focus of much scholarly inquiry and the extant literature has documented two noteworthy empirical

regularities - a bump in redemptions close to offer expiry and greater redemption with shorter redemption windows. In

the extant work, these phenomena have been explained by invoking myopic consumers. Against this backdrop, we ask

a simple question: can these phenomena survive if we assume rational, forward-looking consumers? Accordingly, we

develop a model consisting exclusively of forward-looking consumers and incorporate two constructs highlighted in the

literature - forgetting and stochastic redemption costs. We derive consumers' period-by-period redemption rule and

subsequently illustrate the emergence of the two aforementioned empirical regularities.
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1. Introduction

Consumers often find themselves in a position where they can redeem marketing offers such as

coupons, gift certificates, invitations to partake in product sampling, rebates, etc. Not surprisingly,

consumer redemption behavior has received a fair amount of research attention and the literature

has documented two empirical regularities – a bump close to offer expiry and greater redemption

with shorter redemption windows. Specifically, with respect to the bump, Inman and McAlister

(1994) incorporate regret theory to examine redemption behavior as the coupon approaches expira-

tion. A key premise of their research is that consumers are myopic in that they do not anticipate or

respond to the regret until they experience it. In their empirical work, Inman and McAlister (1994)

analyze coupon redemption patterns for various brands in the spaghetti sauce category and find that

they do indeed exhibit a bump close to expiry. Similarly, Groupon redemptions also show a bump

close to expiry (Gupta, Weaver and Rood 2012). With respect to redemption windows, Shu and

Gneezy (2010) hypothesize and empirically find that redemption rates are higher when consumers

are assigned to shorter redemption windows. In their conceptualization, Shu and Gneezy (2010)

build on resource slack theory (Zauberman and Lynch 2005) which suggests greater discounting of

time investments relative to money investments. Such systematic underweighting of effort has also

been discussed in Akerlof (1991). Another conceptualization utilized by Shu and Gneezy (2010)

is temporal construal theory (Trope and Liberman 2003) which examines how non-monetary costs

and benefits are treated in the short run and in the long run. This theory suggests that individuals

tend to focus on the desirability aspects of a task in the long run, but then switch to a focus on

the feasibility aspects of the task as it actually approaches. Again, it is the consumer’s myopic

perception of his/her behavior in distant periods that leads to the empirical regularity of greater

redemption associated with shorter redemption windows.

While these are very interesting explanations, they nevertheless beg the question: how can such

phenomena persist over time as consumers come to learn about their myopia? Another way to ask

the same question is whether such phenomena will ever emerge with rational, forward-looking

consumers. Accordingly, our primary contribution to the literature is to develop a model that

demonstrates how the two aforementioned empirical regularities can arise even in a world consist-

ing exclusively of forward-looking consumers. In spirit, our work is closest to that of Gilpatric

(2009) who examines the impact of the distribution of forward-looking consumers on rebate re-

demptions. Taken together, these two works deepen our understanding of consumer redemption

behavior.

In our model, we include two constructs identified in the literature: forgetting and stochastic

redemption costs. The notion of forgetting has a rich history in many communication models where

consumers forget messages delivered to them. (See, for example, Keller (1987), who highlights

the endemic problem of consumers’ memory performance in the context of advertising, and Tellis

(1998), who discusses the notion of less than perfect carry-over for advertising investments.) We

also believe that stochastic redemption costs are an integral aspect of consumer behavior, an idea

highlighted by O’Donoghue and Rabin (1999). (See also Chen, Moorthy and Zhang (2005), who

utilize a stochastic specification for consumers’ marginal utility for money.)



2. Model Setup

We consider a cohort of consumers who in period 1 receive a marketing offer (coupon, gift cer-

tificate, invitation to partake in product sampling, rebate) of value x that expires in period N . We

make the following key assumptions.

A1: Forgetting. A consumer in possession of the offer faces the possibility that he/she forgets,

misplaces, or loses the offer as he/she crosses from one period to the next. We assume

that the probability that the consumer will remember the offer is ρ ∈ [0, 1]; conversely, the

probability that he/she will forget the offer is 1 − ρ. The forgotten offer cannot be recalled

at a future time.

A2: Stochastic Redemption Costs. Redeeming the offer is costly. We assume that this cost varies

stochastically across the periods. In every period, each consumer learns his/her redemption

cost c that is drawn from a continuous distribution F (·) with support [c, c].

A3: Forward-Looking Consumers. All the parameters of the model, x, N , ρ and F (·) are known

to the consumers. We assume that the offer is such that x ≥ c. When a consumer redeems the

offer, his/her utility is the difference between x and the realized redemption cost. Thus, the

consumer may strategically postpone redeeming the offer to take advantage of the possibility

of a lower cost realization in the future. For simplicity, we assume there is no discounting

between periods.

3. Analysis

Consumer decision-making can be characterized by a set of thresholds c1, c2, . . . cN . When a

consumer arrives in period n and the offer has not yet been redeemed or forgotten, the consumer

redeems the offer if and only if his/her realized redemption cost does not exceed cn.

We begin our analysis with the last period. In period N , the consumer redeems the offer as

long as the realized cost does not exceed x:

cN = min{x, c}.

The consumer’s expected utility at the beginning of period N (period N value function) is, there-

fore,

VN =

∫
cN

c

(x− c) dF (c).

In the next to last period, period N − 1, the consumer compares x − c with ρVN and redeems

the offer if and only if x− c ≥ ρVN , or c ≤ x− ρVN . Hence,

cN−1 = min{x− ρVN , c}.

We then calculate period N − 1 value function, which incorporates the consumer’s optimal re-



demption rule in periods N − 1 and N :

VN−1 =

∫
cN−1

c

(x− c) dF (c) +

∫
c

cN−1

ρVN dF (c)

=

∫
cN−1

c

(x− c) dF (c) + (1− F (cN−1))ρVN .

Continuing with backward induction, we obtain the sets of thresholds {cn} and value functions

{Vn}, n = 1, 2, . . . N . The results are summarized in Proposition 1.

Proposition 1. Among consumers in possession of the offer in period n, only those with the cost

realizations below cn will redeem the offer in that period. The set of thresholds {cn} can be

calculated recursively, with the initial condition

{

cN = min{x, c},

VN =
∫
cN

c
(x− c) dF (c).

and the formula {

cn−1 = min{x− ρVn, c},

Vn−1 =
∫
cn−1

c
(x− c) dF (c) + (1− F (cn−1))ρVn.

Corollary 1. Consumers become less stringent as the expiration date of the offer approaches:

c1 ≤ c2 ≤ . . . ≤ cN .

For the proof of Corollary 1, consider a consumer in possession of the offer in period n. This

consumer can do at least as well as a consumer in possession of the offer in period n+1 by behaving

as if the offer expires one period earlier. This simple observation immediately implies that the value

function is higher in period n than in period n+1, Vn ≥ Vn+1. Since cn−1 = min{x− ρVn, c} and

cn = min{x− ρVn+1, c}, we have cn−1 ≤ cn for all n.

Intuitively, consumers are more demanding early on because there are still ample opportunities

to realize a low redemption cost. However, as periods go by, the chances to draw a good redemption

cost diminish, thereby causing a consumer to be less likely to delay redemption.

We now calculate the number of redemptions in each period n, which we denote by pn, n =
1, 2, . . . N . In the first period, the number of redemptions is

p1 =

∫
c1

c

1 dF (c) = F (c1).

The number of consumers who find themselves in possession of the offer in period 2 is ρ
∫

c

c1
1 dF (c).

Since fraction
∫
c2

c
1 dF (c) of them will redeem the offer, the number of redemptions in period 2

equals

p2 = ρ

∫
c

c1

1 dF (c)

∫
c2

c

1 dF (c) = ρ(1− F (c1))F (c2).

In period 3 the number of consumers in possession of the offer is ρ2
∫

c

c1
1 dF (c)

∫
c

c2
1 dF (c);



fraction
∫
c3

c
1 dF (c) of them will redeem the offer in that period. Thus,

p3 = ρ2
∫

c

c1

1 dF (c)

∫
c

c2

1 dF (c)

∫
c3

c

1 dF (c) = ρ2(1− F (c1))(1− F (c2))F (c3).

We have the following proposition.

Proposition 2. The number of redemptions in period n is given by

pn =

{

F (c1), if n = 1,

ρn−1F (cn)
∏

n−1

k=1
(1− F (ck)), if n ≥ 2.

In the remainder of the paper, we use the preceding analysis to investigate consumer redemption

behavior. Our primary objective in this endeavor is to demonstrate that it is possible to obtain the

two aforementioned redemption patterns – a bump at expiry and greater redemption with shorter

redemption windows – exclusively with forward-looking consumers. Another objective is to pro-

vide some intuition for the emergence of these phenomena. To facilitate meeting these objectives,

we restrict our attention to x ≥ c.

A4: Offer Attractiveness. The offer is sufficiently attractive in that x ≥ c.

For redemption costs, we consider three distributions from the beta family: B(0.4, 0.2), B(0.2, 0.4),
and B(1, 1). Their densities are depicted in Figure 1. Note that B(1, 1) corresponds to the uni-

form distribution, while the other two have more mass at the extremes. We include the uniform

distribution for completeness but expect the distribution of redemption costs to be bi-modal and

asymmetric. The distribution B(0.4, 0.2) depicts a world where the likelihood of extremely large

redemption costs is more pronounced than the likelihood of extremely low redemption costs. The

distribution B(0.2, 0.4) depicts the reverse. Our expectation for this last distribution is generally

consistent with the distribution found for other traits such as intelligence, wherein there is a second

mass of highly gifted individuals (Burt 1963).

Suppose N = 4, ρ = 0.95 and x = 1.2. For each of the three distributions we calculate {cn}
and {pn}, n = 1, 2, . . . N . We also calculate the total number of redemptions p =

∑
N

n=1
pn. The

results are recorded in Table 1. We see that in all three cases {cn} is an increasing sequence, as it

should be (Corollary 1). Under assumption A4, the consumer in possession of the offer in period

N redeems it irrespective of the realized cost, cN = c. This explains c4 = 1 in the table. As to

the redemption pattern {pn}, it is non-monotonic. In the case of B(0.4, 0.2), there is a bump in the

last period: p4 = 0.234 > p3 = 0.165 (shaded gray).

Table 1: N = 4, ρ = 0.95, x = 1.2
c1 c2 c3 c4 p1 p2 p3 p4 p

B(0.4, 0.2) 0.465 0.551 0.693 1.000 0.308 0.224 0.165 0.234 0.931

B(0.2, 0.4) 0.180 0.234 0.377 1.000 0.529 0.251 0.117 0.066 0.963

B(1, 1) 0.382 0.432 0.535 1.000 0.382 0.254 0.169 0.140 0.945
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Figure 1: Probability Density Functions for B(0.4, 0.2), B(0.2, 0.4), B(1, 1)

If we decrease the probability of remembering the offer, the ending period bump under B(0.4, 0.2)
will get smaller. In Table 2, ρ = 0.85. We see that p4 = 0.140 is only slightly above p3 = 0.123
(shaded gray). The bump will completely disappear if we push ρ below 0.8.

Thus, we conclude that the ending period bump is present in the redemption pattern when: (i)

high values of c receive more weight under F (·), and (ii) the probability of remembering the offer is

close to one. Intuitively, more weight on high values of c and a higher probability of remembering

the offer increase the likelihood that the consumer arrives into the last period without redeeming

the offer. This leads to the ending period bump, as the consumer is forced to redeem.

If we drop assumption A4 (i.e., assume x ≥ c instead of x ≥ c), there will be fewer redemptions

in the final period because redemption may not provide positive value. This will obviate the bump.

It will also reduce the total number of redemptions, and therefore scale it to be more in line with

real-world redemption rates without impacting the essential calculus of our model dynamics for

those consumers described by x ≥ c. Overall, we note that our findings relate very well to offers

Table 2: N = 4, ρ = 0.85, x = 1.2

c1 c2 c3 c4 p1 p2 p3 p4 p

B(0.4, 0.2) 0.594 0.645 0.747 1.000 0.359 0.207 0.123 0.140 0.826

B(0.2, 0.4) 0.331 0.362 0.463 1.000 0.609 0.207 0.071 0.030 0.917

B(1, 1) 0.515 0.539 0.605 1.000 0.515 0.222 0.098 0.054 0.889



characterized by our analysis, e.g., Groupon offers. Groupon offers are very attractive (x ≥ c),

exhibit high redemption rates (total redemptions about 45%), and are characterized by a substantial

ending period bump (approximately 15%) – please see Figure B in Gupta, Weaver, and Rood

(2012).

Next, we want to study the effect of N on the total number of redemptions, p. We obtain

the remarkable result that the total number of redemptions is higher under shorter redemptions

windows for any F (·) and ρ.

Proposition 3. The total number of redemptions is higher under shorter redemption windows.

Consider two worlds that have the same F (·) and ρ, but differ in the number of periods: it is

N in one world and N + 1 in the other. To prove Proposition 3, we need to show that the total

number of redemptions will be higher in the N -period world. Let c′1, . . . c′
N

denote the redemption

cost thresholds in the N -period world and c′′1, . . . c′′
N

, c′′
N+1 denote the redemption cost thresholds

in the (N + 1)-period world. From Proposition 1 it follows that

c′
N
= c′′

N+1 = c
︸ ︷︷ ︸

thresholds in the
last period

> c′
N−1 = c′′

N
︸ ︷︷ ︸

thresholds in the
next to last period

> c′
N−2 = c′′

N−1
︸ ︷︷ ︸

...

> . . . > c′1 = c′′2 > c′′1.

Thus, as consumers journey across N periods in the N -period world, they face higher (less strin-

gent) redemption thresholds than their counterparts journeying across the first N periods in the

(N + 1)-period world. This fact, coupled with the facts that all surviving offers are redeemed in

the last period and the (N +1)-period world has one more chance for forgetting, yields the finding

that the total number of redemptions is greater in the N -period world.

Of course, offering a longer redemption window is good for consumers and enhances their

welfare. However, a longer redemption window results in a lower total number of redemptions

which may be at variance with the objectives of the entity making the offer (e.g., a firm attempting

to obtain initial product sampling).

4. Conclusion

Previous research on consumer redemption behavior has documented two noteworthy empirical

regularities – a bump close to offer expiry and greater redemption with shorter redemption win-

dows. In the extant work, these phenomena have been explained by invoking myopic consumers.

In contrast, we develop a model consisting exclusively of forward-looking consumers and demon-

strate the emergence of these phenomena for plausible parameter values. Our work thus reveals

how these phenomena may arise, and persist, even in the absence of consumer myopia.
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