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Abstract
This paper examines contemporaneous causality among daily price series of the Chinese Stock Index 300 (CSI300),

nearby futures, and first distant futures for April 2010 ~ November 2014 through vector error correction modeling and

directed acyclic graphs. As non-Gaussian data are prominent in financial time series, the recently developed Linear

Non-Gaussian Acyclic Model (LiNGAM) algorithm is utilized to facilitate analysis. It refines results derived from the

PC algorithm, which does not lead to the unique identification of a directed acyclic graph. The price series studied are

tied together through cointegration and the nearby futures adjusts towards long-run relationships. Contemporaneous

price information is determined to be discovered in the nearby futures. The results suggest that a shock to the nearby

futures could have long-lasting effects on prices across the three series under consideration. Policy makers should pay

close attention to the nearby futures for financial stability.
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1. Introduction

The stock market in China was established in the early 1990s and has developed dramatically
since then. However, there had been no index designed to reflect the overall performance of
stocks until China launched the Chinese Stock Index 300 (CSI300) on April 8, 2005, which
covers 300 stocks listed in the Shanghai Stock Exchange and Shenzhen Stock Exchange
and represents about 70% of total market capitalization of these two exchanges. To further
facilitate development of financial markets and risk management systems, the CSI300 futures
came into investors’ eyes on April 16, 2010. After its operating for several years, it is essential
to explore price information flows between the CSI300 and futures market, which are one of
investors and regulators’ central concerns.

The existing literature on price information flows has primarily concentrated on developed
economies. And previous studies generally indicate unidirectional leadership of a futures
against an associated spot market (Yang et al., 2012), though different empirical evidence
is presented in the literature. While this issue in emerging economies such as China has not
received so much attention as compared to developed countries, it is becoming eye-catching
to economists and investors. High trading volumes of stocks and futures index contracts
that keep increasing in recent years provide strong supporting evidence of this point. In
fact, the CSI300 futures is one of the most actively traded contracts in the world. Further,
unique market structures including high barriers for most domestic individual investors and
qualified foreign institutional investors to participate in futures trading and dominance of
individual over institutional investors in the stock market (Ng and Wu, 2007) suggest that
information flows between the CSI300 and futures are worthwhile avenues for research.

There have been two studies in the literature focusing on the issue of causal directions
between the CSI300 and futures market. Yang et al. (2012) investigate price dynamics be-
tween the CSI300 and nearby futures for the first three months since the launch of the futures
market and find that futures are overshadowed by spot prices in information leadership in
the long run. Utilizing data for each of March, May, July, September, and November of 2011
and January and March of 2012, Hou and Li (2013) show that futures lead spot prices in
the long run and short run except for March 2011 during which information feedback in the
short run is discovered. Therefore, the information importance of futures against spot prices
seems to be increasing.

Although there are extensive studies adopting time-series models to investigate lagged
causal relationships among prices, issues of contemporaneous causality, which is difficult to
infer in non-structural models, are to be confronted if one wants to understand contempora-
neous consequences of shocks or interventions, whose occurrences are not rare in China due
to factors such as policy interventions and financial reform and development. Therefore, the
purpose of this article is to contribute to an understanding of contemporaneous causality
in the CSI300 and futures market. Directed acyclic graphs (DAGs) facilitate such analysis
because they identify structural models through data-determined orthogonalization of the
contemporaneous innovation covariance, which is critical in providing inference in innova-
tion accounting (Swanson and Granger 1997). Applications in economics include Bessler
et al. (2003) and Wang (2010a). To the author’s knowledge, the only work dealing with
contemporaneous causality among spot and futures prices is by Chopra and Bessler (2005).

Continuing in this vein, two algorithms are considered in the current study for DAG



inference among the CSI300, nearby futures, and first distant futures, avoiding possible
spurious causality due to omission of important variables (Wang et al., 2007) in a bivariate
model only incorporating the CSI300 and nearby futures as in previous studies (e.g., Yang
et al., 2012; Hou and Li, 2013). The PC algorithm, one of the earliest and most widely-used
approaches, based on conditional independence is first applied to search for causal orderings.
For empirical analysis, however, there could exist observational equivalence and the DAG
will not be uniquely identified using this algorithm (Lai and Bessler, 2015; Moneta et al.,
2013). The current study also encounters this problem. The recently developed Linear
Non-Gaussian Acyclic Model (LiNGAM) algorithm (Shimizu et al., 2006) is then adopted
because its requirement of non-Gaussian data is satisfied in this study and it suggests a
promising approach to identify a unique DAG. Based on the structural model derived from a
DAG, innovation accounting analysis, i.e. forecast error variance decompositions and impulse
responses, is conducted to provide insight into contemporaneous consequences of shocks or
interventions.

This study extends previous research to a recent period 2010 ∼ 2014 and to the author’s
knowledge, represents the first attempt to explore contemporaneous causality in the CSI300
and futures market. Results here could benefit market participants by providing them with
a relatively new view of market interdependence and directions of causation within the
markets.

2. Literature Review

To examine price relationships between spot and futures markets, lead-lag causality has
drawn economists’ attention1. Meanwhile, because spot and futures prices of many financial
indexes are nonstationary, the notion of cointegration (Engle and Granger, 1987) is widely
adopted in the literature. These include Chan (1992), Ghosh (1993), Tse (1995), Kim et al.
(1999), Lin et al. (2002), Xu (2015, 2017c, 2019b), and Xu and Thurman (2015b).

Theoretically, because spot and futures prices adjust instantaneously to incorporate new
information under efficient markets where no profitable arbitrage opportunities are possible,
no lead-lag relationship is to be expected. Empirical results, however, are mixed on this issue.
Nonetheless, futures markets are found to be price leading sources more often as compared to
cash markets. This could be due to advantages such as low transaction costs, high leverage
and low initial outlays, great transparency and liquidity and short selling opportunities in
futures markets. Further, for most developed economies, it is widely perceived that the index
futures leads the spot index and plays the dominant role in price discovery (Hou and Li,
2013).

1The current study focuses on linear lead-lag causality. Another strand of the literature explores non-
linear relationships among time-series, which might be ignored by linear causality tests (Shu and Zhang,
2012; Xu, 2014b, 2018c). For example, for the crude oil market, Silvapulle and Moosa (1999) find that
futures unidirectionally lead spot prices based on the linear causality test while the bidirectional leadership
is identified with the non-linear test. More recent applications of the non-linear causality test to the crude oil
market include Bekiros and Diks (2008) and Lee and Zeng (2011). Xu (2018a) explores non-linear causality
between the Chinese Stock Index 300 and its futures. There also exist studies which investigate causality
in both time and frequency domains (e.g., Xu, 2018d) and differences between in-sample and out-of-sample
causality (e.g., Xu and Thurman, 2015a; Xu, 2018e).



There also exits empirical evidence for cash leading futures prices. For example, Moosa
(1996) finds that crude oil market participants’ action is trigged by the spot price and
the futures adjusts subsequently. Rosenberg and Traub (2006) discover that the amount
of information contained in currency spot prices is greater than that in futures, possibly
due to an increase in spot market transparency. Kawaller et al. (1988) state that spot and
futures prices are affected by their own histories, each other’s movements and current market
information. They point out that lead-lag patterns change dynamically with the arrival of
new information. And, at any time, one price might lead the other as market participants
filter information relevant to spot or futures positions. Tang et al. (1992) reveal bidirectional
causality between the Hang Sang index and its futures in the post-crash period. Wahab and
Lashgari (1993) discover feedback between the cash and futures market for the S&P 500 and
FT-SE 100 index.

Although there are extensive studies adopting time-series models to investigate lead-lag
causal relationships, one must confront issues of contemporaneous causality if one wants
to understand contemporaneous consequences of shocks or interventions. Contemporaneous
causality is difficult to infer in non-structural models and DAGs have been utilized in the
literature to construct data-determined orthogonalization of the contemporaneous innovation
covariance, which is critical in providing inference in innovation accounting (Swanson and
Granger, 1997)2. The issue of contemporaneous causality has been explored for different
commodity markets, including farm and retail prices for pork and beef (Bessler and Akleman,
1998), international wheat prices (Bessler et al., 2003), regional soybean prices (Haigh and
Bessler, 2004) and corn prices (Xu, 2014a, 2017a, 2019a), Indian black pepper prices (Chopra
and Bessler, 2005), and Chinese rice prices (Awokuse, 2007). It also has drawn researchers’
attention in areas of the US economy - relationships among the real GNP, real business
investment, GNP price deflator, M1 measure of money, unemployment, and Treasury-bill
rate (Awokuse and Bessler, 2003), international stock markets (Bessler and Yang, 2003;
Yang, 2003; Yang and Bessler, 2004), and Eurocurrency exchange rates (Wang et al., 2007).
The current study investigates contemporaneous causality among daily price series of the
CSI300, its nearby futures, and first distant futures.

As compared to the bivariate framework in previous studies (e.g., Yang et al., 2012; Hou
and Li, 2013), the multivariate framework in the current study allows for causal influences
of the CSI300 and two closely related futures, avoiding possible spurious causality due to
omission of important variables (Wang et al., 2007)3. While Yang et al. (2012) use only three
month data and Hou and Li (2013) utilize data from a certain month a time among seven

2An improvement in innovation accounting analysis is to be expected over the traditional approaches that
impose causal structure restrictions based on human judgement and/or economic theories, especially when
limited prior knowledge exists on market interrelationships (Awokuse, 2007).

3Xu (2017b) investigates the relationship between the CSI300 and its nearby futures and finds that these
two series adjust equally toward the long-run relationship. However, considering the non-trivial trading
volume of the first distant futures, it might also contribute to price dynamics of the three series. To measure
relative quantitative importance of futures as compared to spot prices, Hasbrouck’s (1995) information share
model is utilized (see Xu (2018b) for an introduction and a similar empirical application). The test based
on the CSI300 and its nearby futures shows that the former has an information share of 0.529 and the latter
0.471. Similarly, the test based on the CSI300 and its first distant futures shows that the former has an
information share of 0.514 and the latter 0.486. Therefore, the first distant futures should be an important
series to be considered for analyzing price dynamics in the current study.



months they consider to approach the price dynamic problem, the sample examined here
covers a period of four years and a half, a much longer series that facilitates cointegration
modeling and analysis building on it.

3. Data

Daily closing prices of the CSI300, nearby futures, and first distant futures are obtained
from Wind Information Co., Ltd. The futures is a financial contract for which the CSI300
serves as the underlying asset. The contract size is the index value of CSI300 multiplied by
RMB 300. The nearby futures refers to all most recent one month contracts concatenated.
It is constructed in a continuous way and reflects a dynamic concept. If today is April 11,
2019, the nearby futures is IF1904, where “IF” refers to the futures, “19” the year, and “04”
the April contracts, and the first distant futures is IF1905. If the date exceeds April 15,
2019, the delivery date of IF1904, the nearby futures becomes IF1905 and the first distant
futures becomes IF19064. The sample ranges from April 16, 2010, the launch date of the
CSI300 futures, to November 14, 2014, resulting in 1,112 observations. For the rest of this
study, prices are converted to their natural logarithms5. Descriptive information of different
series is exhibited in Figure 1 and Table 2. To test for non-stationarity, two tests are used
that set the null hypothesis of a unit root: the augmented Dickey-Fuller test (ADF; Dickey
and Fuller, 1981) and the Phillips-Perron test (PP; Phillips and Perron, 1988). Because
failure to reject the null of a unit root does not imply that a unit root exists, unit root tests
may not behave well in telling apart unit roots and weakly-stationary alternatives. Hence,
the Kwiatkowski-Phillips-Schmidt-Shin test (KPSS; Kwiatkowski et al., 1992), with the null
hypothesis of stationarity, also is applied. These three tests are implemented for both price
levels and their first differences with results reported in Table 1. The results show that the
price series are stationary in differences but not in levels.

As one might expect, the series of the CSI300 and futures are close to each other, showing
a downward trend. The market, in general, is in contango, with spot prices less erratic than
the futures prices. The first differences of the spot prices, however, tend to be more erratic
than those of the futures. Normality is rejected for all series and their first differences at the
5% significance level.

4. Empirical Analysis

4.1. Cointegration and Vector Error Correction Modeling

Let a p× 1 (p = 3 in the current study) vector Xt be represented in a vector error correction
model (VECM):

∆Xt = µ+ΠXt−1 +
k−1
∑

i=1

Γi∆Xt−i + et for t = 1, ..., T , (1)

4Readers are referred to Hou and Li (2013) and Yang et al. (2012) for more institutional backgrounds of
the CSI300 and futures.

5Unless stated otherwise, we will refer to ”log prices” as ”prices” hereafter.



Table 1: Unit root tests on levels and first differences of price series of the CSI300, nearby
futures, and first distant futures

Without Trend With Trend
Series ADF1 PP2 KPSS3 ADF1 PP2 KPSS3

Panel A: Test with Price Levels
Spot -1.740 -2.412 3.687 -2.437 -2.807 0.303
Nearby Futures -1.701 -2.503 3.712 -2.419 -2.952 0.301
First Distant Futures -1.695 -2.487 3.740 -2.384 -2.949 0.299

Panel B: Test with First Differences
Spot -23.467 -33.653 0.116 -23.459 -33.657 0.039
Nearby Futures -23.196 -34.900 0.116 -23.188 -34.904 0.036
First Distant Futures -23.348 -35.168 0.116 -23.341 -35.172 0.036

1 The numbers of lags are selected by the Bayesian information criterion (BIC). We arrive at the same decision
on the existence of a unit root if the Akaike information criterion (AIC) is used to select the numbers of lags.
The critical values of the ADF test with a constant but without a trend are -3.43, -2.86, and -2.57 at the 1%,
5%, and 10% significance level, respectively. The critical values of the ADF test with a constant and a trend
are -3.96, -3.41, and -3.12 at the 1%, 5%, and 10% significance level, respectively.
2 The critical values of the PP test with a constant but without a trend are -3.439, -2.865 and -2.568 at the
1%, 5%, and 10% significance level, respectively. The critical values of the PP test with a constant and a
trend are -3.971, -3.416 and -3.130 at the 1%, 5%, and 10% significance level, respectively.
3 The critical values of the KPSS test with a constant but without a trend are 0.739, 0.463, and 0.347 at the

1%, 5%, and 10% significance level, respectively. The critical values of the KPSS test with a constant and a

trend are 0.216, 0.146, and 0.119 at the 1%, 5%, and 10% significance level, respectively.

Table 2: Summary statistics for price series of the CSI300, nearby futures, and first distant
futures

Series Mean Median Minimum Maximum Standard Skewness Kurtosis
Deviation

Spot 7.8538 7.8341 7.6435 8.1743 0.1292 0.4784 2.2249
Nearby Futures 7.8550 7.8352 7.6369 8.1881 0.1313 0.4801 2.2778
First Distant Futures 7.8580 7.8357 7.6269 8.2101 0.1340 0.4827 2.3118
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Figure 1: Price series of the CSI300, nearby futures, and first distant futures

where Xt = (St, F
n
t , F

fd
t ), St, F

n
t , and F

fd
t represent the CSI300, nearby futures, and first

distant futures, Π and Γi are p × p coefficient matrices, µ is a p × 1 deterministic term,
and k = 2 is selected based on the Bayesian information criterion. Trace and maximum
eigenvalue tests (Johansen, 1988, 1991) are adopted to assess cointegration. In particular,
two models are considered: (1) H1(r): µ = µ0 (unrestricted constant), ∆Xt = µ0+αβ′Xt−1+
∑k−1

i=1
Γi∆Xt−i + et, and the cointegrating relations β′Xt may have a non-zero mean; (2)

H∗

1
(r): µ = µ0 = αδ

′

(restricted constant), ∆Xt = α(β′Xt−1 + δ
′

) +
∑k−1

i=1
Γi∆Xt−i + et,

and the cointegrating relations β′Xt have a non-zero mean δ
′
6. Results in Table 3 indicate a

cointegration rank, r, of two. Possible structural breaks in long-run relationships among the
series are examined with Hansen and Johansen’s (1999) recursive method, which can reveal
the (in)stability of cointegration identified. Bessler et al. (2003) adopt this approach for
the same purpose when studying international wheat prices. Figure 2 shows the normalized
trace test statistics calculated at each data point between May 10, 2010 (point 16) and
November 14, 2014 (point 1,112). The first 15 data points ranging from April 16, 2010 to
May 7, 2010 are used as the base period. As shown in Figure 2, the test statistics are scaled
by the 5% critical values. Therefore, the null hypothesis at a data point can be rejected if
its corresponding entry in the figure is greater than one. It is obvious that the trivariate
model has two and almost never less than two cointegrating vectors. Therefore, the CSI300,

6Johansen’s trace statistic tests the nested hypotheses: null : r = r0 vs. alternative : r > r0 for r0 = 0, 1,
2, ..., p−1. Johansen (1992) proposes a sequential testing procedure to determine the number of cointegrating
vectors. Hypotheses are tested in the following order: H∗

1 (0), H1(0), H
∗

1 (1), H1(1), ..., H
∗

1 (p− 1), H1(p− 1).
For example, H∗

1 (1) can only be rejected if also H∗

1 (0) and H1(0) are rejected, and H1(1) can only be rejected
if also H∗

1 (0), H1(0), and H∗

1 (1) are rejected. Testing is terminated and the corresponding hypothesis is not
rejected at the first failure to reject the null in the testing sequence. Johansen’s maximum eigenvalue statistic
tests the hypotheses: null : r = r0 vs. alternative : r = r0 + 1 for r0 = 0, 1, 2, ..., p− 1.



Table 3: Johansen’s trace and maximum eigenvalue tests for the cointegration rank of
the CSI300, nearby futures, and first distant futures

Panel A: Johansen’s Trace Test
Null: Rank λ− Trace∗1 C(5%)∗2 Decision9 λ− Trace3 C(5%)4 Decision9

r = 0 259.019 34.910 R 258.760 29.680 R
r ≤ 1 41.780 19.960 R 41.525 15.410 R
r ≤ 2 4.604 9.240 F 4.362 3.760 R10

Panel B: Johansen’s Maximum Eigenvalue Test
Null: Rank λ−max∗5 C(5%)∗6 Decision9 λ−max7 C(5%)8 Decision9

r = 0 217.239 22.000 R 217.235 20.970 R
r = 1 37.176 15.670 R 37.163 14.070 R
r = 2 4.604 9.240 F 4.362 3.760 R10

1 The trace statistic with a constant in the cointegration vector.
2 The critical value at the 5% significance level listed in Table 1* from Osterwald-Lenum (1992) for the
trace test with a constant in the cointegration vector.
3 The trace statistic with a constant outside the cointegration vector.
4 The critical value at the 5% significance level listed in Table 1 from Osterwald-Lenum (1992) for the
trace test with a constant outside the cointegration vector.
5 The maximum eigenvalue statistic with a constant in the cointegration vector.
6 The critical value at the 5% significance level listed in Table 1* from Osterwald-Lenum (1992) for the
maximum eigenvalue test with a constant in the cointegration vector.
7 The maximum eigenvalue statistic with a constant outside the cointegration vector.
8 The critical value at the 5% significance level listed in Table 1 from Osterwald-Lenum (1992) for the
maximum eigenvalue test with a constant outside the cointegration vector.
9 ”R” means ”Reject”. ”F” means ”Fail to Reject”.
10 The decision will be ”F” if the 1% significance level is used because the associated critical value is

6.650.

nearby futures, and first distant futures are driven by one common stochastic trend, which is
referred to as the (unobservable) implicit efficient price in the literature (Baillie et al., 2002).

4.2. Hypothesis Testing

In order to test economic implications such as: (a) whether a market is included in cointe-
gration vectors, and (b) whether the price of a market responds to disturbances in long-run
equilibrium relationships, restrictions on β and/or α are imposed to perform corresponding
hypothesis tests on the cointegrating space: (a) a test of exclusion from cointegration vectors,
and (b) a test of weak exogeneity. The null hypothesis of (a) can be formulated as:

R
′

1×pβp×r = O1×r, (2)

where R
′

1×p = (0, ...0, 1, 0, ..., 0) and 1 is the i-th element (i = 1, ..., p), which mean that
the i-th price series is not in cointegration vectors, i.e. the i-th column of matrix Π is zero.
Similarly, the null hypothesis of (b) can be formulated as:

B
′

1×pαp×r = O1×r, (3)
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Figure 2: Recursive cointegration analysis: plots of trace test statistics



Table 4: Hypothesis tests on the cointegrating space

Hypothesis1 Degrees of Freedom χ2 Test Statistics Decision2

Panel A: A Test of Exclusion from Cointegration Vectors
β11 = β12 = 0 2 192.365 R
β21 = β22 = 0 2 191.661 R
β31 = β32 = 0 2 120.473 R

Panel B: A Test of Weak Exogeneity
α11 = α12 = 0 2 2.720 F
α21 = α22 = 0 2 7.206 R
α31 = α32 = 0 2 1.758 F

1 Subscripts of β and α correspond to series as follows for j = 1 and 2: β1,j and
α1,j - Spot, β2,j and α2,j - Nearby Futures, and β3,j and α3,j - First Distant
Futures.
2 Decisions are made at the 5% significance level. ”R” means ”Reject”. ”F”

means ”Fail to Reject”.

where B
′

1×p = (0, ...0, 1, 0, ..., 0) and 1 is the i-th element, which mean that the i-th price
series does not respond to disturbances in long-run equilibrium relationships, i.e. the i-th
row of matrix Π is zero. Under the null hypothesis of (a) or (b), the test statistic has an
asymptotic chi-squared distribution. Results in Table 4 reveal that each of the CSI300,
nearby futures, and first distant futures is part of long-run equilibrium relationships and
the nearby futures responds and adjusts towards the equilibrium relationships. This finding
is consistent with Chopra and Bessler (2005), although different empirical applications are
pursued7.

4.3. Contemporaneous Causality

Let the innovation vector, et, from the estimated VECM in Equation (1) be written as
Aet = vt, where A is a p×p matrix of structural parameters such that E(Aete

′

tA
′

) = E(vtv
′

t),
and vt is a p × 1 vector of orthogonal structural shocks, i.e. E(vi,t, vj,t) = 0 for i 6= j

components of vt. Different algorithms of DAGs essentially search and place zeros on matrix
A. The identification condition of matrix A is given by Doan (1996): for all i 6= j and
i, j = 1, 2, ..., p, there are no elements of matrix A such that both Aij and Aji 6= 0. When
conducting innovation accounting analysis, the VECM is converted into its equivalent levels
vector autoregressive model (VAR) to calculate impulse response functions and forecast error
variance decompositions. This VAR has cointegration constraints of the VECM imposed and
yields consistent results on innovation accounting (Phillips, 1998). In particular, let the p-
variate VAR representation of the estimated VECM be:

Xt = A−1A1Xt−1 + A−1A2Xt−2 + · · ·+ A−1AkXt−k + A−1vt for t = 1, ..., T , (4)

where Ai’s are p× p matrices of coefficient parameters. The associated structural VAR is:

7Chopra and Bessler (2005) investigate contemporaneous causality among the spot, nearby futures, and
first distant futures for the black pepper market in Kerala, India.



AXt = A1Xt−1 + A2Xt−2 + · · ·+ AkXt−k + vt for t = 1, ..., T . (5)

To reveal the relative effect of each variable, the response of Xt to the structural innovation
vt needs to be determined.

The PC algorithm, one of the earliest and most widely-used algorithms of DAGs that
is based on conditional independence, is first applied to search for causal orderings. An
introduction following Bessler and Akleman (1998), Bessler and Yang (2003), Bessler et al.
(2003), Wang (2010b), Wang et al. (2007), and Yang and Bessler (2004) can be found in the
Appendix. The estimated contemporaneous innovation correlation matrix of the VECM, V ,
is used by this algorithm to determine DAGs. For the current study,

V =









Spot Nearby Futures First Distant Futures
Spot 1.000
Nearby Futures 0.945 1.000
First Distant Futures 0.947 0.989 1.000









.

Figure 3 (the left panel) shows the “Pattern” based on the algorithm at the 1% significance
level because three edges connecting the CSI300, nearby futures, and first distant futures
cannot be directed8.

Spot First Distant Futures

Nearby Futures

Spot First Distant Futures

Nearby Futures

Figure 3: The causal pattern on innovations on CSI300, nearby futures, and first distant
futures prices based on the PC algorithm (left) and the DAG based on the LiNGAM

algorithm (right)

Because observational equivalence exists when assigning causal flows based on the PC
algorithm, methods dealing with non-directed edges in Gaussian space are worth investi-
gating. Due to non-normality of three residual series from the VECM, i.e. p-values of the
Jarque-Bera, Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling
test being smaller than 0.01, the Linear Non-Gaussian Acyclic Model (LiNGAM) algorithm
suggests a promising approach that uses non-normality to assign causal flows. An introduc-

8Spirtes et al. (2000) state: “In order for the method to converge to correct decisions with probability
1, the significance level used in making decisions should decrease as the sample size increases, and the use
of higher significance levels (e.g., 0.2 at sample sizes less than 100, and 0.1 at sample sizes between 100 and
300) may improve performance at small sample sizes.” Yang and Bessler (2004) compare the significance
levels at 1% and 0.1% for a system of 9 variables with a sample size of 1,800. Ramsey (2010) adopts the
significance level at 0.1% for simulation exercises on various graphs, including one with 10 nodes, 20 edges,
and a sample size of 5,000. For the sample size of 1,316 in the current study, the 1% significance level seems
appropriate.



tion following Lai and Bessler (2015), Moneta et al. (2013), and Shimizu et al. (2006) can
be found in the Appendix. Figure 3 (the right panel) shows the uniquely identified DAG
based on the algorithm with the prune factor set to 19. The associated matrix A can be
represented as:

A =





a11 a12 a13
0 a22 0
0 a32 a33



 .

Ninety day ahead forecast error variance decompositions and impulse responses are provided
in Table 5 and Figure 4. For the latter, results in different cells can be compared because
they are normalized by the standard deviation of the historical innovations for the associated
series.

While the effects of a shock in one series on others vary in strength, they tend to be
persistent in the longer run. This is an indication of long-run relationship constraints (Orden
and Fisher, 1993). The nearby futures turns out to be the most exogenous series, the impulse
responses of the CSI300 and first distant futures to its shock are rather strong, and it accounts
for more than 96% of the variances across series even after ninety days. The CSI300 or first
distant futures does not have significant impacts on other series. These results indicate
that price information is discovered in the nearby futures. In a similar application to the
black pepper market in Kerala, India, Chopra and Bessler (2005) examine contemporaneous
causality among the cash, nearby futures, and first distant futures series and find that one
of the futures is the most exogenous depending on how causal flows are assigned between
the two futures series.

Our result of contemporaneous price information being discovered in the nearby futures
sheds light on the increasing informational importance of the CSI300 futures market as
compared to the spot with continuous development of the financial system. This suggests
the importance of reducing high barriers to participating in futures trading in China for
many investors, such as qualified foreign institutional investors, to increase the information
content of the futures market. Greater openness of investment channels and policy incentives
to attract well-informed traders may further stimulate futures market development (Xu,
2017b). In terms of enhancing financial stability, our result suggests that policy makers
should pay close attention to the nearby futures for risk management. In particular, potential
risk associated with large shocks to the nearby futures should be controlled in a sound and
effective manner due to the long-lasting effects.

5. Conclusion

This study investigates contemporaneous causality among price series of the CSI300 (Chinese
Stock Index 300), nearby futures, and first distant futures with vector error correction mod-

9The prune factor is between 0 and 1. More edges would be pruned out as the factor increases. However,
there have not been conclusive studies on the factor selection. Bizimana et al. (2015) use 0.5 for their
sample size of 158 based on communications with Dr. Joseph D. Ramsey from Carnegie Mellon University,
who is one of the administrators of the TETRAD software. Lai and Bessler (2015) use 1 for the number
of observations exceeding 200. For the sample size of 1,316 in the current study, the factor at 1 seems
appropriate.



Table 5: Variance decompositions of the CSI300, nearby
futures, and first distant futures series based on the DAG

derived from the LiNGAM algorithm

Day1 Spot Nearby Futures First Distant Futures
Spot2

1 9.915 89.357 0.728
15 5.141 94.479 0.380
30 4.266 95.283 0.452
60 3.628 95.818 0.554
90 3.379 96.020 0.601

Nearby Futures2

1 0.000 100.000 0.000
15 2.394 97.015 0.591
30 2.618 96.732 0.651
60 2.738 96.584 0.677
90 2.780 96.534 0.686

First Distant Futures2

1 0.000 97.773 2.227
15 1.427 97.087 1.486
30 1.871 96.913 1.216
60 2.300 96.713 0.986
90 2.483 96.624 0.894

1 Day 1 is the contemporaneous period.
2 This subsection in the table shows how the variance of a particular series

is explained by price innovations from the three series listed in the first

row. The numerical results are in percentage representations.
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Figure 4: Impulse responses of one price to a one-time-only shock in innovations in another
price: based on the DAG derived from the LiNGAM algorithm



eling and directed acyclic graphs. These series are tied together through cointegration and
the nearby futures adjusts towards long-run relationships. Contemporaneous price informa-
tion is found to be discovered in the nearby futures. The results provide market participants
with a relatively new view of market interdependence and directions of causation within the
markets, and shed light on the increasing informational importance of the CSI300 futures
market as compared to the spot with continuous development of the financial system. Mean-
while, the results suggest that a shock to the nearby futures could have long-lasting effects on
prices across the three series studied. Policy makers should pay close attention to the nearby
futures for financial stability. Future research incorporating macroeconomic variables, such
as the M1 measure of money, GDP deflator, and exchange rate, is a worthwhile avenue.
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Appendix: Directed Acyclic Graphs

Directed Acyclic Graphs (DAGs) facilitate the inference of causal relations with a nontime
sequence asymmetry. DAGs have been studied for decades with the recent development
documented in Spirtes et al. (2000) and Pearl (1995, 2000). Consider a causally sufficient
set constituting of three variables X, Y , and Z. A causal fork that X causes Y and Z can be
represented as: Y ← X → Z, suggesting that the unconditional association between Y and
Z is nonzero since both Y and Z have a common cause X, while the conditional association
between Y and Z, given knowledge of the common cause X, is zero since common causes
screen off associations between their joint effects. Another causal fork that both X and Z

cause Y can be expressed as: X → Y ← Z, suggesting that the unconditional association
between X and Z is zero, while the conditional association between X and Z, given the
common effect Y , is nonzero since common effects do not screen off associations between
their joint causes. These “screening-off” phenomena have been built into an extensive DAG
literature. For more details about these screening-off asymmetries in causal relations, readers
can refer to Orcutt (1952), Papineau (1985), Reichenbach (1956), and Simon (1953).

Intuitively, a directed graph uses arrows and vertices to represent the causal relationship
(or lack thereof) among a set of variables. Formally, a graph is an ordered triple (V, M, E),
where V is a nonempty set of vertices (variables), M is a nonempty set of marks (symbols
attached to the end of undirected edges), and E is a set of ordered pairs. Vertices are said to
be adjacent if they are connected by an edge. Given a set of vertices {A, B, C, D, E, F}, we
can consider the following four cases: (a) an undirected graph contains undirected edges (e.g.,
A−B) only, which signify covariances that are given no particular causal interpretations; (b)
a directed graph contains directed edges (e.g., B → C) only, which suggest that a variation
in B, with all other variables held constant, causes a (linear) variation in C that is not
mediated by any other variables in the system; (c) an inducing path graph contains both
directed edges and bidirected edges (e.g., C ↔ D), the latter indicating the bidirectional
causal interpretation between two variables; (d) a partially oriented inducing path graph
contains directed edges, bidirected edges, nondirected edges (e.g., D ◦ − ◦ E) and partially
directed edges (e.g., E◦ → F ), the latter two with a small circle at the end of an edge to
signify the uncertainty as to whether an arrow should be contained or not. The lack of an
edge between two variables indicates unconditional or conditional independence. A DAG
is a directed graph with no directed cyclic paths10. Hence, an acyclic graph has no path

10The number of possible labeled DAGs for n > 1 vertices is: Rn =
∑n

k=1(−1)
k+1

(

n

k

)

2k(n−k)Rn−k,



that leads away from a variable to return to it. In other words, an acyclic graph contains a
variable no more than once in a path. The path such as A → B → C → A is cyclic since
the path leads away from A to B and returns to A via C. In this study, only acyclic graphs
are employed. A causal chain such as X → Y → X is not allowed in a final directed graph.

DAGs are designed to represent conditional independence as implied by the recursive
product decomposition:

Pr(x1, x2, x3, ..., xn) = Πn
i=1

Pr(xi|pai), (6)

where Pr is the probability of variables x1, x2, ..., xn, pai is the realization of some subsets of
the variables that precede (come before in a causal sense) xi in order (i = 1, 2, ..., n), and Π is
the product operation. Pearl (1986, 1995) has proposed d-separation (direction separation)
as a graphical characterization of conditional independence relations in Equation (6). If we
formulate a DAG in which the variables corresponding to pai are represented as the parents
(direct causes) of xi, then the independencies implied by Equation (6) can be read off the
graph using the notion of d-separation (Pearl, 1995):

Definition 1 (d-separation). Let X, Y , and Z be three disjoint subsets of vertices (vari-
ables) in a directed acyclic graph G, and let p be any path between a vertex (variable) in X

and a vertex (variable) in Y , where by “path” we mean any succession of edges, regardless
of their directions. Z is said to block p if there is a vertex w on p satisfying one of the
following: (a) w has converging arrows along p, and neither w nor any of its descendants are
on Z; or, (b) w does not have converging arrows along p, and w is in Z. Further, Z is said to
d-separate X from Y on graph G, written (X ⊥⊥ Y |Z)G, if and only if Z blocks every path
from a vertex (variable) in X to a vertex (variable) in Y .

Geiger et al. (1990) show that there is a one-to-one correspondence between the set of
conditional independencies X ⊥⊥ Y |Z implied by Equation (6) and the set of triples X, Y, Z

that satisfy the d-separation criterion in a graph G. Specifically, if G is a DAG with vertex
(variable) set V, X and Y are in V, and Z is also in V, the implied linear correlation
between X and Y in G, conditional on Z, is zero if and only if X and Y are d-separated
given Z.

The notion of d-separation can be illustrated further following Pearl (2000). Consider
three vertices (variables), A, B, and C. A variable is a collider if arrows converge on it:
A→ B ← C. The vertex B is called a collider, and A and C are d-separated, given the null
set. However, if we condition on B, the information flow between A and C is opened up, and
A and C are d-connected (directionally connected). By modifying the graph A → B ← C

to include variable D as a descendant of B, we have:

A→ B
↓
D

← C.

If we condition on D, the information flow between A and C is also opened up. This

where R0 = 1 (McKay et al., 2004).



illustrates part (a) of Definition 1.
If the information flow is characterized by diverging arrows as described in part (b)

of Definition 1, the d-separation condition is different. We need to take two cases into
consideration. First, we consider three vertices (variables), K, L, and M , specified by
the graph K ← L → M , where L is a common cause of K and M . The unconditional
association (correlation) between K and M is nonzero since they have a common cause L,
and K and M are d-connected. However, if we condition on L (know the value of L), the
association between K and M vanishes away (and is zero), and K and M are d-separated.
Hence, conditioning on common causes blocks the information flow between common effects.
Second, we consider a causal path, which is a causal chain, described by D → E → F , where
D causes E, and E causes F . The unconditional association between D and F is nonzero,
and D and F (the end points) are not d-separated. However, if we condition on E (the
middle vertex or mediator), the association between D and F disappears (and is zero), and
D and F are d-separated.

In a word, two vertices, say X and Y , are said to be d-separated if the information flow
between them is blocked. This happens when: (a) X and Y have a common cause W with
the graph representation X ← W → Y , or X and Y are end points of a causal chain whose
middle vertex is U with the graph representation X → U → Y , and we condition on W or
U ; (b) X and Y have a common effect Z with the graph representation X → Z ← Y , and
we do not condition on Z or any of its descendants (descendants are not shown here).

The PC Algorithm

The PC algorithm is used for inference on DAGs based on observed data. Spirtes et al.
(2000) have incorporated into it the notion of d-separation for building DAGs using the
notion of sepset (defined later). This algorithm is an ordered set of commands. It starts
with a general unrestricted set of relations among variables and proceeds stepwise to remove
edges between variables and direct “causal flows”.

Briefly, on the vertex set V, we begin with a complete undirected graph G that has an
undirected edge between every variable of the system (every variable in V). Edges between
variables are removed sequentially based on zero-order correlations (unconditional correla-
tions) or higher-order partial correlations (conditional correlations). First, the algorithm
removes edges from the complete undirected graph by checking for unconditional correla-
tions between pairs of variables. Edges that connect variables with zero correlations are
removed. Second, the algorithm checks for first order partial correlations (correlations be-
tween pairs of variables conditional on a third variable) from the remaining edges. Edges that
connect variables with zero first order partial correlations are removed. Similarly, provided
that we have N variables, the algorithm continues to check for partial correlations up to the
(N − 2)-th order and removes edges that connect variables with zero partial correlations of
a corresponding order.

For efficiency of the PC algorithm, Bülmann and van de Geer (2011) have pointed out
that it is a clever iterative multiple testing approach for inferring zero partial correlations.
If a marginal correlation ρ(j, k) = 0, considerations of partial correlations ρ(j, k|C) of higher
orders with |C| ≥ 1 are not needed. Similarly, if a first order partial correlation ρ(j, k|m) = 0,
considerations of higher order partial correlations ρ(j, k|C) with m belonging to C and



|C| ≥ 2 are not necessary. The same idea applies to partial correlations of other orders.
As a result, faithfulness allows a hierarchical testing process from marginal to first- and to
higher-order partial correlations. Shalizi (2013) has indicated that X ⊥⊥ Y |S

′

, where all
variables in S

′

are adjacent to X or Y or both, if X ⊥⊥ Y |S for some sets of variables S. We
can consider a single long directed path from X to Y . If we condition on any of the variables
along the chain, X and Y become independent. Yet, we could always move the point where
we block the chain to either right next to X or right next to Y . Hence, when we are trying
to remove edges between X and Y to obtain independence, only conditioning on variables
which are still connected to X and Y (not those in totally different parts of the graph) is
needed. The PC algorithm tries to minimize the number of variables it conditions on, thus
avoiding many statistical tests and usually running fast. Also, Kalisch and Bülmann (2007)
have noted that the PC algorithm is computationally feasible for high-dimensional sparse
problems.

In applications, we use Fisher’s z statistic to test whether conditional correlations are
significantly different from zero. The formula for z is z[ρ(i, j|k), n] = 1

2
(n−|k|−3)

1

2×ln{[|1+
ρ(i, j|k)|] × [|1 − ρ(i, j|k)|]−1}, where n is the number of observations used to estimate the
correlations, ρ(i, j|k) is the population correlation between series i and series j conditional on
series k (the influence of series k on series i and series j is removed), and |k| is the number of
variables in k (|k| = 0 for unconditional correlation). Let r(i, j|k) be the sample correlation
between series i and series j conditional on series k. If series i, j, and k are all normally
distributed, z[ρ(i, j|k), n]− z[r(i, j|k), n] is standard normally distributed.

The edges that survive all the removals are directed by applying the notion of sepset:

Definition 2 (sepset). The conditioning variable(s) on removed edges between two variables
is (are) called the sepset of the variables whose edges have been removed (for vanishing zero
order conditioning information, the sepset is the empty set).

Consider triples X−Y −Z, where X and Y , and Y and Z are adjacent, but not X and Z, as
a simplified example. First, one directs edges between the triples X−Y −Z as X → Y ← Z

if Y is not in the sepset of X and Z. Second, if X → Y , Y and Z are adjacent, X and Z are
not adjacent, and there is no arrowhead at Y , one directs Y − Z as Y → Z. Third, if there
is a directed path from X to Y and an edge between them, one directs X − Y as X → Y .

Demiralp and Hoover (2003) and Spirtes et al. (2000) have studied the PC algorithm
with Monte Carlo simulations. With the sample size of 100, the PC algorithm may make
mistakes on edge inclusions or exclusions (an edge that should be included is not included
or an edge that should not be included is included), and edge directions (an arrowhead that
should be put at a specific vertex is not put there or an arrowhead that should not be put
at a specific vertex is put there). With extensive explorations of several versions of the PC
algorithm on simulated data with respect to errors on both edge inclusions or exclusions and
edge directions, Spirtes et al. (2000) found that (a) there is little chance for the algorithm
to include an edge that is not in the “true” model, but with small sample sizes (say less
than 200 observations), there is a considerable chance for the algorithm to omit an edge
that belongs to the model; (b) arrowhead commission errors (putting an arrowhead where it
does not belong) are more likely than edge commission errors (putting an edge where it does
not belong). Spirtes et al. (2000) stated: “in order for the method to converge to correct



decisions with probability 1, the significance level used in making decisions should decrease
as the sample size increases, and the use of higher significance levels (e.g. 0.2 at sample sizes
less than 100, and 0.1 at sample sizes between 100 and 300) may improve performance at
small sample sizes.”

For the connection between directed graphs and Holland’s (1986) counterfactual random
variable model (the random assignment experimental model), readers are referred to Spirtes
et al. (1999).

The LiNGAM Algorithm

The Gaussian data assumption made in the PC algorithm negates the need for information
from higher-order moment structures (Shimizu et al., 2006). It could result in a set of
indistinguishable causal patterns, which are equivalent in their (conditional) probability
structures. For example, when X, Y , and Z are normally distributed, two graphs, X ←
Y → Z and X → Y → Z, are compatible with the same probability distribution and thus
are observationally equivalent (Pearl, 2000).

An important difference of the Linear Non-Gaussian Acyclic Model (LiNGAM) algo-
rithm from most earlier work on the linear, causal sufficient, case is the assumption of
non-Gaussianity of variables (disturbances) (Shimizu et al., 2006), which is common in fi-
nancial time series. When this assumption is valid, the complete causal structure could be
estimated without any prior information on the causal ordering of variables (Shimizu et al.,
2006). The further the data are from normality, the more accurate the final causal structure
identified by the LiNGAM algorithm (Shimizu and Kano, 2008).

While the PC algorithm generally searches the causal pattern based on conditional inde-
pendence, the LiNGAM algorithm discovers the causal directionality according to functional
composition (Pearl, 2000). In particular, independent component analysis (ICA) is utilized
by the LiNGAM algorithm here11. ICA is only feasible on non-Gaussian data and, for Gaus-
sian variables, it generally could not find the correct mixing matrix because many different
mixing matrices yield the exact same Gaussian joint density (Hyvärinen et al., 2001)12.

Consider observed data generated from a process with properties as follows (Shimizu et
al., 2006):

1. Variables xi, i ∈ {1, ...,m} could be arranged in a causal order, denoted by k(i), such
that no later variable causes any earlier one, i.e., the generating process is recursive
(Bollen, 1989), which could be represented graphically by a DAG (Pearl, 2000; Spirtes
et al., 2000).

11An alternative approach known as DirectLiNGAM, which does not make use of ICA, is proposed by
Shimizu et al. (2011).

12Based on the Central Limit Theory (CLT), any mixture of signals from independent sources usually
has a distribution closer to a normal distribution than any of the constituted original variable (Stone,
2004). Under the assumption that one observes the mixtures, X = (x1, x2, ..., xn), of independent signals,
s = (s1, s2, ..., sn), one has X = As with s representing mutually independent components. The CLT says
that any of the s is less Gaussian than the mixture variables X. The independent components could be
rewrote inversely as the linear combination of the mixture variables. ICA aims at finding the demixing
matrix, W , which maximizes the sum of the non-Gaussianity of the mutually statistically independent
components of s̃, where s̃ = W̃X and W̃ = A (Hyvärinen et al., 2001; Shimizu, Hyvärinenet al., 2006).



2. The value assigned to each variable xi is a linear function of values already assigned
to earlier ones, plus a “disturbance” term ei and an optional constant term ci: xi =
∑

kj<ki
bijxj + ei + ci.

3. Disturbances ei, i ∈ {1, ...,m} are all continuous-valued random variables with non-
Gaussian distributions of non-zero variances and they are independent of each other,
i.e., p(e1, ..., em) =

∏

i piei.

If each variable xi has a non-zero mean, we are left with the system of equations:

X = BX + e, (7)

where B is the coefficient matrix of the model. Solving for X in Equation (7) results in:

X = Ae, (8)

where A = (I − B)−1. Equation (8) and the independence and non-Gaussianity of compo-
nents of e form the standard linear ICA model (Hyvärinen et al., 2001; Shimizu et al., 2006).
Rewriting Equation (8), one obtains:

e = (I − B)X. (9)

In general, the LiNGAM algorithm first uses ICA to obtain an estimate of the mixing matrix
A and subsequently permutes and normalizes it appropriately before utilizing it to compute
B, which contains the sought connection strengths bij

13. When the number of observed
variables xi is relatively small (e.g., less than eight), finding the best permutation is easy
with a simple exhaustive search. For higher dimensionalities, a more sophisticated approach
is required14.

After finding a causal ordering k(i), some estimated connection strengths might be ex-
ceedingly weak and are probably zero in the generating model. Under these circumstances,
the Wald test could be used to determine whether certain connections should be pruned.

Readers can refer to Kano and Shimizu (2003), Shimizu and Kano (2008), and Lai and
Bessler (2015) for an intuitive illustrative example of using higher order moments for deter-
mining the direction of causality for non-Gaussian variables. We closely follow these authors.

Consider two models:
M1 : y = βx+ εy, (10)

M2 : x = ηy + εx, (11)

where the explanatory variable is independent of the error in each model. Let xk and yk,
where k = 1, 2, ..., N , be observations on x and y with mean zero. The moment structure
can be defined as

mij =
1

N

N
∑

k=1

xi
ky

j
k. (12)

The first-order moment of observed data is not considered because E(x) = E(y) = 0.

13Refer to Shimizu et al. (2006) for more details of the permutation and normalization problem.
14Refer to Shimizu et al. (2006) for the detailed LiNGAM discovery algorithm.



The model-predicted second-order moment of M1 is
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E (x2)
E (ε2Y )

]

= σ2 (τ̂2) (13)

where τ2 is the number of parameters and τ̂2 = (β,E (x2) , E (ε2Y )) in this case. We note
that the number of the distinct sample moments and that of τ2 are both 3. Meanwhile,
the same second-order moment structures of M1 and M2 are the same. Therefore, M1 and
M2 are equivalent, meaning that M1 could not be identified from M2 if one only considers
second-order moment structures. One could, however, apply higher-order moments of M1

and M2 to detect the causal direction if the relevant variables and disturbance terms are
non-normally distributed. For example, the third-order moment of M1 can be wrote as
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]

= σ3 (τ̂3) (14)

where τ̂3 = (β,E (x3) , E (ε3Y )). The fourth-order moment structure can be defined in a

similar way. Let m =
[

mT
2
,mT

3
,mT

4

]T
and σ(τ) =

[

σ2 (τ2)
T
, σ3 (τ3)

T
, σ4 (τ4)

T
]T

. There are

twelve sample moments and seven parameters in this case and one could evaluate the model
fit. The null and alternative hypotheses to test the overall model fit can be expressed as

H0 : E(m) = σ(τ) versus H1 : E(m) 6= σ(τ) (15)

The test statistic is based on the difference between m and σ(τ̂) by F (τ̂), T1, and T2, where

F (τ̂) = {m− σ(τ̂)}T V̂ −1{m− σ(τ̂)}, (16)

T1 = N × F (τ̂), (17)

T2 =
T1

1 + F (τ̂)
, (18)

and V̂ is a weight matrix in generalized least squares estimation, which converges in proba-
bility to a certain positive definite matrix V .

Consider the case where M1 has a smaller chi-square value of the statistic T2 as compared
to M2 and does not reject H0 in Equation (15). This implies that M1 has better model-data
consistency and one considers it the best-fitting model for this reason. Therefore, the correct
causal ordering between variables (x causes y) is reflected through M1 (Kano and Shimizu
2003; Shimizu and Kano 2008). The LiNGAM algorithm applies the above test statistics to
examine the overall model fit (Shimizu, Hoyer et al., 2006).


