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Abstract
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sufficient condition is obtained.
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1 Introduction

An important tool in the mathematical theory of decision making (Fishburn, 1973; Sen,
1984; Kreps, 1988; Aizerman and Aleskerov, 1995) is a choice function, i.e., a correspon-
dence singling out, in every potential feasible set, the subset of acceptable choices (from the
viewpoint of the individual, or team, or committee, etc. under consideration). Understand-
ably, the non-emptiness of all its values is a desirable property of such a function. When the
choice is determined by a binary relation, this justifies the search for conditions ensuring the
existence of undominated alternatives in all potential feasible sets.

When attention is restricted to finite sets, the existence question is easily resolved; more-
over, the interrelations between various properties of choice functions have been unraveled.
Going beyond finite sets, the landscape becomes more entangled.

Nonetheless, there is quite a number of sufficient conditions for a binary relation defined
on a topological space to admit undominated alternatives in every nonempty compact sub-
set (Gillies, 1959; Bergstrom, 1975; Kalai and Schmeidler, 1977; Mukherji, 1977; Walker,
1977; Campbell and Walker, 1990). Smith (1974) found that a very weak version of upper
semicontinuity is necessary and sufficient for the property, provided the relation in question
is an ordering (weak order); Kukushkin (2008a) obtained a similar characterization result
for interval orders.

An attempt to move beyond interval orders meets a peculiar obstacle: Kukushkin (2008b)
showed the impossibility of a “simple” (in an exact sense) condition that would be necessary
and sufficient for the existence of undominated alternatives in all nonempty compact subsets.
As a way around that obstacle, Kukushkin (2008a) showed that Smith’s condition charac-
terizes binary relations with a stronger property (the “NM property”: every dominated
alternative is dominated by an undominated one) on every compact subset.

A clarification is in order. There is a considerable literature developing conditions en-
suring the existence of undominated alternatives in a single set, see, e.g., Bosi and Zuanon
(2017) and the references therein. Quite a number of such conditions are necessary and
sufficient, in which case, however, they cannot be inherited by the restriction of the same
relation to subsets; therefore, they have no relevance to choice functions.

In economic models, sets of feasible alternatives are often convex (e.g., budget sets).
The existence problem in this framework has been studied intensely and quite a number of
sufficient conditions have been obtained (Kiruta et al., 1980; Yannelis and Prabhakar, 1983;
Danilov and Sotskov, 1985). However, there is no characterization result in that literature.

This paper strives to fill the gap. We define “convex” analogs of the conditions from
Kukushkin (2008a), and obtain a characterization result for “reasonable” interval orders.
Thus, the situation proves not so bleak as was suggested in Kukushkin (2008a, Subsec-
tion 6.3). On the other hand, only a sufficient condition is obtained for the NM property.

In Section 2, basic definitions and some well-known results are reproduced. Section 3
contains specific conditions needed for our results and auxiliary statements about them. The
main theorems are in Section 4. Section 5 contains a few examples showing the impossibility
of easy extensions.



2 Basic notions and known characterization results

The set of all nonempty subsets of a set A is denoted BA. Given a binary relation ≻ on A
and X ∈ BA, we denote

M(X,≻) := {x ∈ X | ∄ y ∈ X [y ≻ x]},

the set of maximizers of ≻ on X. It is often convenient to use an auxiliary relation y ≽ x ⇋

x ̸≻ y; then M(X,≻) = {x ∈ X | ∀y ∈ X [x ≽ y]}. We say that ≻ has the NM property

on X ∈ BA if, for every x ∈ X \ M(X,≻), there is y ∈ M(X,≻) such that y ≻ x. The
property means that M(X,≻) is a von Neumann–Morgenstern solution on X; it implies that
M(X,≻) ̸= ∅, but is stronger than that.

Quite a few useful conditions are naturally formulated with the help of “improvement
paths.” Given a binary relation ≻, an improvement path is a (finite or infinite) sequence
⟨xk⟩k=0,1,... such that xk+1 ≻ xk whenever both sides are defined. A relation ≻ is acyclic if
it admits no finite improvement cycle, i.e., no improvement path such that xm = x0 for an
m > 0. A relation is strictly acyclic if it admits no infinite improvement path.

It seems impossible to ascribe any authorship to the following well-known statements.

Proposition A. A binary relation ≻ on A has the property that M(X,≻) ̸= ∅ for every

X ∈ BA if and only if it is strictly acyclic.

Proposition B. A binary relation ≻ on A has the property that M(X,≻) ̸= ∅ for every

finite X ∈ BA if and only if it is acyclic.

Proposition C. A binary relation ≻ on A has the NM property on every X ∈ BA if and

only if it is strictly acyclic and transitive.

Proposition D. A binary relation ≻ on A has the NM property on every finite X ∈ BA if

and only if it is irreflexive and transitive.

Similar characterization results concerning compact subsets of metric spaces are less
straightforward. Some standard conditions expressing the “degree of rationality” of the
underlying preferences are needed. An interval order is an irreflexive binary relation ≻ such
that [y ≻ x & a ≻ b] ⇒ [y ≻ b or a ≻ x] for all x, y, a, b ∈ A; every interval order is
transitive. An interval order is a semiorder if z ≻ y ≻ x ⇒ ∀a ∈ A [z ≻ a or a ≻ x]
for all x, y, z, a ∈ A. A binary relation ≻ is a (strict) ordering if it is asymmetric, i.e.,
y ≻ x ⇒ y ≽ x, and negatively transitive, i.e., z ≽ y ≽ x ⇒ z ≽ x; every strict ordering is a
semiorder.

Alternative, equivalent, definitions are also available: ≻ is an ordering if there is a chain
(i.e., a linearly ordered set) C and a mapping u : A → C such that y ≻ x ⇐⇒ u(y) > u(x)
for all x, y ∈ A; ≻ is an interval order if there is a chain C and two mappings u−, u+ : A → C
such that u+(x) ≥ u−(x) and y ≻ x ⇐⇒ u−(y) > u+(x) for all x, y ∈ A.

We call a binary relation ≻ on a metric space ω-transitive if it is transitive and, whenever
⟨xk⟩k∈N is an infinite improvement path and xk → xω, there holds xω ≻ x0; we call≻ ω-acyclic
if, whenever ⟨xk⟩k∈N is an infinite improvement path and xk → xω, there holds xω ̸= x0 (the
prohibition of such cycles was introduced by Mukherji (1977) as “Condition (A5)”).



Remark. If ≻ is ω-transitive, respectively ω-acyclic, then xω ≻ xk, respectively xω ≽ xk, in
the above situation for all k ∈ N.

Theorem E (Smith, 1974, Theorem 1). An ordering ≻ on a metric space A has the property

that M(X,≻) ̸= ∅ for every compact X ∈ BA if and only if it is ω-transitive.

Remark. The sufficiency part was first proved by Gillies (1959).

Theorem F (Kukushkin, 2008a, Theorem 3). An interval order ≻ on a metric space A has

the property that M(X,≻) ̸= ∅ for every compact X ∈ BA if and only if it is ω-acyclic.

Remark. ω-transitivity and ω-acyclicity are equivalent for semiorders, but not for interval
orders.

Theorem G (Kukushkin, 2008a, Theorem 1). A binary relation ≻ on a metric space A has

the NM property on every compact X ∈ BA if and only if it is irreflexive and ω-transitive.

Throughout the rest of the paper, we consider “preference relations,” i.e., irreflexive and
transitive binary relations on a convex subset A of a real vector space, often, a convex subset
of a locally convex topological vector space. The set of all nonempty convex subsets of A is
denoted Conv

A ⊂ BA; the set of all nonempty compact and convex subsets, Cmpx

A ⊂ Conv
A ⊂ BA.

The convex hull of X ⊆ A is denoted coX; the topological closure of X, clX.

3 Key assumptions

We start with “convex modifications” of the conditions used in Proposition A and Theo-
rems E and F.

A preference relation ≻ on a convex subset of a vector space is called strictly C-transitive

if, whenever ⟨xk⟩k∈N is an infinite improvement path, there is y in co{xk}k∈N (convex hull)
such that y ≻ xk for each k ∈ N, see (1) below; ≻ on a convex subset of a locally convex

topological vector space is called ω-C-transitive if, whenever ⟨xk⟩k∈N is an infinite improve-
ment path and xk → xω, there is y in cl co{xk}k∈N (topological closure) such that y ≻ xk for
each k ∈ N (2).

A preference relation ≻ on a convex subset of a vector space is called strictly C-acyclic if,
whenever ⟨xk⟩k∈N is an infinite improvement path, there is y ∈ co{xk}k∈N such that y ≽ xk

for each k ∈ N (3); ≻ on a convex subset of a locally convex topological vector space is

called ω-C-acyclic if, whenever ⟨xk⟩k∈N is an infinite improvement path and xk → xω, there
is y ∈ cl co{xk}k∈N such that y ≽ xk for each k ∈ N (4).

∀k ∈ N [xk+1 ≻ xk] ⇒ ∃y ∈ co{xk}k∈N ∀k ∈ N [y ≻ xk]. (1)
[

xk → xω & ∀k ∈ N [xk+1 ≻ xk]
]

⇒ ∃y ∈ cl co{xk}k∈N ∀k ∈ N [y ≻ xk]. (2)

∀k ∈ N [xk+1 ≻ xk] ⇒ ∃y ∈ co{xk}k∈N ∀k ∈ N [y ≽ xk]. (3)
[

xk → xω & ∀k ∈ N [xk+1 ≻ xk]
]

⇒ ∃y ∈ cl co{xk}k∈N ∀k ∈ N [y ≽ xk]. (4)



If any one of those conditions holds on A, then it obviously holds on every convex subset
of A. Both conditions (2) and (4) hold if ≻ is upper semicontinuous, i.e., has open lower
contour sets; the converse implications are generally wrong (e.g., the lexicographic order on
Rm). The following implications are straightforward:

Strict acyclicity Strict acyclicity
⇓ ⇓

Strict C-transitivity (1) ⇒ ω-C-transitivity (2) ⇐ ω-transitivity

⇓ ⇓ ⇓
Strict C-acyclicity (3) ⇒ ω-C-acyclicity (4) ⇐ ω-acyclicity.

Proposition 1. A semiorder on a convex subset A of a vector space is strictly C-transitive

if and only if it is strictly C-acyclic. A semiorder on a convex subset A of a locally convex

topological vector space is ω-C-transitive if and only if it is ω-C-acyclic.

Proof. Let ≻ be a strictly C-acyclic semiorder and ⟨xk⟩k∈N be an infinite improvement path.
By (3), there is y ∈ co{xk}k∈N such that y ≽ xk for each k ∈ N. On the other hand, for each

k ∈ N, we have xk+2 ≻ xk+1 ≻ xk. Since ≻ is a semiorder and y ≽ xk+2, we have y ≻ xk,
hence (1) holds. The second statement is proven in virtually the same way.

Following Kukushkin (2012), we call an infinite improvement path ⟨xk⟩k=0,1,... maximizing

in X ∈ BA if, for every x ∈ X, there is k ∈ N such that xk ≽ x. We call a preference relation
reasonable, just for want of a better term, if, for every X ∈ BA, either M(X,≻) ̸= ∅, or
there exists a maximizing improvement path in X (those alternatives need not be mutually
exclusive). We call a preference relation C-weakly reasonable if the same condition holds for
every X ∈ Conv

A . The weaker property is sufficient for our main results.

Proposition 2. Every interval order defined by two functions u−, u+ : X → R is reasonable.

Proof. Let X ∈ BA and M(X,≻) = ∅. We denote v∞ := supx∈X u−(x); note that u−(x) <
v∞ for all x ∈ X. Then we pick a sequence vk ∈ R such that vk+1 > vk and vk → v∞ (in this
casuistic way we cover both cases v∞ < +∞ and v∞ = +∞). Picking x0 ∈ X arbitrarily,
we recursively construct a sequence of xk ∈ X such that xk+1 ≻ xk and u−(xk+1) > vk+1 for
all k ∈ N. Obviously, ⟨xk⟩k∈N is a maximizing improvement path in X.

Proposition 2 covers the case of an ordering defined by a utility function u : X → R,
and, a bit less obviously, a Pareto dominance order defined by a finite family of functions
uα : X → R. Actually, R in each case can be replaced with Rm lexicographically ordered.

A binary relation ≻ is quasiconcave if {y ∈ A | y ≻ x} is convex for every x ∈ A.

Proposition 3. Every quasiconcave preference relation on a convex subset A of a finite-

dimensional vector space is C-weakly reasonable.

Proof. The proof of this technical statement heavily relies on the Axiom of Choice. Let
≻ be a quasiconcave preference relation on a convex A ⊆ Rn, and let X ∈ Conv

A . First, a



straightforward application of Zorn’s Lemma gives us the existence of a “maximal chain” in
X, i.e., a subset C ⊆ X such that (i) y ≻ x or x ≻ y whenever x, y ∈ C and x ̸= y, and (ii)
for every y ∈ X \ C, there is x ∈ C for which y ≽ x and x ≽ y. If there exists a maximum
of C, i.e. x ∈ C such that x ≻ y whenever y ∈ C and y ̸= x, then x ∈ M(X,≻); let there
be no maximum in C.

For every x ∈ C, we denote G(x) := {y ∈ X | y ≻ x}; note that G(x) ̸= ∅ and hence
G(x) ∈ Conv

A . Since C is maximal, we must have
∩

x∈C G(x) = ∅. The key step in the proof
is producing an infinite improvement path ⟨xk⟩k∈N in C such that

∩

k∈N G(xk) = ∅. Then
⟨xk⟩k∈N will obviously be maximizing.

Whenever x, y ∈ C and y ≻ x, we have G(y) ⊂ G(x); hence the dimension of G(x) is
non-increasing. Since it is integer, it must stabilize at some stage, i.e., there is x∗ ∈ C such
that all G(x) for x ≻ x∗ are of the same dimension, say, m ≤ n. Denoting C∗ := C ∩G(x∗),
we have G(x) ⊆ Rm for all x ∈ C∗, and every G(x) has a non-empty interior in Rm. Clearly,
∩

x∈C∗ G(x) = ∅ as well.
Now, every open subset of Rm is the union of some open balls with rational centers and

rational radii; the set O of all such balls is countable, so we may denote O = {Oh}h∈N. Since
∩

x∈C∗ G(x) = ∅, for every h ∈ N, there is xh ∈ C∗ such that G(xh) does not contain Oh.
We denote L := {xh}h∈N ⊆ C∗. Being a countable chain (w.r.t. ≻), L can be embedded
into the chain of rational numbers Q, and hence contains a cofinal subset isomorphic to the
chain of natural numbers. In other words, there is an infinite improvement path ⟨xk⟩k∈N ⊆ L
such that, for every h ∈ N, there is k ∈ N for which xk ≻ xh. It follows immediately that
the interior of

∩

k∈N G(xk) is empty, even though we cannot yet assert the emptiness of the
intersection itself.

Suppose, for a moment, that there is y ∈ C such that y ≻ xk for every k ∈ N; then
y ∈

∩

k∈N G(xk) ⊃ G(y). Thus, G(y) is a convex subset of Rm with an empty interior, but
of dimension m: a contradiction. Suppose, now, that there is y ∈ X such that y ≻ xk for
every k ∈ N; then y ∈ X \ C by the preceding argument and C ∪ {y} is a chain (w.r.t. ≻),
contradicting the maximality of C. In other words, we have proved that

∩

k∈N G(xk) = ∅,
which means that ⟨xk⟩k∈N is indeed maximizing.

Remark. Without the restriction to finite-dimensional spaces, the notion of the dimension
of a convex set would be meaningless. It remains unclear what could be done in a more
general case.

4 Main results

Theorem 4. Let ≻ be a C-weakly reasonable interval order on a convex subset A of a vector

space. Then ≻ has the property that M(X,≻) ̸= ∅ for every X ∈ Conv
A if and only if ≻ is

strictly C-acyclic.

Proof. Necessity: If ⟨xk⟩k∈N is an infinite improvement path and y ∈ M(co{xk}k∈N,≻) ̸= ∅,
then y ≽ xk for each k ∈ N, i.e., (3) holds. Note that the reasonableness of ≻ is not needed.



Sufficiency: Suppose, to the contrary, that M(X,≻) = ∅ for an X ∈ Conv
A . Since ≻ is

C-weakly reasonable, there is a maximizing improvement path ⟨xk⟩k∈N in X. By (3), there

is y ∈ co{xk}k∈N ⊆ X such that y ≽ xk for all k ∈ N. Since we assumed that M(X,≻) = ∅,
there is z ∈ X such that z ≻ y. Since the improvement path ⟨xk⟩k∈N is maximizing, we
have xk ≽ z for some k. Since xk+1 ≻ xk and ≻ is an interval order, we have xk+1 ≻ y : a
contradiction.

Theorem 5. Let ≻ be a C-weakly reasonable interval order on a convex subset A of a

locally convex topological vector space. Then ≻ has the property that M(X,≻) ̸= ∅ for every

X ∈ C
mpx

A if and only if ≻ is ω-C-acyclic.

Proof. The argument goes along the same lines as in the proof of Theorem 4. If ⟨xk⟩k∈N is
an infinite improvement path converging to xω ∈ A, then cl co{xk}k∈N is compact; picking
y ∈ M(co{xk}k∈N,≻) ̸= ∅, we have y ≽ xk for each k ∈ N, i.e., (4) holds. The reasonableness
of ≻ is also not needed.

An assumption that M(X,≻) = ∅ for an X ∈ C
mpx

A would imply the existence of a
maximizing improvement path ⟨xk⟩k∈N in X. Since X is compact, without restricting gen-
erality, xk → xω. By (4), there is y ∈ cl co{xk}k∈N ⊆ X such that y ≽ xk for all k ∈ N.
Now the relation z ≻ y for z ∈ X would lead to the same contradiction as in the proof of
Theorem 4.

Proposition 6. Let ≻ be a reasonable preference relation on a convex subset A of a vector

space. Then ≻ has the NM property on every X ∈ Conv
A if it is strictly C-transitive.

Proof. Let x ∈ X ∈ Conv
A . Denoting Y := {y ∈ X | y ≻ x}, we have to prove that

Y ∩ M(X,≻) ̸= ∅. Since ≻ is reasonable, either M(Y,≻) ̸= ∅ or there is a maximizing
improvement path ⟨xk⟩k∈N in Y . In the first case, we are home immediately since M(Y,≻) ⊆
M(X,≻) : if y ∈ M(Y,≻), then z ≻ y ≻ x would imply z ∈ Y as well, i.e., a contradiction.
In the second case, we invoke (1), obtaining y ∈ X such that y ≻ xk for all k ∈ N. Now,

y ∈ Y for the same reason as z ∈ Y in the previous case; therefore, xk ≽ y for some k : the
final contradiction.

Proposition 7. Let ≻ be a reasonable preference relation on a convex subset A of a locally

convex topological vector space. Then ≻ has the NM property on every X ∈ C
mpx

A if it is

ω-C-transitive.

The proof is very close to that of Proposition 6 and is omitted.

Remark. If an assumption that the preference relation ≻ is quasiconcave is added to the
conditions of Proposition 6 or 7, then the requirement on≻ can be weakened to only C-weakly
reasonable.

5 “Counterexamples”

If ≻ is not an interval order, the sufficiency parts of both Theorems 4 and 5 become wrong.



Example 8. On A := [0, 1] ⊂ R, we define an equivalence relation y ∼ x ⇋ y−x ∈ Q. Then
A is partitioned into equivalence classes; we denote E := A/∼ the set of those equivalence
classes, and, for every x ∈ A, e(x) ∈ E the class where x belongs. Now we define a partial
order ≻ on A by

y ≻ x ⇋

[

(x = 1 & 0 ≤ y < 1) or (x, y ∈ [0, 1[ & e(y) = e(x) & y > x)
]

.

Clearly, M(A,≻) = ∅ even though A is compact and convex. On the other hand, ≻ is
strictly C-acyclic, i.e., satisfies (3): Whenever ⟨xk⟩k∈N is an infinite improvement path in

A, we have e(xk) = e(xh) for all k, h ∈ N (with a possible exception of x0), but co{xk}k∈N
inevitably contains y for which e(y) is different. It is also easy to check that ≻ is reasonable.

Without the reasonableness assumption, the sufficiency parts of both Theorems 4 and 5
are also wrong.

Example 9. We define A ⊂ R, ∼ on A, E, and the mapping e : A → E in exactly the same
way as in Example 8. Let >> be a well-order on E (existing by the Axiom of Choice); we
define a linear order ≻ on A by

y ≻ x ⇋

[

e(y) >> e(x) or [e(y) = e(x) & y > x]
]

.

Without restricting generality, we may assume that M(E,>>) = ∅; hence M(A,≻) = ∅ too,
even though A is compact and convex.

Meanwhile, ≻ is even strictly C-transitive, i.e., satisfies (1). Let ⟨xk⟩k∈N be an infinite

improvement path in A. The set E∗ := {e(xk)}k∈N ⊂ E is countable; therefore, there is
ε := supE∗ ∈ E. Now the set e−1(ε) is dense in A; therefore, there is y ∈ co{xk}k∈N such
that e(y) = ε, and hence y ≻ xk for each k ∈ N.

In contrast to Theorem G, the converse to either Proposition 6 or 7 is wrong.

Example 10. We define A := [0, 1] ⊂ R, ∼ on A, and E in exactly the same way as in
Example 8. Clearly, A∩Q is one of the equivalence classes in E; let C be another class from
E. Now we define an interval order ≻ on A by these functions u−, u+ : A → R:

u−(x) =

{

x, if x ∈ Q ∪ C;

0, if x ∈ A \ (Q ∪ C);
u+(x) =











1, if x ∈ Q;

x, if x ∈ C;

0, if x ∈ A \ (Q ∪ C).

Clearly, M(A,≻) = A∩Q. Let x ∈ X ∈ Conv
A and #X > 1; then M(X,≻) ⊇ X ∩Q ̸= ∅.

Let x /∈ Q. If x /∈ C, then y ≻ x for every y ∈ X ∩ Q \ {0}. If x < supX, then there
is y ∈ X ∩ Q such that y > x; hence y ≻ x again. Finally, if x = maxX ∈ C, then
x ∈ M(X,≻). Thus, ≻ has the NM property on every convex subset of A.

On the other hand, even (2) does not hold. We pick xω ∈ A\(Q∪C) and x0 ∈ C such that

x0 < xω. Let ⟨qk⟩k∈N be an infinite sequence of rational numbers such that q0 = 0, qk+1 > qk

for all k, and qk → xω − x0. Defining xk := x0 + qk, we have xk → xω while xk ∈ C for all k,
and hence xk+1 ≻ xk for all k. Now, cl co{xk}k∈N = [x0, xω] and M([x0, xω],≻) = [x0, xω]∩Q
since xω ∈ A \ (Q ∪ C). For every y ∈ [x0, xω] ∩ Q, there is k ∈ N for which xk > y and
hence xk ≽ y, i.e., (2) does indeed not hold.
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