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Abstract

A common approach to estimating the elasticity of income to taxation is to construct an instrumental variable using
synthetic tax rates. Individual-level income dynamics threaten the validity of this instrument, but this problem can
potentially be mitigated by group-averaging the instrument. In this article I show that rather than imposing an arbitrary
minimum threshold for group sizes to avoid small-sample bias, researchers should use leave-one-out group averages.
Using CPS data I show that this correction increases the estimate for broad income elasticity.
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1 Introduction

The elasticity of taxable income and the elasticity of broad income are key parameters in determining the
welfare effects of taxation (Feldstein 1999, Chetty 2008). A popular approach to estimating these elasticities
is to regress the change in log income on the change in log of net-of-tax rate:

Aln y;p = a+ BAIn (1 — 17(yie)) + TQi—1 + €, (1)

where Aln y; , = In (yi/¥i4—1) and Aln (1 — 7(y;¢)) is defined similarly, @ is a vector of controls, and
7¢(y) gives the marginal tax rate given income y (and some other characteristics such as state and marital
status, omitted for notational convenience). This equation was derived by Gruber & Saez (2002) from a
static consumption-leisure optimization problem. Their original formulation also included income effects,
but as they found that these are empirically quite small, they dropped income this term from most of their
specifications. Much of the subsequent literature has made the same choice.

As the net-of-tax rate is a function of income, it is endogenous and must be instrumented. Gruber &
Saez (2002), and many others in subsequent literature, use what is called the synthetic tax rate for iden-
tification. The instrument for In [(1 — 74 (yi,.))/(1 — 7e—1(ys,e—1))] is In [(1 — 7 (yie=1))/ (1 — Te—1(Yi—1))]-
The counterfactual synthetic tax rate 7;(y; ;—1) is calculated using a tax simulation model. Using the NBER
panel of tax returns for 1979-1990, Gruber & Saez (2002) obtain a preferred estimate of 0.4 for the elasticity
of taxable income and an estimate of 0.12 for the elasticity of broad income.

Ideally the generated instrument would only capture exogenous variations in tax policy. The instrument
is a function of y;_1, which is also on the left-hand side of the second-stage equation. If income growth is a
function of income levels and tax reforms captured by the instrument correlate with income, the exclusion
restriction is violated. One likely form of income dynamics and thus a source of bias is mean reversion,
whereby transitory income shocks produce negative covariance between income levels and income growth.

As mean reversion is likely to be an individual-level phenomenon, it can potentially be mitigated or even
eliminated by aggregating the instrument to group level, with group here referring to any larger observa-
tional unit. This was suggested in a recent contribution by Burns & Ziliak (2016), who define groups by
birth cohort, education group, state, and year. To counter the problem of small-sample bias related to this
aggregation, the authors impose a minimum group size of 50 observations.

In this article I show that the small-sample bias is better corrected by using leave-one-out group-averaging.

Section 2 states the problem and the suggested solution in more detail, clarifying the potential small-sample
biases. Section 3 presents results using the data and the specification of Burns & Ziliak (2016).

2 The small-sample biases of grouping approaches

Suppose we have a system of three equations with outcome variable y, endogenous regressor x, and instrument
z, along with a vector of covariates ). Each variable is observed for individual i belonging to group gE|

Yig = Big +T'Qig + €iyg (2)
Tig = VZ2ig + Qi g + vig (3)
Zig =29+ VQig + Uiyg (4)

Suppose we have reason to suspect our exclusion restriction may be violated at the individual level with
cov(e; g, Ui g|Qi,g) # 0. E| Suppose further that we are willing to assume that the exclusion restriction holds

LGroup here refers to the level to which the instrument is aggregated. In the application in section 3 groups are defined by
birth cohort, education, state, and year. For a reader familiar with grouping estimation this may sound unusual as groups often
denote groups defined by demographic variables (here birth cohort, education, and state), while their time interaction is called
a cell. To avoid confusion of general-interest readers between cells and groups, I only use the term group.

2See Weber (2014) for a discussion of how individual-level income dynamics violate the exclusion restriction of the synthetic
tax instrument.



at group level: cov(e; g,24|Qs,9) = 0. The population group average z4 is not observed, so we use a sample
— ny . . .
average Zg = 1/ng > %, 24, Wwhere ng is the number of observations in the group.

In small samples, this sample average contains a non-negligible individual component from u; , and thus
cov(ei g,%4|Qig) # 0. Burns & Ziliak (2016) approach this problem by discarding small groups from the
analysis.

The authors motivate their approach by noting that a minimum group size criterion is also used in grouping
estimation (Blundell et al. 1998). Grouping estimation is, however, different in its identification and possible
biases. Grouping estimation does not use exogenous instruments, but instead relies on group-time interaction
in the endogenous variable of interest for identifying variation. The exclusion restriction is the same as for
grouped instruments: residual variation in the outcome variable should not have a group component.

Grouping estimation produces biased estimates in finite samples (Deaton 1985). One way of understand-
ing this is to note that grouping estimation can be implemented by estimating the equation of interest at
group level (see e.g. Angrist & Pischke 2008, section 4.1.3). Group averages estimated from a sample are
error-ridden measures of true population group averages. Assuming random sampling, this imparts classical
measurement error to the regressors, resulting in attenuation bias. In grouping estimation it is common to
solve this problem by setting a minimum group size, commonly the aforementioned 50. This threshold is ad
hoc, and an analytical solution for correcting the small-sample bias in grouping estimation has been derived
by Devereux (2007).

Grouped instruments are similarly error-ridden measures of true population group averages, but classi-
cal measurement error in instrumental variables does not produce bias. The problem is that the sampling
error is non-classical due to the non-validity of the instrument at the individual level.

Because the nature of the small-sample problem is different in grouping estimation and in estimation using
grouped instruments, the proper solution is also different. For grouped instruments it is better to calculate
leave-one-out group averages Z{jgoo =1/(ng—1) Z?il’j# zj7g As cov(E{jgoo, ui,g) = 0 the instrument should
be valid, unless instrument validity is compromised at the group level as well with cov(z,, e; 4/Q:iq) # 0. An
added benefit to leave-one-out averaging is that discarding observations is not necessary, cases with ny =1
notwithstanding.

=LOO

irg ~ 1s still an error-ridden measure of z; but with the sample mean being calculated without observa-
tion ¢, the measurement error is classical. Even though classical measurement error in an instrumental
variable does not produce bias it does, however, reduce instrument strength, which can be assessed using

conventional criteria.

3 Results

I illustrate the issue by replicating the analysis of Burns & Ziliak (2016), who use data from the March
Supplement of the Current Population Survey (CPS) for 1979-2008. The authors present numerous elas-
ticity estimates using different income definitions, income controls, income truncation specifications, and
demographic controls. Here I will present results following their baseline specification for broad income,
presented in Table 1 in their paper, using income splines as income control. I use broad income as the data
does not include information on use of exemptions and deductions required for defining taxable income.
Groups are defined by 5-year birth cohorts, a 3-category education variable (less than high school, high
school, more than high school), state, and year. The vector of controls includes marital status, year, state,
and education group-birth cohort interaction. The sample consists of 25-60 year-old household heads with
minimum income of 10,000 real USD (2008 levels). Both observed and counterfactual net-of-tax rates are
calculated using TAXSIM.

3For other applications of leave-one-out estimators, see Angrist (2014, section 3), and Goldsmith-Pinkham et al. (2018).



Table I presents results using Burns & Ziliak’s (2016) replication data, provided as an attachement to
their article. All specifications exclude observations in groups with less than 50 observations. The first
two columns exactly replicate estimates from Table I in Burns & Ziliak (2016). They illustrate the authors’
main result: grouping the Gruber-Saez instrumental variable (In [(1—7¢(y; ¢—1))/(1—7T¢—1(yi,t—1))]) increases
the elasticity estimate. The third column estimates broad income elasticity using the leave-one-out group-
averaged instrumental variable. Excluding the individual observation in question from the group-averaged
instrument reduces the F-value of the instrument from 153 to 8, below common thresholds for weak in-
struments. This reduction in instrument strength indicates that identifying variation in the second column
comes from individual level, which is in contrast to the motivation for using group averages in the first place.

Table I: Broad income elasticities estimated using the Burns & Ziliak (2016) replication data

Instrument | Gruber-Saez | Group | Leave-one-out group ‘
Elasticity 12 .29 2.31

(s.e.) (.09) (.19) (1.96)
First-stage F-statistic 119.6 153.1 8.3
7 obs ‘ 198,285 198,285 194,248

The large reduction in instrument strength when using leave-one-out averaging is due to small group sizes,
a result of an unconventional way Burns & Ziliak (2016) impose the minimum group size criterion. The au-
thors exclude observations with less than 50 observations in groups defined only by birth cohort, education,
and year, even though the instrument is also grouped by state. Looking at groups defined by the level of
instrument aggregation (birth cohort, education, year, and state) I find that 97 % of their observations are
in groups with less than 50 observations, with median group size being 11.

Strength of the instrument can potentially be improved by decreasing its sampling error. This can be
achieved by constructing larger groups, which can be done by redefining the grouping or by using a larger
sample. For better comparability to Burns & Ziliak’s (2016) results, I will follow the latter approach.

Burns & Ziliak (2016) generate their group-averaged instrument from the same set of observations they
use in the regressions, which are the first-year observations of longitudinally linked eligible households. I
will now construct the instrument using an expanded dataset, which includes all eligible individuals in the
CPS data. The expanded dataset includes 878,297 observations, compared to 198,285 observations used
by Burns & Ziliakﬂ Group sizes are correspondingly larger: median group size is 43. Note that I rely on
the longitudinal linking of Burns & Ziliak (2016). Thus the number of observations used in the regressions
remains the almostP] the same, while the number of observations used to construct the instrument increases.

The first two columns present results using the Gruber-Saez instrument and the group-averaged instru-
ment estimated from longitudinally linked observations. The differences between the first two columns in
Table II and the first two columns in Table I are due to differences in how income and tax variables are
deﬁnedﬁ The elasticity estimates are similar in magnitude to those of Burns & Ziliak (2016), although
the Gruber-Saez instrument and the group instrument produce almost the same estimate for the income
elasticity. The estimate obtained using the Gruber-Saez instrument is slightly higher than those obtained
by Gruber & Saez (2002) themselves and by Burns & Ziliak (2016).

The third and the fourth column use a larger set of observations to construct the instrument. Comparing
columns 2 and 3 we find that calculating the group average of the instrument using larger groups increases
the elasticity estimate. Increasing group sizes reduces the weight of any individual in the group-averaged

4CPS is a rotating panel with each household followed for two consecutive years. The reduction in sample size when moving
from the expanded dataset to a longitudinally linked dataset beyond 50 % is due to imperfect matching of households across
years. See Madrian & Lefgren (1999) for an analysis of longitudinal matching in CPS.

5The difference is due to the fact that a small number of households in the replication data have duplicate identifiers, and
these household are dropped in Table II.

61 am unable to replicate Burns & Ziliak’s (2016) income and tax variables, as the programs used to construct their replication
dataset exist only partially (I thank the authors for patiently responding to my questions regarding this issue). The correlation
coefficient between log change in income in their data and in my own is .92, and for log change in net-of-tax rate it is .77.



instrument, and consequently decreases the associated bias. Finally column 4 uses the leave-one-out group-
averaged instrument, which reduces the weight of any individual ¢ in the instrument assigned to him/her
to zero. The elasticity estimate increases further, and importantly the instrument remains relatively strong
with an F-value of 24.

Table II: Broad income elasticities estimated using an expanded sample

Instrument | Gruber-Saez | Group | Group | Leave-one-out group ‘
Elasticity .22 .22 .60 .83

(s.e.) (.08) (.14) (.21) (.39)
First-stage F-statistic 304.2 136.5 130.0 23.8
7 obs used in the regression 198,197 198,197 198,197 198,197
# obs used in constructing the instrument 198,197 198,197 878,297 878,297

The increase in the elasticity estimate is economically significant. Using the parametrization of the Saez
(2001) formula for the revenue-maximizing top marginal tax rate used by Burns & Ziliak (2016), the increase
in the broad income elasticity from .22 to .83 would imply a reduction of the revenue-maximizing top marginal
tax rate on broad income by 30 percentage points.

4 Conclusions

When estimating income tax elasticities such as the elasticity of taxable income or the elasticity of broad
income, group-averaging the synthetic tax instrument is potentially a good approach to reducing bias due
to individual-level income dynamics. More generally, grouping an instrumental variable is a valid approach
in any setting where instrument validity is threatened at the individual level but less so at group level.
Researchers applying this method should, however, use leave-one-out group averages to properly purge
individual-level variation from the grouped instrument. The potential small-sample bias associated with this
approach is a conventional weak instrument bias due to measurement error in the group-averaged instrument.
The magnitude of the weak instrument problem can be assessed using conventional criteria, such as the first-
stage F-test on the excluded instrument. The instrument can potentially be strengthened by increasing
group sizes, which can be done by redefining the grouping or by using additional observations to estimate
the instrument.
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