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Abstract
This study provides a guideline for dealing with endogenous inputs and environmental variables in Battese and Coelli's

(1995) stochastic frontier model, which has been used in a vast number of empirical studies. The presence of

endogenous variables in Battese and Coelli's model leads to inconsistent parameter estimates; also, estimates in the

studies that use their model may be biased. Our model uses limited information maximum likelihood methods to

correct these biases. The Monte Carlo simulations provided in this article show that our estimators perform well.
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1. Introduction 

Battese and Coelli’s (1995) stochastic frontier model for panel data (BC95) is widely used in 

empirical analysis. This is because the BC95 can simultaneously estimate the frontier and the 

model for technical inefficiency, thereby avoiding the bias of the two-stage approach. 

However, the presence of endogenous variables leads to inconsistent parameter estimates. 

Estimates in empirical studies that use the BC95 may therefore be biased, which indicates the 

necessity of new approaches to verification and improvement. To fill this gap in the literature, 

we propose a technique to deal with both endogenous variables in the frontier model 

(endogenous inputs) and endogenous variables in the model for technical inefficiency 

(endogenous environmental variables) in the BC95. To this effect, we use limited-information 

maximum-likelihood methods. 

The problem of endogenous variables is an important concern in the literature on 

stochastic frontier analysis. The pioneering work of Kutlu (2010) deals with the endogenous 

inputs in Battese and Coelli’s (1992) stochastic frontier model. Further, Griffiths and 

Hajargasht (2016) consider a Bayesian estimation of stochastic frontier models with 

endogenous inputs and environmental variables. However, their specification is fundamentally 

different from our model, because their inefficiency term correlates with only firm averages of 

endogenous inputs. Amsler et al. (2017) and Karakaplan and Kutlu (2017) address endogenous 

inputs and environmental variables, but they use extensions of the stochastic frontier model by 

Reifschneider and Stevenson (1991), Caudill and Ford (1993), and Caudill et al. (1995), 

referred to as the RSCFG model. According to the RSCFG model, the distribution of the 

technical inefficiency term ݑ�  satisfies the scaling property based on the half-normal 

specification, namely, ݑ� = ை�ݑ expሺ��′�ሻ, where ݑ�ை~�+(Ͳ, �௨�ଶ ). Conversely, the BC95 is 

based on a truncated normal specification in which the inefficiency term is ݑ�௧~�+ሺࢠ�௧′ �, �௨ଶሻ. 

Kutlu (2018) addresses endogeneity problems in a distribution-free context by extending 

Cornwell et al.’s (1990) regression-based estimator. 

We address both endogenous inputs and endogenous environmental variables in the 

BC95 by adapting the approach proposed by Amsler et al. (2017). Our model is neither a 

special nor a general case of these existing stochastic frontier models that address endogenous 

problems. In addition, many empirical studies use the BC95, which is one of the major 

stochastic frontier models. Therefore, our model makes a novel contribution to the literature on 

stochastic frontier analysis. 

2. Estimation procedure 

Consider the following stochastic production frontier model with endogenous inputs and 

environmental variables for (unbalanced or balanced) panel data: 

௧�ݕ  = ′௧�࢞ � + ௧�ߝ ,௧�ߝ ≔ ௧�ݒ − ௧�ݑ , � = ͳ,ʹ, … , �, ݐ = ͳ,ʹ, … , ௧�࢞ ,�� ≔ [ ͳ࢞ଵ�௧࢞ଶ�௧] , ௧�ࢠ ≔ [ ͳࢠଵ�௧ࢠଶ�௧] , ௧� ≔ [ ͳ࢞ଵ�௧ࢠଵ�௧࢝�௧ ], 
 

where ࢞ଵ�௧, ࢠଵ�௧, and ࢝�௧ are exogenous, and ࢞ଶ�௧ and ࢠଶ�௧ are endogenous. We can easily 



  

represent the stochastic cost frontier model by replacing −ݑ�௧  with +ݑ�௧ . To address the 

endogeneity problem, we assume reduced-form equations for the endogenous variables: 

௧�  = ௧�′� + ��௧, 
 

where �௧ ≔ [ଶ�௧ࢠଶ�௧࢞] , �′ ≔ [��′�′ ] , ��௧ ≔ [��௧��௧ ]. 
We define ��௧ ≔ [௧��௧�ݒ] , � ≔ [ �௩ଶ �௩���௩ ���], and then make the following assumption: 

 ��௧|�~�ሺ�, �ሻ, ݑ�௧|ݒ�௧, ,௧�࢞ ,௧�ࢠ ௧�࢝ = ,௧�࢞|௧�ݑ ,௧�ࢠ ,௧~N+ሺ��௧�࢝ �௨ଶሻ, ��௧ = ′௧�ࢠ �, 
 

where N+ሺ��௧, �௨ଶሻ refers to a non-negative normal distribution truncated at zero for which the 

(pre-truncated) mean and variance are ��௧ and �௨ଶ, respectively. This model allows ࢞ଶ�௧ and ࢠଶ�௧ to be correlated with ݒ�௧. 

The joint density of ሺݑ�௧, ௧�ݒ , ��௧|�௧ሻ is as follows: 

 �௨,௩,�ሺݑ�௧, ௧�ݒ , ��௧|�௧ሻ = �௨ሺݑ�௧|��௧, ௧ሻ� ⋅ �௩ሺݒ�௧|��௧, ௧ሻ� ⋅ ��ሺ��௧|�௧ሻ, �௨ሺݑ�௧|��௧, ௧ሻ� ⋅ �௩ሺݒ�௧|��௧, ௧ሻ� = ͳʹ��௨��� ቀ��௧�௨ ቁ exp [− ሺݒ�௧ − ݉�௧ሻଶʹ��ଶ − ሺݑ�௧ − ��௧ሻଶʹ�௨ଶ ], 
��ሺ��௧|�௧ሻ = ሺʹ�ሻ−��ଶ |���|−ଵଶ exp (− ͳʹ ��௧′ ���−ଵ��௧), 

 

where � is a dimension of �௧, ݉�௧ ≔ �௩����−ଵ��௧, ��ଶ ≔ �௩ଶ − �௩����−ଵ��௩. 

Integrating out ݑ�௧, we obtain the joint density of ሺߝ�௧|��௧,  :௧ሻ�

 ��ሺߝ�௧|��௧, ௧ሻ� = ∫ �௨ሺݑ�௧|��௧, ௧ሻ� ⋅ �௩ሺߝ�௧ + ,௧|��௧�ݑ ∞௧�ݑ�௧ሻ�
  = ͳ� � (��௧ + ௧�ߝ − ݉�௧� )

⋅ [∫ ͳ√ʹ�ሺ���௨�−ଵሻ exp {− ͳʹሺ���௨�−ଵሻଶ ௧�ݑ) − ቆ��௧��ଶ − ሺߝ�௧ − ݉�௧ሻ��ଶ�ଶ ቇ)ଶ} ∞௧�ݑ�
 ]

⋅ (� (��௧�௨ ))−ଵ
 

= ͳ� � (��௧ + ௧�ߝ − ݉�௧� ) ⋅ [∫ ͳ√ʹ� exp {− ��௧ଶʹ } ���௧∞
−����2−ሺ��−��ሻ�ೠ2���ೠ� ] ⋅ (� (��௧�௨ ))−ଵ

 

= ͳ� � (��௧ + ௧�ߝ − ݉�௧� ) ⋅ � ቆ��௧��ଶ − ሺߝ�௧ − ݉�௧ሻ�௨ଶ���௨� ቇ ⋅ (� (��௧�௨ ))−ଵ, 
 

where �ଶ ≔ ��ଶ + �௨ଶ = �௩ଶ + �௨ଶ − �௩����−ଵ��௩ , ��௧ ≔ ௧�ݑ} − ���ೡ2−ሺ��−��ሻ�ೠ2�2 } ሺ���௨�−ଵሻ⁄ , 

while �  and �  denote the standard normal probability density function and cumulative 

distribution function, respectively. Finally, the log-likelihood function for the sample 



  

observations, ሺ࢟, ,࢞  ሻ, isࢠ

 ��(�, �, �௩ , �௨, �௩�, ���, �; =(࢟ − ͳʹ (∑ ��ே
�=ଵ ) [ln �ଶ + (� + ͳ) ln ʹ� + ln|���|]

− ͳʹ ∑ ∑ ቆࢠ�௧′ � + ௧�ݕ − ′௧�࢞ � − �௩����−ଵሺ�௧ − �௧ሻ�ࢠ′� ቇଶ்�
௧=ଵ

ே
�=ଵ− ∑ ∑ [ln � ቆࢠ�௧′ ��௨ ቇ − ln � ቌࢠ�௧′ ���ଶ − ቀݕ�௧ − ′௧�࢞ � − �௩����−ଵሺ�௧ − ௧ሻቁ�′� �௨ଶ���௨� ቍ]்�

௧=ଵ
ே

�=ଵ− ͳʹ ∑ ∑ ቀሺ�௧ − ௧�௧ሻ′���−ଵሺ�′� − �௧ሻቁ்�′�
௧=ଵ

ே
�=ଵ . 

 

We obtain limited-information maximum-likelihood estimators by maximizing the 

log-likelihood function with respect to the parameters �, �, �௩ , �௨, �௩�, ���, and � . 

Limited-information maximum-likelihood estimators that are not in frontier models are 

consistent and asymptotically normal even if the error deviates from the assumption of normal 

distribution. However, the consistency of our estimators requires the correctness of the 

distribution assumptions. This property applies to not only our model but also all stochastic 

frontier models estimated by maximum-likelihood methods. 

As Amsler et al. (2016) proposed, we present a point estimator for technical efficiency ݑ�௧ using ��௧ and ߝ�௧. The Jondrow et al. (1982) type point estimator in our model is 

 

����ெௌ = exp(�ሺߝ|�ݑ�௧, ��௧ሻ) = ��௧∗ + �∗ � (��௧∗�∗ )� (��௧∗�∗ ), 
 

whereas the Battese and Coelli (1988) type point estimator is 

 

���௧ = Eሺexpሺ−ݑ�௧ሻ �ߝ| , ��ሻ = exp [−��௧∗ + ͳʹ �∗ଶ] ⋅ {� (��௧∗�∗ − �∗)� (��௧∗�∗ ) }, 
 

where 

 ��௧∗ ≔ ′௧�ࢠ ���ଶ − ௧�ߝ) − �௩����−ଵ��௧)�௨ଶ�ଶ , �∗ ≔ �௨��� . 
 

The estimator ���௧ is preferred, particularly when ݑ�௧ is not close to zero (Kumbhakar and 

Lovell 2003, 78). 

 

 



  

3. Monte Carlo simulations 

In this section, we report the results of Monte Carlo simulations to examine the performance of 

our estimator. We generate data for the simulation using the following process: 

௧�ݕ  = � + ଵ�௧�ଵݔ + ଶ�௧�ଶݔ + ௧�ݒ − ௧�ݑ , ��௧ = ߜ + ଵߜଵ�௧ݖ + ଶ�௧ݔ ,ଶߜଶ�௧ݖ = �� + ଵ�௧��ଵݔ + ଵ�௧��ଶݖ + ଵ�௧��ଷݓ + ଶ�௧��ସݓ + ��௧, ݖଶ�௧ = �� + ଵ�௧��ଵݔ + ଵ�௧��ଶݖ + ଵ�௧��ଷݓ + ଶ�௧��ସݓ + ��௧, [ݔଵ�௧ ଵ�௧ݖ ଵ�௧ݓ ,�ଶ�௧]′~�ሺݓ �ସሻ, [ݒ�௧ ��௧ ��௧]′~�ሺ�, �ሻ, ݑ�௧~N+ሺ��௧, �௨ଶሻ, 
 

where � = �ଵ = �ଶ = ߜ = ଵߜ = ଶߜ = �௨ଶ = ͳ , �� = ��ଵ = ��ଶ = ��ଷ = ��ସ = �� =��ଵ = ��ଶ = ��ଷ = ��ସ = Ͳ.ͳ, � ≔ [ �௩ଶ Σ௩� Σ��Σ�௩ Σ�� Σ��Σ�௩ Σ�� Σ�� ] = [ ͳ Ͳ.8 Ͳ.8Ͳ.8 ͳ Ͳ.8Ͳ.8 Ͳ.8 ͳ ,ଵ�௧ݔ .[ ,ଵ�௧ݖ  ଵ�௧ݓ , and ݓଶ�௧  are exogenous variables, whereas ݔଶ�௧  and ݖଶ�௧  are endogenous 

variables. 

Table 1 presents the results of Monte Carlo simulations for the sample size ݊ =∑ ��ே�=ଵ = ͳ,ͲͲͲ. The Monte Carlo experiments are conducted with 1,000 replications. The 

results show that estimators of the BC95 exhibit severe bias, whereas our model obtains good 

estimates in not only the frontier model and the model for technical efficiency, but also the 

reduced-form equations and variance–covariance matrix. Our findings suggest that the BC95 

estimates may exhibit bias because of endogeneity problems, but our model can deal with both 

endogenous inputs and endogenous environmental variables. 

Figure 1 shows the results of Monte Carlo simulations by sample size. The vertical 

axis represents the estimated value, and the horizontal axis means the logarithmic value of the 

sample size. The blue lines are estimates of our model, the black lines are estimates of the 

BC95, and the red lines are the true values. Twelve data sets have been created. 

The estimates of our proposed model converge to correct values as the sample size 

grows. On the other hand, estimates of the BC95 converge to biased values. In particular, the 

coefficients of constant terms and endogenous variables have large biases. These results 

indicate that the estimates of the proposed model are consistent. 

Table 2 shows the bias and RMSE in the proposed model by sample size. The 

estimates of our proposed model do not significantly deviate from the true values even when 

the sample size is about 100. When the sample size is halved, the RMSE is 1.447 times on the 

average, which is almost the same as the appropriate rate of √ʹ. We can see that our model 

is useful even with small sample sizes. 

  



  

 

 

 

 

 

 

 

 

Table 1. Results of the Monte Carlo simulations in the case of ݊ = ͳ,ͲͲͲ. 

  BC95 Our model 

 True 
Estimates 

(mean) 
Bias RMSE 

Estimates 

(mean) 
Bias RMSE � 1 0.778 -0.222 0.2789 1.023  0.023  0.1804  �ଵ 1 0.960 -0.040 0.0510 1.000  0.000  0.0410  �ଶ 1 1.174 0.174 0.1796 1.007  0.007  0.0650  ߜ 1 0.878 -0.122 0.2829 1.020  0.020  0.2327  ߜଵ 1 1.032 0.032 0.0797 1.001  0.001  0.0538  ߜଶ 1 0.900 -0.100 0.1092 1.006  0.006  0.0602  �௨ଶ 1 0.915 -0.085 0.1876 1.002  0.002  0.0508  �௩ଶ 1 0.806 -0.193 0.2381 0.989  -0.011  0.1054  Σ�௩ 0.8    0.794  -0.006  0.0604  Σ�௩ 0.8    0.796  -0.004  0.0564  Σ�� 1    0.994  -0.006  0.0462  Σ�� 0.8    0.795  -0.005  0.0410  Σ�� 1    0.993  -0.007  0.0442  �� 0.1    0.101  0.001  0.0558  ��ଵ 0.1    0.100  0.000  0.0318  ��ଶ 0.1    0.099  -0.001  0.0304  ��ଷ 0.1    0.100  0.000  0.0029  ��ସ 0.1    0.100  0.000  0.0029  �� 0.1    0.101  0.001  0.0549  ��ଵ 0.1    0.100  0.000  0.0318  ��ଶ 0.1    0.098  -0.002  0.0315  ��ଷ 0.1    0.100  0.000  0.0029  ��ସ 0.1    0.100  0.000  0.0029  

Note: BC95: Battese and Coelli’s (1995) stochastic frontier model for panel data; RMSE:  

Root mean squared error. 
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Figure 1. Results of Monte Carlo simulations by sample size. 

 



Table 2. Bias and RMSE in the proposed model by sample size ݊ 100 200 400 800 1600 

Bias      � 0.1315 0.0934 0.0454 0.0091 0.0105 �ଵ 0.0043 -0.0041 -0.0026 -0.0004 -0.0003 �ଶ 0.0404 0.0158 0.0102 0.0007 0.0016 ߜ 0.0822 0.0733 0.0303 0.0019 0.0074 ߜଵ 0.0180 0.0077 0.0045 0.0022 0.0012 ߜଶ 0.0611 0.0212 0.0135 0.0037 0.0027 �௨ଶ -0.0004 0.0107 0.0002 -0.0033 0.0004 �௩ଶ -0.0409 -0.0445 -0.0158 -0.0056 -0.0063 Σ�௩  -0.0124 -0.0114 -0.0073 -0.0024 -0.0010 Σ�௩  0.0012 -0.0057 -0.0025 -0.0028 -0.0001 Σ�� -0.0361 -0.0186 -0.0138 -0.0051 -0.0017 Σ��  -0.0286 -0.0162 -0.0100 -0.0056 -0.0006 Σ�� -0.0396 -0.0225 -0.0103 -0.0070 -0.0008 �� 0.0043 0.0065 0.0039 -0.0024 0.0026 ��ଵ -0.0048 -0.0036 -0.0020 0.0015 -0.0006 ��ଶ -0.0058 -0.0034 -0.0001 0.0012 -0.0012 ��ଷ 0.0003 -0.0001 -0.0001 -0.0003 -0.0001 ��ସ -0.0002 -0.0001 0.0000 0.0001 0.0000 �� 0.0070 0.0035 0.0077 -0.0022 0.0027 ��ଵ -0.0074 -0.0009 -0.0018 0.0016 -0.0007 ��ଶ -0.0038 -0.0045 -0.0023 0.0004 -0.0014 ��ଷ 0.0001 -0.0002 -0.0002 -0.0003 -0.0001 ��ସ -0.0004 -0.0002 0.0001 0.0000 -0.0001 

RMSE (Root mean squared error)    � 0.6956 0.4743 0.3198 0.2003 0.1314 �ଵ 0.1447 0.0954 0.0662 0.0452 0.0336 �ଶ 0.2696 0.1674 0.1075 0.0706 0.0473 ߜ 0.8450 0.5866 0.4051 0.2549 0.1683 ߜଵ 0.1802 0.1289 0.0899 0.0612 0.0431 ߜଶ 0.2754 0.1653 0.1064 0.0693 0.0467 �௨ଶ 0.2085 0.1394 0.0913 0.0588 0.0418 �௩ଶ 0.3428 0.2514 0.1746 0.1155 0.0805 Σ�௩  0.1903 0.1338 0.0926 0.0616 0.0455 Σ�௩  0.1776 0.1250 0.0908 0.0590 0.0421 Σ�� 0.1395 0.1023 0.0706 0.0482 0.0360 Σ��  0.1254 0.0905 0.0635 0.0436 0.0321 Σ�� 0.1400 0.1003 0.0714 0.0495 0.0348 �� 0.1717 0.1224 0.0877 0.0626 0.0436 ��ଵ 0.1066 0.0719 0.0500 0.0363 0.0248 ��ଶ 0.1027 0.0699 0.0504 0.0336 0.0242 ��ଷ 0.0093 0.0066 0.0046 0.0031 0.0023 ��ସ 0.0096 0.0066 0.0046 0.0031 0.0022 �� 0.1704 0.1221 0.0860 0.0615 0.0440 ��ଵ 0.1072 0.0710 0.0494 0.0355 0.0248 ��ଶ 0.0991 0.0718 0.0501 0.0341 0.0248 ��ଷ 0.0094 0.0064 0.0046 0.0032 0.0023 ��ସ 0.0096 0.0064 0.0045 0.0032 0.0023 



4. Concluding remarks 

In this study, we attempted to treat endogenous inputs and environmental variables in the 

BC95, which has been used in a vast number of empirical studies. We developed good 

limited-information maximum-likelihood estimators, thereby fixing bias in the BC95. Our 

model is useful for verification and improvement of empirical studies that use the BC95.  

 As is true of all stochastic frontier models with maximum-likelihood methods, the 

desired properties of the estimators depend on the correctness of the distribution assumptions 

of the error terms. This is a drawback of the maximum-likelihood method and also indicates 

the necessity of the proposed model. If the inefficiency can reasonably be expected to follow 

the half-normal distribution, ݑ� = ை�ݑ expሺ��′�ሻ, where ݑ�ை~�+(Ͳ, �௨�ଶ ) , one can use the 

model proposed by Amsler et al. (2017). However, if one can reasonably expect the 

inefficiency to follow the truncated normal distribution, ݑ�௧~�+ሺࢠ�௧′ �, �௨ଶሻ , the proposed 

model should preferably be used. In some cases, it is not known before the analysis which 

distribution assumption is appropriate. Thus, it may be necessary to conduct a comparison after 

the analysis using multiple models. Stochastic frontier models assuming a truncated normal 

distribution, including the BC95, are used for many empirical analyses. Our model should be 

one of the models to be estimated. 

Finally, our study is limited in that we applied our model to simulated data and not 

real-world data. Application of our model to real-world data is thus a topic for future research. 
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