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Abstract

This study provides a guideline for dealing with endogenous inputs and environmental variables in Battese and Coelli's
(1995) stochastic frontier model, which has been used in a vast number of empirical studies. The presence of
endogenous variables in Battese and Coelli's model leads to inconsistent parameter estimates; also, estimates in the
studies that use their model may be biased. Our model uses limited information maximum likelihood methods to
correct these biases. The Monte Carlo simulations provided in this article show that our estimators perform well.
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1. Introduction

Battese and Coelli’s (1995) stochastic frontier model for panel data (BC95) is widely used in
empirical analysis. This is because the BC95 can simultaneously estimate the frontier and the
model for technical inefficiency, thereby avoiding the bias of the two-stage approach.
However, the presence of endogenous variables leads to inconsistent parameter estimates.
Estimates in empirical studies that use the BC95 may therefore be biased, which indicates the
necessity of new approaches to verification and improvement. To fill this gap in the literature,
we propose a technique to deal with both endogenous variables in the frontier model
(endogenous inputs) and endogenous variables in the model for technical inefficiency
(endogenous environmental variables) in the BC95. To this effect, we use limited-information
maximum-likelihood methods.

The problem of endogenous variables is an important concern in the literature on
stochastic frontier analysis. The pioneering work of Kutlu (2010) deals with the endogenous
inputs in Battese and Coelli’s (1992) stochastic frontier model. Further, Griffiths and
Hajargasht (2016) consider a Bayesian estimation of stochastic frontier models with
endogenous inputs and environmental variables. However, their specification is fundamentally
different from our model, because their inefficiency term correlates with only firm averages of
endogenous inputs. Amsler et al. (2017) and Karakaplan and Kutlu (2017) address endogenous
inputs and environmental variables, but they use extensions of the stochastic frontier model by
Reifschneider and Stevenson (1991), Caudill and Ford (1993), and Caudill er al. (1995),
referred to as the RSCFG model. According to the RSCFG model, the distribution of the
technical inefficiency term wu; satisfies the scaling property based on the half-normal
specification, namely, u; = ul-o exp(h'ilc), where ul-0~N +(0, oﬁo). Conversely, the BC95 is
based on a truncated normal specification in which the inefficiency term is u;~N* (2.8, 02).
Kutlu (2018) addresses endogeneity problems in a distribution-free context by extending
Cornwell et al.’s (1990) regression-based estimator.

We address both endogenous inputs and endogenous environmental variables in the
BCO95 by adapting the approach proposed by Amsler ef al. (2017). Our model is neither a
special nor a general case of these existing stochastic frontier models that address endogenous
problems. In addition, many empirical studies use the BC95, which is one of the major
stochastic frontier models. Therefore, our model makes a novel contribution to the literature on
stochastic frontier analysis.

2. Estimation procedure

Consider the following stochastic production frontier model with endogenous inputs and
environmental variables for (unbalanced or balanced) panel data:
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where Xy, Z1;+, and wy, are exogenous, and X,;; and Z,;; are endogenous. We can easily



represent the stochastic cost frontier model by replacing —u;; with +u;.. To address the
endogeneity problem, we assume reduced-form equations for the endogenous variables:
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where N*(u;;, 62) refers to a non-negative normal distribution truncated at zero for which the
(pre-truncated) mean and variance are y;; and o2, respectively. This model allows x,;; and
Z,;; to be correlated with v;;.

The joint density of (u;, Vis, §it1qi:) is as follows:
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Integrating out u;;, we obtain the joint density of (&;¢|§;t, qit):
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while ¢ and @ denote the standard normal probability density functlon and cumulative
distribution function, respectively. Finally, the log-likelihood function for the sample




observations, (y,Xx,z), is
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We obtain limited-information maximum-likelihood estimators by maximizing the
log-likelihood function with respect to the parameters S, 6,0, au,Z,,;, Z;f, and IT .
Limited-information maximum-likelihood estimators that are not in frontier models are
consistent and asymptotically normal even if the error deviates from the assumption of normal
distribution. However, the consistency of our estimators requires the correctness of the
distribution assumptions. This property applies to not only our model but also all stochastic
frontier models estimated by maximum-likelihood methods.

As Amsler et al. (2016) proposed, we present a point estimator for technical efficiency
u;; using §;; and &;;. The Jondrow et al. (1982) type point estimator in our model is
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whereas the Battese and Coelli (1988) type point estimator is
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The estimator TESC is preferred, particularly when u;; is not close to zero (Kumbhakar and
Lovell 2003, 78).



3. Monte Carlo simulations

In this section, we report the results of Monte Carlo simulations to examine the performance of
our estimator. We generate data for the simulation using the following process:
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X1it» Z1it» Wait» and wy;, are exogenous variables, whereas x,;; and z,;; are endogenous
variables.
Table 1 presents the results of Monte Carlo simulations for the sample size n =
N . T; = 1,000. The Monte Carlo experiments are conducted with 1,000 replications. The
results show that estimators of the BC95 exhibit severe bias, whereas our model obtains good
estimates in not only the frontier model and the model for technical efficiency, but also the
reduced-form equations and variance—covariance matrix. Our findings suggest that the BC95
estimates may exhibit bias because of endogeneity problems, but our model can deal with both
endogenous inputs and endogenous environmental variables.

Figure 1 shows the results of Monte Carlo simulations by sample size. The vertical
axis represents the estimated value, and the horizontal axis means the logarithmic value of the
sample size. The blue lines are estimates of our model, the black lines are estimates of the
BC95, and the red lines are the true values. Twelve data sets have been created.

The estimates of our proposed model converge to correct values as the sample size
grows. On the other hand, estimates of the BC95 converge to biased values. In particular, the
coefficients of constant terms and endogenous variables have large biases. These results
indicate that the estimates of the proposed model are consistent.

Table 2 shows the bias and RMSE in the proposed model by sample size. The
estimates of our proposed model do not significantly deviate from the true values even when
the sample size is about 100. When the sample size is halved, the RMSE is 1.447 times on the

average, which is almost the same as the appropriate rate of V2. We can see that our model
is useful even with small sample sizes.



Table 1. Results of the Monte Carlo simulations in the case of n = 1,000.

BC95 Our model
True ~ DSUMALS  poe RMSE  SUMAes o p e RMSE
(mean) (mean)

Bo 1 0.778 -0.222 0.2789 1.023 0.023 0.1804

b1 1 0.960 -0.040 0.0510 1.000 0.000 0.0410

B 1 1.174 0.174 0.1796 1.007 0.007 0.0650

& 1 0.878 -0.122 0.2829 1.020 0.020 0.2327

o 1 1.032 0.032 0.0797 1.001 0.001 0.0538

&, 1 0.900 -0.100 0.1092 1.006 0.006 0.0602

o2 1 0.915 -0.085 0.1876 1.002 0.002 0.0508

o2 1 0.806 -0.193 0.2381 0.989 -0.011 0.1054

o 0.8 0.794 -0.006 0.0604
I 0.8 0.796 -0.004 0.0564
Zon 1 0.994 -0.006 0.0462
). 0.8 0.795 -0.005 0.0410
- 1 0.993 -0.007 0.0442
I, 0.1 0.101 0.001 0.0558
I, 0.1 0.100 0.000 0.0318
I, 0.1 0.099 -0.001 0.0304
I, 0.1 0.100 0.000 0.0029
I, 0.1 0.100 0.000 0.0029
I, 0.1 0.101 0.001 0.0549
I, 0.1 0.100 0.000 0.0318
1, 0.1 0.098 -0.002 0.0315
I, 0.1 0.100 0.000 0.0029
I, 0.1 0.100 0.000 0.0029

Note: BC95: Battese and Coelli’s (1995) stochastic frontier model for panel data; RMSE:

Root mean squared error.
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Figure 1. Results of Monte Carlo simulations by sample size.



Table 2. Bias and RMSE in the proposed model by sample size

n 100 200 400 800 1600
Bias
Bo 0.1315 0.0934 0.0454 0.0091 0.0105
B 0.0043 -0.0041 -0.0026 -0.0004 -0.0003
B> 0.0404 0.0158 0.0102 0.0007 0.0016
o 0.0822 0.0733 0.0303 0.0019 0.0074
5, 0.0180 0.0077 0.0045 0.0022 0.0012
0, 0.0611 0.0212 0.0135 0.0037 0.0027
op -0.0004 0.0107 0.0002 -0.0033 0.0004
o; -0.0409 -0.0445 -0.0158 -0.0056 -0.0063
- -0.0124 -0.0114 -0.0073 -0.0024 -0.0010
Ly 0.0012 -0.0057 -0.0025 -0.0028 -0.0001
T -0.0361 -0.0186 -0.0138 -0.0051 -0.0017
o -0.0286 -0.0162 -0.0100 -0.0056 -0.0006
Lor -0.0396 -0.0225 -0.0103 -0.0070 -0.0008
Mo 0.0043 0.0065 0.0039 -0.0024 0.0026
My -0.0048 -0.0036 -0.0020 0.0015 -0.0006
I, -0.0058 -0.0034 -0.0001 0.0012 -0.0012
s 0.0003 -0.0001 -0.0001 -0.0003 -0.0001
Iy -0.0002 -0.0001 0.0000 0.0001 0.0000
I, 0.0070 0.0035 0.0077 -0.0022 0.0027
I, -0.0074 -0.0009 -0.0018 0.0016 -0.0007
I, -0.0038 -0.0045 -0.0023 0.0004 -0.0014
I3 0.0001 -0.0002 -0.0002 -0.0003 -0.0001
I, -0.0004 -0.0002 0.0001 0.0000 -0.0001
RMSE (Root mean squared error)

Bo 0.6956 0.4743 0.3198 0.2003 0.1314
B 0.1447 0.0954 0.0662 0.0452 0.0336
B> 0.2696 0.1674 0.1075 0.0706 0.0473
o 0.8450 0.5866 0.4051 0.2549 0.1683
5, 0.1802 0.1289 0.0899 0.0612 0.0431
0, 0.2754 0.1653 0.1064 0.0693 0.0467
op 0.2085 0.1394 0.0913 0.0588 0.0418
op 0.3428 0.2514 0.1746 0.1155 0.0805
Ly 0.1903 0.1338 0.0926 0.0616 0.0455
Ly 0.1776 0.1250 0.0908 0.0590 0.0421
- 0.1395 0.1023 0.0706 0.0482 0.0360
Xy 0.1254 0.0905 0.0635 0.0436 0.0321
Lrr 0.1400 0.1003 0.0714 0.0495 0.0348
Mo 0.1717 0.1224 0.0877 0.0626 0.0436
Iy 0.1066 0.0719 0.0500 0.0363 0.0248
I, 0.1027 0.0699 0.0504 0.0336 0.0242
ITy3 0.0093 0.0066 0.0046 0.0031 0.0023
Iy 0.0096 0.0066 0.0046 0.0031 0.0022
[T 0.1704 0.1221 0.0860 0.0615 0.0440
I, 0.1072 0.0710 0.0494 0.0355 0.0248
[T, 0.0991 0.0718 0.0501 0.0341 0.0248
I3 0.0094 0.0064 0.0046 0.0032 0.0023
m 0.0096 0.0064 0.0045 0.0032 0.0023




4. Concluding remarks

In this study, we attempted to treat endogenous inputs and environmental variables in the
BC95, which has been used in a vast number of empirical studies. We developed good
limited-information maximum-likelihood estimators, thereby fixing bias in the BC95. Our
model is useful for verification and improvement of empirical studies that use the BC95.

As is true of all stochastic frontier models with maximum-likelihood methods, the
desired properties of the estimators depend on the correctness of the distribution assumptions
of the error terms. This is a drawback of the maximum-likelihood method and also indicates
the necessity of the proposed model. If the inefficiency can reasonably be expected to follow
the half-normal distribution, u; = u? exp(h;x), where u?~N +(0, O’io), one can use the
model proposed by Amsler et al. (2017). However, if one can reasonably expect the
inefficiency to follow the truncated normal distribution, u;;~N7(z}.8,02), the proposed
model should preferably be used. In some cases, it is not known before the analysis which
distribution assumption is appropriate. Thus, it may be necessary to conduct a comparison after
the analysis using multiple models. Stochastic frontier models assuming a truncated normal
distribution, including the BC95, are used for many empirical analyses. Our model should be
one of the models to be estimated.

Finally, our study is limited in that we applied our model to simulated data and not
real-world data. Application of our model to real-world data is thus a topic for future research.
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