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Abstract
The Condorcet jury theorem states that if members' voting probabilities for the better alternative are identical and

independent among members, and larger than 1/2, then the probability that a committee under simple majority voting

chooses the better alternative is monotonically increasing in the committee size. This implies that the committee under

simple majority voting decides more efficiently than single-person decision-making. This superiority of group decision-

making under strategic voting for the binary signal model has already been demonstrated. We generalize this result and

prove that the monotonicity property in the Condorcet jury theorem holds in the symmetric efficient equilibrium.
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1 Introduction

We consider decision-making in committees under simple majority voting in the following
situation. There are two alternatives; one is the better alternative for all members, but no
member knows which one is better. Each member receives a signal that conveys informa-
tion about which one is better. For this collective decision-making under uncertainty, the
Condorcet jury theorem (CJT), argued in Condorcet (1785), is a well-known classical result.
The simplest version of the CJT is as follows. Suppose that members’ voting probabilities
for the better alternative are identical and independent among members. If each member’s
voting probability for the better alternative is larger than 1/2, then the probability that
the committee chooses the better alternative satisfies the following properties.*1 The first
property is the monotonicity property in the CJT (mCJT), that is, the probability that the
committee chooses the better alternative is monotonically increasing in the committee size.
The second property is the superiority of the group decision-making property in the CJT
(gCJT), that is, the probability that the committee chooses the better alternative is larger
than the member’s voting probability for the better alternative. The first property implies
the second property.*2

In this classical version of the CJT, it is assumed that each member votes sincerely.
However, Austen-Smith and Banks (1996) pointed out that sincere voting may not be an
equilibrium. Since Austen-Smith and Banks (1996), many researchers have studied whether
the CJT holds in the strategic voting equilibrium.

In this paper, we also study the CJT under strategic voting. Wit (1998) demonstrated
that the gCJT holds under strategic voting by analyzing the symmetric efficient equilibrium
in the basic model. Then, we focus on the mCJT and show that the mCJT also holds in the
symmetric efficient equilibrium. Our analysis is similar to Wit (1998). The key idea of Wit
(1998) is that the strategy profile that maximizes the efficiency of the decision constitutes
an equilibrium, argued by McLennan (1998). In the basic model, it is assumed that each
member receives a binary signal and the signal which indicates a particular state is realized
with probability larger than 1/2. This implies that a committee under sincere voting decides
more efficiently than single-person decision-making, by the classical CJT. Sincere voting
may not be the equilibrium for the committee; however, the symmetric efficient equilibrium
strategy is more efficient than the sincere voting outcome. Then, if the gCJT holds under
sincere voting, there exists an equilibrium in which the gCJT holds. We generalize Wit’s
(1998) decomposition analysis and show that the mCJT holds in the symmetric efficient
equilibrium. To show that the mCJT holds, we prove that a larger committee decides more
efficiently than a smaller committee under a symmetric efficient equilibrium strategy for
the smaller committee. This strategy may not be the equilibrium for the larger committee;
however, the symmetric efficient equilibrium is more efficient than this strategy profile.

Another related paper on the mCJT under strategic voting is by Chakraborty and Ghosh
(2003). They generalized the binary signal model to a general signal model and studied the
most efficient equilibrium instead of the symmetric efficient equilibrium considered by Wit
(1998). One of their results is that the mCJT holds in the most efficient equilibrium. They

*1The abbreviations of each property in the CJT are from McCannon (2015).
*2The third property is the asymptotic property in the CJT (aCJT); that is, the probability that the

committee chooses the better alternative approaches 1 as the committee size goes to infinity.



also characterized the most efficient equilibrium for the binary signal model and showed that
the most efficient equilibrium is typically asymmetric.*3 In contrast to Chakraborty and
Ghosh (2003), we show that the mCJT holds even when we focus on the symmetric efficient
equilibrium.

The rest of this paper is organized as follows. In Section 2, we present the model. In
Section 3, we examine the equilibrium strategy and the efficiency of the decision by simple
majority voting. In Section 4, we establish the monotonicity property in the CJT in the
symmetric efficient equilibrium. Section 5 is concluding remarks.

2 Model

We consider a committee with 2n + 1 members, where n ≥ 1. The committee decides to
choose an alternative d ∈ {A,B} by simple majority voting: each member simultaneously
votes for an alternative A or B without abstention, and the decision is d = A if and only if at
least n+1 members vote for A. The members have the same preference over the alternatives,
depending on the state ω ∈ {A,B}. The utility function of each member is as follows:

u(d = A|ω = A) = u(d = B|ω = B) = 1,
u(d = A|ω = B) = u(d = B|ω = A) = 0.

(1)

State A is the state in which alternative A is better than alternative B for all members;
analogously for state B. We assume that no member knows the true state and the common
prior probability is Pr(ω = A) = πA ∈ (0, 1). Before voting, each member i receives a
binary signal si ∈ {a, b} independently across members given the state. We assume that
Pr(si = a|ω = A) = ta > 1/2 and Pr(si = b|ω = B) = tb > 1/2. Without loss of generality,
we assume that ta ≥ tb.

The timing is as follows. First, a state ω ∈ {A,B} is realized. Then, each committee
member receives a signal. After receiving the signal, each member votes for an alternative A
or B, and the committee’s decision d ∈ {A,B} is made by the simple majority rule. Finally,
members’ utilities are determined, depending on the decision and the state.

3 Symmetric Efficient Equilibrium

In this section, we consider the symmetric efficient equilibrium of the voting game. Let
(σa, σb) denote a strategy where σa is the probability that the i-th member votes for A when
he/she receives the signal si = a and σb is the probability that he/she votes for A when
he/she receives the signal si = b. Let γA(σa, σb) and γB(σa, σb) denote the probabilities that
the member votes for the better alternative under the strategy (σa, σb) at state A and state
B, that is:

γA(σa, σb) = taσa + (1− ta)σb,

γB(σa, σb) = (1− tb)(1− σa) + tb(1− σb),

*3See also Ladha et al.(2003), Persico (2004), Dekel and Piccione (2000), and Kawamura and Vlaseros
(2017).



respectively.
Given a strategy (σa, σb), the expected utility of each member is equal to the expected

probability that the committee chooses the better alternative at each state, by the assump-
tion of the utility function (1):

U2n+1(σa, σb) = πAρ
A
n (σa, σb) + (1− πA)ρ

B
n (σa, σb),

where ρAn (σa, σb) and ρBn (σa, σb) denote the probabilities that the committee chooses the
better alternative under the strategy (σa, σb) at state A and state B, that is:

ρAn (σa, σb) =
∑

m≥n+1

(

2n+ 1

m

)

(γA(σa, σb))
m(1− γA(σa, σb))

2n+1−m,

ρBn (σa, σb) =
∑

m≥n+1

(

2n+ 1

m

)

(γB(σa, σb))
m(1− γB(σa, σb))

2n+1−m,

respectively. We define the efficiency of the decision as the value of the expected utility
under the symmetric efficient equilibrium:

V (n) ≡ max
σa,σb

U2n+1(σa, σb). (2)

The following Lemma shows the symmetric efficient equilibrium.

Lemma 1 (Wit 1998). The symmetric efficient equilibrium is as follows.
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
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∈
(
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[
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∈
[

1−tb
ta

[

tb(1−tb)
ta(1−ta)

]n

, tb
1−ta

[

tb(1−tb)
ta(1−ta)

]n]

(1, σ∗
n) for πA

1−πA

∈
(

tb
1−ta

[

tb(1−tb)
ta(1−ta)

]n

, tb
1−ta

[

tb
1−ta

]n)

(1, 1) for πA

1−πA

∈
[

tb
1−ta

[

tb
1−ta

]n

,+∞
)

, (3)

where σ∗
n is increasing in πA.

Proof. First, we prove that this strategy constitutes an equilibrium. Note that (σa, σb) =
(0, 0) and (σa, σb) = (1, 1) constitute an equilibrium, because it is implied that the decision
is d = A when all the members follow (σa, σb) = (1, 1) and the decision is not changed even if
one member deviates from this strategy. Then, (σa, σb) = (1, 1) constitutes an equilibrium.
Similarly, (σa, σb) = (0, 0) also constitutes an equilibrium. Then, we consider the strategy
where (σa, σb) ̸= (0, 0) and (σa, σb) ̸= (1, 1). The condition by which the member with signal
si weakly prefers voting for A to voting for B is that the expected utility from voting for
A is more than or equal to the expected utility from voting for B. Note that the member’s
vote affects the committee’s decision when he/she is pivotal; the other n-members vote for
A and the other n-members vote for B. By this fact and the assumption of utility function
(1), the condition is:

Pr(ω = A|si, piv(σa,σb)) ≥ Pr(ω = B|si, piv(σa,σb)),



where piv(σa,σb) denotes the event that the member is pivotal when other members follow
a strategy (σa, σb). By the assumption that each member’s signal is realized independently
given the state and Bayes’ rule, the equilibrium condition is:

L(σa, σb) ≡
Pr(ω = A) Pr(si|ω = A) Pr(piv(σa,σb)|ω = A)

Pr(ω = B) Pr(si|ω = B) Pr(piv(σa,σb)|ω = B)
= 1. (4)

Note that:

Pr(piv(σa,σb)|ω = A)

Pr(piv(σa,σb)|ω = B)
=







[

ta(1−taσ)
(1−tb)(1−(1−tb)σ)

]n

for (σ, 0)
[

(1−(1−ta)(1−σ))(1−ta)
(1−tb(1−σ))tb

]n

for (1, σ)

is continuous and decreasing in σ. Then, L(σ, 0) and L(1, σ) are also continuous and de-
creasing in σ. This implies that the strategy (3) constitutes an equilibrium.

Next, we show that this strategy profile maximizes the efficiency of the decision in sym-
metric strategies. Note that for fn(p) =

∑

m≥n+1

(

2n+1
m

)

pm(1− p)2n+1−m, it holds that:

d

dp
fn(p) =

∑

m≥n+1

(

2n+ 1

m

)

(

mpm−1(1− p)2n+1−m − (2n+ 1−m)pm(1− p)2n−m
)

=

(

2n+ 1

n+ 1

)

(n+ 1)pn(1− p)n,

because −
(

2n+1
m

)

(2n + 1 −m)pm(1 − p)2n−m +
(

2n+1
m+1

)

(m + 1)pm(1 − p)2n−m = 0. Then, the
first-order condition coincides with the equilibrium condition (4), because

∂

∂σa

U2n+1(σa, σb) ≥ 0 ⇔
πA

1− πA

∂γA(σa,σb)
∂σa

∂γB(σa,σb)
∂σa

[

γA(σa, σb)(1− γA(σa, σb))

γB(σa, σb)(1− γB(σa, σb))

]n

≥ 1,

∂

∂σb

U2n+1(σa, σb) ≥ 0 ⇔
πA

1− πA

∂γA(σa,σb)
∂σb

∂γB(σa,σb)
∂σb

[

γA(σa, σb)(1− γA(σa, σb))

γB(σa, σb)(1− γB(σa, σb))

]n

≥ 1.

Finally, it is easy to see that the monotonicity of L(σ, 0) and L(1, σ) guarantees the second-
order condition for the cases of (σ∗

n, 0) and (1, σ∗
n).

4 Monotonicity Theorem

In this section, we establish the mCJT in the symmetric efficient equilibrium. If adding
two members to the committee with an arbitrary fixed size improves the efficiency of the
decision, the mCJT holds. Then, we compare the efficiency of the decisions between 2n+ 3
members and 2n + 1 members. We establish our main theorem, by applying the following
Lemma.

Lemma 2 (The classical CJT). Let p denote the probability that each member votes for the
better alternative, and fn(p) denote the probability that the committee chooses the better alter-
native by simple majority voting with 2n+1 members, where fn(p) =

∑

m≥n+1

(

2n+1
m

)

pm(1−
p)2n+1−m. It holds that:

fn+1(p)− fn(p) =

(

2n+ 1

n+ 1

)

[p(1− p)]n+1 (2p− 1).



Proof. Adding two members may change the decision when additional members are pivotal,
that is, (i) just n + 1 members vote for the better alternative, and, (ii) just n members
vote for the better alternative. In case (i), if both of the additional members vote for the
worse alternative, the committee’s decision changes from the better one to the worse one
(negative effect of adding members). The joint probability that n+ 1 members vote for the
better alternative and that both of the additional members vote for the worse alternative
is

(

2n+1
n+1

)

pn+1(1 − p)n × (1 − p)2. In case (ii), if both of the additional members vote for
the better alternative, the committee’s decision changes from the worse one to the better
one (positive effect of adding members). The joint probability that n members vote for the
better alternative and that both of the additional members vote for the better alternative
is
(

2n+1
n+1

)

(1− p)n+1pn × p2. Then, the difference between the positive effect and the negative
effect is:

(

2n+ 1

n+ 1

)

(1− p)n+1pn × p2 −

(

2n+ 1

n+ 1

)

pn+1(1− p)n × (1− p)2

=

(

2n+ 1

n+ 1

)

[p(1− p)]n+1 (2p− 1).

Therefore, fn+1(p)− fn(p) =
(

2n+1
n+1

)

[p(1− p)]n+1 (2p− 1).

Theorem 1 (The mCJT under strategic voting). It holds that V (n + 1) ≥ V (n) for πA ∈
(0, 1), where V (·) is defined in (2).

Proof. Let (σ∗∗
a , σ∗∗

b ) and (σ∗
a, σ

∗
b ) denote the symmetric efficient equilibrium in a 2n + 3

member committee and a 2n+ 1 member committee, respectively. As (σ∗∗
a , σ∗∗

b ) is the sym-
metric efficient equilibrium for 2n+3 members, it holds that U2n+3(σ

∗∗
a , σ∗∗

b ) ≥ U2n+3(σ
∗
a, σ

∗
b ).

Hence, if it holds that U2n+3(σ
∗
a, σ

∗
b ) ≥ U2n+1(σ

∗
a, σ

∗
b ), we can conclude that V (n + 1) =

U2n+3(σ
∗∗
a , σ∗∗

b ) ≥ U2n+3(σ
∗
a, σ

∗
b ) ≥ U2n+1(σ

∗
a, σ

∗
b ) = V (n).

First, we consider the cases of (σ∗
a, σ

∗
b ) = (0, 0) and (σ∗

a, σ
∗
b ) = (1, 1). We focus on the

latter case. For the case of (σ∗
a, σ

∗
b ) = (1, 1), ρAn (1, 1) = ρAn+1(1, 1) = 1 and ρBn (1, 1) =

ρBn+1(1, 1) = 0. Then, U2n+3(σ
∗
a, σ

∗
b ) = U2n+1(σ

∗
a, σ

∗
b ) for the case of (σ∗

a, σ
∗
b ) = (1, 1). An

analogous argument holds for the case of (σ∗
a, σ

∗
b ) = (0, 0). Hence, we conclude that V (n +

1) = U2n+3(σ
∗∗
a , σ∗∗

b ) ≥ U2n+3(σ
∗
a, σ

∗
b ) = U2n+1(σ

∗
a, σ

∗
b ) = V (n) for the cases of (σ∗

a, σ
∗
b ) = (0, 0)

and (σ∗
a, σ

∗
b ) = (1, 1).

Second, we consider the case of (σ∗
a, σ

∗
b ) = (1, 0). Note that γA(1, 0) = ta > 1/2 and

γB(1, 0) = tb > 1/2. Then, it holds that ρAn+1(1, 0) > ρAn (1, 0) and ρBn+1(1, 0) > ρBn (1, 0), by
applying the classical CJT. This implies that U2n+3(σ

∗
a, σ

∗
b ) > U2n+1(σ

∗
a, σ

∗
b ) for the case of

(σ∗
a, σ

∗
b ) = (1, 0). Hence, we conclude that V (n + 1) = U2n+3(σ

∗∗
a , σ∗∗

b ) ≥ U2n+3(σ
∗
a, σ

∗
b ) >

U2n+1(σ
∗
a, σ

∗
b ) = V (n) for the cases of (σ∗

a, σ
∗
b ) = (1, 0).

Third, we consider the cases of (σ∗
a, σ

∗
b ) = (σ∗

n, 0) and (σ∗
a, σ

∗
b ) = (1, σ∗

n). Let γA =
γA(σ

∗
a, σ

∗
b ) and γB = γB(σ

∗
a, σ

∗
b ). By Lemma 2,

U2n+3(σ
∗
a, σ

∗
b )− U2n+1(σ

∗
a, σ

∗
b )

=

(

2n+ 1

n+ 1

)

{

πA[γA(1− γA)]
n+1(2γA − 1) + (1− πA)[γB(1− γB)]

n+1(2γB − 1)
}

.



Figure 1: Efficiency of decision for πA ∈ (0, 1)

We focus on the case of (σ∗
a, σ

∗
b ) = (σ∗

n, 0). For this case, it holds that γB = (1 − tb)(1 −
σ∗
n) + tb > 1/2. When γA = taσ

∗
n > 1/2, an analogous argument holds for the case of

(σ∗
a, σ

∗
b ) = (1, 0). Thus, we assume that γA ≤ 1/2. Then,

U2n+3(σ
∗
a, σ

∗
b ) ≥ U2n+1(σ

∗
a, σ

∗
b ) ⇔

πA

1− πA

[

γA(1− γA)

γB(1− γB)

]n+1
2γA − 1

2γB − 1
≥ −1

⇔
1− tb
ta

γA(1− γA)

γB(1− γB)

2γA − 1

2γB − 1
≥ −1

⇔
1− γA
γB

2γA − 1

2γB − 1
≥ −1

by the equilibrium condition πA

1−πA

ta
1−tb

[

γA(1−γA)
γB(1−γB)

]n

= 1, and γA
1−γB

= ta
1−tb

. Moreover,

1− γA
γB

2γA − 1

2γB − 1
≥ −1 ⇔ (1− γA)(1− 2γA) ≤ γB(2γB − 1)

⇔ (1− γA)((1− γA)− γA) ≤ γB(γB − (1− γB))

⇔ γ2
B + γA(1− γA) ≥ (1− γA)

2 + γB(1− γB).

This inequality holds by the fact that γB > 1− γA and γA(1− γA) > γB(1− γB) for (σ
∗
n, 0),

since γB > 1 − γA ≥ 1/2 ≥ γA > 1 − γB. An analogous argument holds for the case of
(σ∗

a, σ
∗
b ) = (1, σ∗

n). Hence, we conclude that V (n + 1) = U2n+3(σ
∗∗
a , σ∗∗

b ) ≥ U2n+3(σ
∗
a, σ

∗
b ) ≥

U2n+1(σ
∗
a, σ

∗
b ) = V (n) for the cases of (σ∗

a, σ
∗
b ) = (σ∗

n, 0) and (σ∗
a, σ

∗
b ) = (1, σ∗

n).
Therefore, it holds that V (n+ 1) ≥ V (n) for all cases.

Figure 1 illustrates Theorem 1 for the case of three member committee (n = 1), where
we assume ta = tb = 3/4. The graph of “fun 1” is the efficiency of decision V (1) =



Figure 2: Efficiency of decision for πA ∈
(

1
28
, 1
4

)

U3(σ
∗
a, σ

∗
b ) for the prior probability πA ∈ (0, 1). In this example, (σ∗

a, σ
∗
b ) = (σ∗

1, 0) for
πA ∈ (1/10, 1/4), and (σ∗

a, σ
∗
b ) = (1, σ∗

1) for πA ∈ (3/4, 9/10). The graph of “fun 2” is the
efficiency of decision of five member committee under the same strategy, U5(σ

∗
a, σ

∗
b ). It holds

that U5(σ
∗
a, σ

∗
b ) > V (1) for πA ∈ (1/10, 9/10) and U5(σ

∗
a, σ

∗
b ) = V (1) for πA /∈ (1/10, 9/10).

The graph of “fun 3” is the efficiency of decision V (2) = U5(σ
∗∗
a , σ∗∗

b ). In this example,
(σ∗∗

a , σ∗∗
b ) = (σ∗

2, 0) for πA ∈ (1/28, 1/4), and (σ∗∗
a , σ∗∗

b ) = (1, σ∗
2) for πA ∈ (3/4, 27/28).

Figure 2 shows the same graphs for πA ∈ (1/28, 1/4). It holds that V (2) > U5(σ
∗
a, σ

∗
b ) for

πA ∈ (1/28, 1/4) ∪ (3/4, 27/28) and V (2) = U5(σ
∗
a, σ

∗
b ) for πA /∈ (1/28, 1/4) ∪ (3/4, 27/28),

because (σ∗∗
a , σ∗∗

b ) is the symmetric efficient equilibrium of five member committee. Then,
V (2) ≥ U5(σ

∗
a, σ

∗
b ) ≥ V (1) for πA ∈ (0, 1).

5 Concluding Remarks

In this paper, we established the monotonicity in CJT under strategic voting. We assumed
that each member receives a binary signal with the same probability and the signals are
realized independently among members conditional on the state.

Under the sincere voting, these assumptions correspond to the assumptions on the voting
probability made in the simplest version of the CJT. It is known that the issues of mCJT
without these assumptions are not so simple, even when the sincere voting is assumed. For
example, if the members’ voting probabilities are not identical, adding two members does
not necessarily improve the efficiency of decision (Karotkin and Paroush 2003; Sapir 2005),
but the committee decides more efficiently than any random subgroups of the committee
(Ben-Yashar and Paroush 2000; Berend and Sapir 2005). On the other hand, it depends



on the details of model specification whether the mCJT holds without the independence
assumption (Boland 1989).

Then, studying the robustness of the monotonicity in CJT under strategic voting with
respect to the assumptions on the information structure of signals is left for the future
research.

References

Austen-Smith, D. and J.S. Banks (1996) “Information Aggregation, Rationality, and the
Condorcet Jury Theorem,” American Political Science Review, Vol. 90, pp. 34–45.

Ben-Yashar, R. and J. Paroush (2000) “A Nonasymptotic Condorcet Jury Theorem,” Social
Choice and Welfare, Vol. 17, pp. 189–199.

Berend, D. and L. Sapir (2005) “Monotonicity in Condorcet Jury Theorem,” Social Choice
and Welfare, Vol. 24, pp. 83–92.

Boland, P.J. (1989) “Majority Systems and the Condorcet Jury Theorem,” Journal of the
Royal Statistical Society: Series D (The Statistician), Vol. 38, pp. 181–189.

Chakraborty, A. and P. Ghosh (2003) “Efficient Equilibria and Information Aggregation in
Common Interest Voting Games,” Working paper.

Condorcet, N.C. (1785) Essai sur l’application de l’analyse à la probabilité des décisions
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