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Abstract
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1 Introduction

The use of topologies in infinite dimensional spaces has been a frequent prac-
tise of many authors to capture economic behaviours of individuals. The
topologies that stand out most are the Mackey topology (see Bewley 1972)
and the strict topology which coincides with the Mackey in l∞, see for exam-
ple Brown and Lewis (1981); Conway (1992). Preferences, be they continu-
ous, upper or lower with respect to the earlier topologies capture impatience;
myopia; wariness, etc; see for example Araujo, Novinski and Pascoa (2011).

Recently Monteiro et al. (2018) have formalised hyperopic tastes via
hyperopic topologies. They guaranteed the existence of the largest locally
convex hyperopic topology. However, to have a topology with many open
sets it would not seem to be very advantageous, since the number of com-
pact sets would be reduced which could undermine the maximisation process
of the utility functions representing hyperopic tastes of economic agents.
Agents with hyperopic tastes are called hyperopic economic agents. They
only see the distant future by completely neglecting any short run consump-
tion stream.

The main objective of this short paper is to produce a locally convex
hyperopic topology with less open sets than the topology defined in Monteiro
et al. (2018). We do that by choosing in a convenient manner a sub-family of
seminorms from hyperopic seminorms defined by Monteiro et al. (2018). We
prove that the dual of l∞ with this new topology equals the set of bounded,
purely finitely additive measures. Applications of these kind of measures can
be found in Gilles (1989) and Gilles and LeRoy (1992).

This new topology is important not only as a mathematical object1 but
because of its technical practicality in terms of its applications. See for exam-
ple, Bastianello (2017). More precisely, this author used the strict hyperopic
topology2 generated by a special family of seminorms indexed by summable
sequences whose elements are null at the most for a finite set of indexes.

The paper is organised as follows: Section 2 contains the terminology and
the main definitions about hyperopic preferences and topologies. Section 3
deals with the strict hyperopic topology and in it is established the main
results of this paper. Finally, the paper ends with a brief conclusion.

1Which is important in its own right.
2Denoted by βsh and defined in Section 3 below.
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2 Notation and basic definitions

Our analysis is carried out in the same setting used in Monteiro et al. (2018).
Let l∞ be the set of bounded real valued sequences x = (xn)n≧1

. The

sup-norm is denoted |x|
∞

= sup {|xn| : n ≧ 1}. The sup-norm topology is
denoted τ∞. We denote by l1 the set of summable sequences. That is
(xn)n≧1

∈ l1 if
∑∞

n=1
|xn| < ∞. Let en ∈ l∞ be the sequence such that

en (m) = 0 if m 6= n and en (n) = 1. The vector space generated by
{en : n ≧ 1} is denoted by F . Let P (N) be the set of subsets of the set
of natural numbers, N = {1, 2, . . .}.

Definition 1 Let ba(N) be the set of bounded finitely additive measures.
Then, µ ∈ba(N) is purely finitely additive if µ (A) = 0 whenever A ⊂ N is
finite.

This is equivalent to requiring µ ({n}) = 0 for every natural number n.
We denote by pa (N) the set of bounded, purely finitely additive measures.

2.1 Preferences

A preference relation on l∞ is a complete and transitive binary relation on
l∞. Formally:

Definition 2 A binary relation (on l∞), �⊂ l∞×l∞, is complete if for every
x, y in l∞, x � y or y � x. It is transitive if x � y and y � z implies x � z.

By x ≻ y we mean that x � y and ¬(y � x), and x ∼ y means x � y and
y � x. For any x ∈ l∞, we define its n−head denoted by xhn to be

xhn(k) =

{

xk if 1 ≦ k ≦ n

0 if k > n,

and its n−tail as xt
n = x− xhn.

Suppose τ is a topology on l∞ and � is a preference relation on l∞.

Definition 3 The preference relation � is τ continuous if for all x ∈ l∞ the
sets {y ∈ l∞ : y � x} and {y ∈ l∞ : x � y} are τ closed.

2.2 Hyperopic preferences and topologies

Definition 4 Let � be a preference relation on l∞. Then, � is hyperopic if
for all x, y, z ∈ l∞, x ≻ y implies x ≻ y + z, for every z ∈ F .
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The following definition follows in the same spirit of Brown and Lewis
(1981) or Raut(1987) who defined myopic topologies.

Definition 5 A topology τ on l∞ is said to be hyperopic if every τ contin-
uous preference relation on l∞ is hyperopic.

According to Monteiro el al. (2018) the largest hyperopic topology βh is
generated by Γh which consists of all hyperopic seminorms. A seminorm q is
hyperopic if and only if q(z) = 0, ∀z ∈ F.

3 The strict hyperopic topology

Let A be a subset of the set of all sequences a ∈ l1 such that an 6= 0 for all
but finitely many n. Thus

∑

n≥N |an| is always non zero. For each a ∈ A,
define on l∞ the following function pa : l

∞ → R+ as

pa(x) = lim sup
N→∞

∑

n≥N |anxn|
∑

n≥N |an|
(1)

Clearly pa satisfies all properties required to be a seminorm. The family of
seminorms indexed by A generates a strict topology3 which is hyperopic, see
Example 3 in Monteiro et al. (2018).

Let us denote by Γsh the set of seminorms indexed by A and by βsh :=
τ (Γsh) the locally convex topology generated.

Now, define Γs = {q ∈ Γh : q is norm-continuous}. Clearly Γs is nonempty
as it contains Γsh. Since Γs contains all norm-continuous seminorms, the lo-
cally convex topology that it generates is the largest strict hyperopic topol-
ogy4. Let us denote this topology by βs. Notice that βs is not generated by
the seminorms pa with a ∈ A. The only role that {pa : a ∈ A} plays is to
prove that Γs is nonempty.

Remark 1 It is useful noting that the normalisation of seminorms defined
by (1) is purely technical as shown in the appendix. If

∑

n≥N |an| is removed
from the denominator in (1) above, this new family of seminorms belong to
Γs since each element of this new family will go on being a norm-continuous
seminorm.

3See Buck (1958) to justify the adjective “strict”.
4This topology can also be obtained by using Zorn’s Lemma applied to the partial

ordering relation “to be finer than ” on the set of all hyperopic topologies which are
coarser than the norm topology.
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Remark 2 It is also important to point out that the strict hyperopic topol-
ogy βs, like hyperopic topology βh introduced by Monteiro et al. (2018), is
not Hausdorff. This is due to hyperopic seminorms are not separating by
definition, since they vanish on elements in l∞ of finite support.

3.1 The strict hyperopic dual of l∞

On one hand, βs ⊂ τ∞ since by definition all seminorms generate βs are norm
continuous. On the other hand, since Γs ⊂ Γh, βs ⊂ βh. Moreover, from the
fact that all elements belonging to Γs are norm-continuous, it immediately
follows that βs ⊂ τ∞.

Proposition 1 (l∞, βs)
′ = pa (N) .

Proof. From the above paragraph it follows that (l∞, βs)
′ ⊂ (l∞, βh)

′ ∩
(l∞, τ∞)′ . Thus, (l∞, βs)

′ ⊂ pa (N) immediately follows from Theorem 4.6 in
Monteiro et al. (2018).

To prove the converse, let µ be an element belonging to pa (N) . We must
prove that the linear functional fµ(x) :=

∫

N
x(n)dµ(n), ∀x ∈ l∞ associated to

µ is βh− continuous and norm-continuous. The βh− continuity follows from
Lemma 4.4 in Monteiro et al.(2018). In fact, fmu(em) =

∫

N
em(n)dµ(n) =

µ({m}) = 0. The norm-continuity follows that µ is zero only in finite subsets
of N. In fact, |fµ(x)| ≤ µ(N)||x||∞.

Remark 3 In economic terms, characterizing the dual of l∞ with respect
to βs as being pa(N) has an important implication in terms of pricing or
valuation. If we priced with a price belonging to pa(N) any consumption
plan, modelled by a sequence of l∞ containing infinitely many zeros, the price
of such a consumption plan would be zero. This is compatible with hyperopic
agents who neglect any short run consumption stream.

4 Concluding remarks

We have constructed a new topology on l∞ called strict hyperopic topology.
This topology is coarser than the norm topology and was obtained by re-
fining the set of all hyperopic seminorms defined by Monteiro et al. (2018).
Moreover, we are able to show that the strict hyperopic dual of l∞ coincides
with pa (N) , the set of bounded, purely finitely additive measures. If we had
larger quantity compact sets5 the chance of finding maximizers of hyperopic

5Although this fact make us have less continuous functions.
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preferences in compact budget sets would increase. It is useful pointing out
that this trade-off between compactness of sets and continuity of preferences
is not being dealt with in this paper. The economic implications of the topol-
ogy βs of not having the Hausdorff property also have not been addressed in
this paper. The two matters above will be subjects of future research.
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