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Abstract
We propose an insurance model introducing a global contamination on agents' beliefs over exogenous and endogenous

variables. We establish conditions for the elasticity of contamination such that insurance demand declines with an

increase in the level of such contamination. Our model assumes that agents are risk averse and distort their beliefs

about exogenous events. Distortion also influences expectations over insurance transfers by strategic default, and leads

to a price markup in relation to its actuarilly fair level as markets select larger insurers, increasing their market power.

We impose boundaries on the relation between risk aversion and the elasticity of contamination, which is robust in the

sense that insurance demand will decline even when the beliefs contamination leads to an increase in the probability of

large loss. We further show that contracts are not efficient, resulting in a long run welfare loss.
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1 Introduction

The effects of a change in wealth, price (see also Dionne et al., 2013) and risk
distribution (see also Tibiletti, 1995; Dionne and Gollier, 1992) have long
been studied in insurance economics. These effects are relevant as they may
impact the demand for insurance, with negative consequences for economic
welfare (see also Guedes et al., 2019; Einav et al., 2010). The magnitude
and direction of these effects combined are ambiguous however, with little
evidence of their consequences for insurance demand.

In cases where prices are actuarially fair, Mossin’s Theorem (see also
Mossin, 1968) assures that the demand does not vary because agents are
always fully insured, regardless of their level of risk aversion and of their
background risk. When insurance is priced above its actuarially fair level,
Dionne et al. (2013) show that the demand for insurance can either increase,
decrease or stay unaltered as a result of an increase in wealth. The direction
in this case will be driven by the nature of risk aversion. The authors go
further decomposing wealth and substitution effects explicitly, characterizing
the insurance as a Giffen good. Finally, Dionne et al. (2013) and Tibiletti
(1995) show how a change in the background risk can influence the demand.
Tibiletti (1995) in particular studies changes in background risk represented
by an increase in the correlation between a non-insured asset and a random
loss. The author concludes that the demand for insurance decreases whenever
a beneficial change in the distribution of final wealth occurs.1

All results discussed above hold only under ceteris paribus conditions.
Certain aggregate shocks however could lead to a simultaneous change in
price, wealth and beliefs. Contemporary climate change is a good example
of how global contamination in insurance markets may occur. Insurers estab-
lishing premiums based on probability of catastrophic events from past expe-
rience are likely to default under mutual claims after event occurrence (simul-
taneous contamination on price and transfer). This was actually observed
in the American insurance market after Hurricane Andrew devastated many
houses along the American East coast (see also Browne and Hoyt, 2000).
Prices quickly increased due to market power, but the declining demand put
the market under risk of collapse. This situation required government inter-

1Despite the similarity in terms of results between ours’ and Tibiletti’s model, the main
substantive difference can be summarized in where and how distortion is allocated in the
model structure. In our model, we consider a global distortion and isolate a behavioral
effect on the demand, such as the distortion elasticity of beliefs.



vention and reinforced the role of the National Flood Insurance Program in
subsidizing the insurance premiums for houses in areas under risk of flooding
(see also Kunreuther et al., 1993). Under this type background risk, con-
tamination on contractual contingencies is difficult to be implemented as a
typical contingency claim in an insurance contract because this contamina-
tion is governed by some latent exogenous variable. This restriction can be
viewed as a market incompleteness.2

Despite all previous efforts trying to understand stylized facts in insurance
markets, results characterizing the consequences of a global contamination
are lacking. Carlier et al. (2003) is one of the few exceptions. The authors
show that a contamination from ambiguity aversion results in full insurance
for high values of the loss. In this paper, we establish conditions for the
elasticity of contamination over agents’ beliefs leading to a reduction in the
demand for insurance. Our approach differs from Carlier et al. (2003) in two
aspects: first, agents are risk averse and distort their beliefs about exogenous
events; second, we study the result by extending this distortion to insurance
payments and also to insurance prices that sit above their actuarially fair
levels.3 Markup arises when extreme events select larger insurers, increas-
ing their market power. To preclude ambiguous variations on demand, as
found in Dionne et al. (2013), we impose a boundary on the relation between
risk aversion and the elasticity of contamination. The boundary is robust in
the sense that insurance demand will decline even when the beliefs contam-
ination leads to an increase in the probability of large loss. In cases where
the background risk changes, the optimal insurance choice declines (see also
Tibiletti, 1995). We further show that contracts are not efficient, resulting
in a long run welfare loss.

2Latent contamination in financial markets is also likely to happen. Trade wars and
political crises can increase subjective uncertainty on payoffs when derivatives are exercised
before their expiration dates, weakening their function as an insurance instrument. The
effect of the global contamination coupled with the decline in demand could induce a
collapse in some derivative markets, as seen in global financial crises.

3Distortion on transfer is only due to the increase in default probability induced by
some insurers bankrucpy or strategic default. Distortion on prices arises only because of
market power induced by market selection of survival insurers in the long run.



2 The Model

We develop a theoretical framework based on Rothschild and Stiglitz (1976)’s
model of private insurance demand. Different from the authors, we assume
that agents’ beliefs are exogenously contaminated by a latent uncertainty
(see also Berger et al., 1986). Three types of contamination are considered.
In the first, agents anticipate a markup above the actuarially fair price due to
an increase in market power of insurers surviving bankruptcy after a change
in the background risk.4 In the second, agents consider the possibility of
bankruptcy among surviving insurers because of the persistence in latent
uncertainty over time. Finally, agents inaccurately anticipate the probability
governing the states of nature, which embodies a contamination in their
beliefs.

2.1 Basic Concepts

Exogenous uncertainty is characterized by a finite set S describing states of
nature. Consider an underlying probability space (Z,Z , ζ) where Z is the
sigma-algebra containing agents’ information and ζ is the objective proba-
bility. We assume that beliefs contamination is represented by a family of
random variables5 ǫ̃ = {ǫ̃s : Z → E}s∈S where E = [0, ǭ] ⊂ R+ is the range
of observations as a measurable space endowed with the Borel sigma-algebra.
We assume that ǫ̃ are privately observed and hence agents make plans contin-
gent on their realizations. The value ǫ represents the beliefs’ contamination
in the accurate values of the insurance transfer, in the markup on insurance
price and in the probabilities over S. Agents are subject to a loss ls and
trade an insurance contract in which each unit gives the right to receive a
transfer ts in each state s ∈ S. We further assume that all realizations of
states are observed by insurers.6 There is a single consumption good and the
indemnity schedule {ts}s∈S is given in units of this good. The observed price
for each insurance unit, denoted by p, is taken as given.

In our model, the subjective uncertainty will be modeled based on the
assumption that ǫ̃s is continuous with differentiable probability density f̂s :
E → R+ defined over the realizations of ǫ̃ for each s ∈ S. We denote

4We assume that this change is given ex ante in the model and agents anticipate it.
5That is, measurable functions defined on Z. In addition, we use the notation “˜” to

represent random variables, “ˆ” for functions, and “ * ” to distinguish any two functions.
6This model embodies the case of coinsurance.



by {π̂s : E → [0, 1]}s∈S the subjective probability distribution describing
agents’ contamination in the probability law governing the states of nature.
We assume by convention that π̂(0) is the objective probability without con-
tamination.

Firms choose the amount of insurance that maximizes their expected
profit. We assume that a representative firm chooses the aggregate insurance
supply, denoted by α. The firm’s problem is then given by

v̂f (ǫ) = max

{

p̂(ǫ)α− α
∑

s∈S

π̂s(ǫ)ts : α ∈ [0, 1]

}

. (1)

Therefore, the representative firm offers a positive supply if and only if p̂(ǫ) ≥
∑

s∈S π̂s(ǫ)ts. The restriction α ∈ [0, 1] means that the total amount of
insurance units available is finite and normalized to one. This assumption
is a consequence of some regulation stating that firms must be solvent on
extreme events. The actuarially fair price is given by p =

∑

s∈S π̂s(0)ts. For
the sake of simplicity, we assume that p̂(ǫ) = (1 + ǫ)p for all ǫ ∈ E. Finally,
suppose that management costs are negligible.7

Assume a generic agent with utility function u : C → R representing
the consumption benefit where C ⊂ R+. Agents’ endowment is denoted
by w. We suppose that u is twice differentiable with u′ and u′′ continuous,
bounded away from zero and that agents are risk averse, that is, u′′ < 0.
Each consumption choice is defined on a compact set C and contingent upon
the states of nature and on realizations of the subjective variable representing
a proxy for the contamination. We say a contingent consumption plan

ĉ = {ĉs : E → C}s∈S

is feasible when there is an insurance choice α̂ : E → R+ satisfying

ĉs(ǫ) + (1 + ǫ)pα̂(ǫ) ≤ w− ls + α̂(ǫ)(1− ǫ)ts for all ǫ ∈ E and all s ∈ S. (2)

The definition below characterizes the states with high loss and the states
with low loss using the ǫ-contaminated net transfers function.8

7We assume that insurers can invest the premium in a market with an interest rate
enough to cover all operational costs.

8We can assume without loss of generality that contamination is the same for all vari-
ables. Results do not change because derivatives only depend on local behavior and optimal
choices are interior.



Definition 2.1. Write ν̂s : E → R by ν̂s(ǫ) = ts − p − ǫ(ts + p) for all
(s, ǫ) ∈ S ×E as the ǫ-contaminated net transfers function and assume that
ν̂s(ǫ) 6= 0 for all (s, ǫ) ∈ S × E. Moreover, define the subsets S+ and S− of
high and low loss respectively9 by

S+ = {s ∈ S : ν̂s > 0} and S− = {s ∈ S : ν̂s < 0}.

Since ν̂s(ǫ) = (1 − ǫ)ts − (1 + ǫ)p for all (s, ǫ) ∈ S × E, then a feasible
consumption plan can be written as

ĉs(ǫ) = w − ls + α̂(ǫ)ν̂s(ǫ) for all ǫ ∈ E and all s ∈ S

Agents’ indirect utility function10 is then given by

v̂a(p) = max

{

∑

s∈S

∫

E

π̂s(ǫ)u(ĉs(ǫ))f̂s(ǫ)dǫ

}

(3)

over all feasible consumption plans {ĉs}s∈S. The function v̂a(p) represents the
optimal expected value for the benefit evaluated over all feasible consumption
plans. The following notation is used hereafter.

Notation 2.2. Consider a differentiable function ĝ : X → Y where X ⊂ R

and Y ⊂ R. Denote by ξ̂(ĝ, x) the elasticity of ĝ evaluated at x ∈ X, that
is, ξ̂(ĝ, x) = xĝ′(x)/ĝ(x).

The definition below characterizes a measure of absolute risk aversion
as the composition of two effects. The first is the well known Arrow-Pratt
(see also Pratt, 1964; Pratt and Zeckhauser, 1987) measure of absolute risk-
aversion. The second is a measure of risk-aversion relative to the net savings
on a given state of nature. This measure can also be viewed as the savings
elasticity of marginal utility.

Definition 2.3. Consider the Arrow-Pratt measure of absolute risk-aversion
â : C → R+ given by â(c) = −u′′(c)/u′(c) for all c ∈ C. Define r̂s : C → R

for each s ∈ S by r̂s(c) = â(c)(w − c− ls).

Remark 2.4. To see that r̂s can be viewed as the savings elasticity of marginal
utility, consider the function ĝs(x) = u′(w− ls−x) where x = w−c− ls is the
total of savings in the absence of an insurance market for each s ∈ S. Then

9In general, ts = 0 for all s ∈ S−.
10That is, the utility evaluated at the optimal consumption level.



r̂s(c) = xĝ′(x)/ĝ(x) is the measure of risk-aversion relative to savings. Note
also that r̂s(c) = â(c)(w− ls)− câ(c) where câ(c) is the Arrow-Pratt measure
of relative risk-aversion, which can be viewed as the elasticity of marginal
utility, that is, ξ̂(u′, c) for all c ∈ C.

2.2 Main Results

In the case of an interior solution, the following lemma holds.

Lemma 2.5. Consider agents’ problem (3). Then in an interior solution
α̂ : E → R+

∑

s∈S

f̂s(ǫ)π̂s(ǫ)ν̂s(ǫ)u
′(ν̂s(ǫ)α̂(ǫ) + w − ls) = 0 for all ǫ ∈ E. (4)

Proof: See appendix. ✷

Assumption 2.6 below establishes a threshold for the relative ǫ total elas-
ticity of beliefs compared to the elasticity of marginal utility of savings. This
threshold is relative to the elasticity of net transfers ξ̂(ν̂s, · ) for each s ∈ S
and hence it is robust over different insurance markets. Under this assump-
tion, Theorem 2.7 states that the insurance demand declines with increasing
beliefs contamination.

Assumption 2.6. Suppose that ν̂s(ǫ) 6= 0 for all (ǫ, s) ∈ E × S. Assume
that

1 +
ξ̂(π̂s, ǫ) + ξ̂(f̂s, ǫ)

ξ̂(ν̂s, ǫ)
+ r̂s(c) > 0 for all (s, ǫ, c) ∈ S × E × C.

Theorem 2.7. Suppose Assumption 2.6. Then α̂′(ǫ) < 0 for all ǫ ∈ E.
Proof: See appendix.

✷

We provide a numerical example to make Assumption 2.6 more intuitive.

Example 2.8. Consider a normalized contamination in the set E = [0, 1].
Assume that the density function f : E → E that governs contamination is



given by11 f(ǫ) = (5 + 2ǫ)/6. Suppose that preferences are represented by
the utility function u(c) = log(c) with wealth w = 2. Beliefs over the states
of nature are characterized by an ǫ-contamination with respect to the true
uniform probability πunif = (0.5, 0.5) in relation to πcont = (0.6, 0.4), that is,

(π̂1(ǫ), π̂2(ǫ)) = (1− ǫ)πunif + ǫπcont.

The insurance price is given by12 p = 1/2. Consider S = {1, 2} where state
one represents the loss and state two the absence of loss. Suppose that insur-
ance transfers are given by (t1, t2) = (0.5, 0) and losses are summarized by
the vector (l1, l2) = (0.5, 0). In this scenario, the agent could be fully insured
but Assumption 2.6 is satisfied with the demand for insurance decreasing
over the entire domain of contamination. Indeed, in this example

r̂s(c) ≥ −0.2 and
ξ̂(π̂s, ǫ) + ξ̂(f̂s, ǫ)

ξ̂(ν̂s, ǫ)
> 0.8 for all (c, ǫ, s) ∈ C × E × S.

Figure 1 shows the graphic representation of optimal insurance choices α̂
over varying ǫ.

Figure 1: Insurance optimal choices under varying levels of ǫ-contamination

11This function concentrates mass on high values of contamination, that is, the higher
the contamination the higher the probability of making a fixed prediction error.

12It is above the actuarially fair price p̄ = 1/4.



The following two definitions compare two kinds of contamination. They
are used to ensure sufficient conditions for Theorem 2.12.

Definition 2.9. Given a continuous g : E → R and a random family of
contamination ǫ̃ := {ǫ̃s : Z → E}s∈S, write

Ê[g ◦ ǫ̃s] =

∫

E

g(ǫ̃s(z))ζ(dz) for all s ∈ S

as the expected value of g over the realizations of ǫ̃s for all s ∈ S.

Remark 2.10. The change variable Theorem (see also Billingsley, 2008) states
that if ǫ̃ has continuous probability densities13 {f̂s : E → R}s∈S then

Ê[g ◦ ǫ̃s] =

∫

E

g(ǫ)f̂s(ǫ)dǫ for all s ∈ S.

Given another random family of contamination ǫ̃∗ := {ǫ̃∗s : Z → E}s∈S
with continuous probability densities {f̂ ∗

s : E → R}s∈S and a continuous
g : E → R then Ê[g ◦ ǫ̃∗s] =

∫

E
g(ǫ)f̂ ∗

s (ǫ)dǫ for all s ∈ S.

The following definition specifies a formal characterization of two types of
contamination and establishes a necessary condition to prove Theorem 2.12.

Definition 2.11. We say that the random contamination ǫ̃ is weaker than
ǫ̃∗ if

1. ǫ̃s(z) ≤ ǫ̃∗s(z) for all (z, s) ∈ Z × S

2. f̂s(ǫ) > f̂ ∗
s (ǫ) for all (ǫ, s) ∈ E × S+

3. f̂s(ǫ) < f̂ ∗
s (ǫ) for all (ǫ, s) ∈ E × S−

where {f̂s : E → R}s∈S and {f̂ ∗
s : E → R}s∈S are the families of differentiable

probability densities of ǫ̃ and ǫ̃∗ respectively.

Condition 1 assures that ǫ̃∗s contamination first order stochastic dominates
ǫ̃s for each s ∈ S. Given a fixed level of contamination, Condition 2 assures
that the density induced by ǫ̃ gives more probability of a certain variation in
ǫ for events s with high loss. Condition 3 has a reverse analogous interpre-
tation. The following theorem states that larger levels of contamination lead
to an average lower amount of optimal insurance units.

13That is, satisfying
∑

s∈S

∫

E
π̂s(ǫ)f̂s(ǫ)dǫ = 1.



Theorem 2.12. Suppose Assumption 2.6 and that the random contamina-
tion ǫ̃ is weaker than ǫ̃∗. If α̂ and α̂∗ are the optimal choices for ǫ̃ and ǫ̃∗

then
∑

s∈S

π̂s(0)Ê[α̂∗ ◦ ǫ̃∗s] <
∑

s∈S

π̂s(0)Ê[α̂ ◦ ǫ̃s].

Proof: See appendix. ✷

The following result shows that a persistent error in how agents assign
probabilities in the occurrence of future natural events leads to a long run
loss in welfare.

Theorem 2.13. Let s̃ := {s̃n : Z → S}n∈N be an independent stochastic
process with uniformly bounded variance and such that (πs)s∈S is its induced
probability distribution. Define the accurate optimal value

v̂ac(p) = max

{

∑

s∈S

πsu(cs) : (cs, α) satisfies cs ≤ w−ls+(ts−p)α for all s ∈ S

}

.

Then for each realization s = s̃(z) and ǫn = ǫ̃sn(z) for n ∈ N we have

v̂ac(p) > lim
N→∞

1

N

∑

n≤N

u(ĉsn(ǫn)).

Where ĉ is the optimal choice of agent’s problem (3).

Proof: See appendix. ✷

3 Conclusion

In this paper we established sufficient conditions on the total elasticity of
contamination over agents’ beliefs that lead to a reduction in the demand for
insurance. The total elasticity of contamination can be split into two com-
ponents. The first component represents the effect of the contamination on
the probabilities over exogenous events. In the second component, this effect
relies on the contamination probability distribution. Although the partial
effect on the probabilities over exogenous events trivially reduces insurance
demand, on total elasticity its magnitude and direction are undetermined.



The boundary conditions established in Assumption 2.6 however precludes
this indeterminacy and is a sufficient condition to reduce demand, even in
cases where the background risk changes. In addition to showing a decline
in demand under these conditions, we find that contracts are not efficient.
As a consequence agents aggregately incur in welfare loss in the long run.
Future research should incorporate solutions to eliminate inefficiency caused
by contamination. This is particularly important for insurance contracts
against climate related extreme events as evidence of uncertainty brought
with climate change quickly increases.

4 Appendix

Proof: of Lemma 2.5. Equation (2) becomes

ĉs(ǫ) = ν̂s(ǫ)α̂(ǫ) + w − ls for all (s, ǫ) ∈ S × E (5)

where we recall that ν̂s(ǫ) = (ts−p)−ǫ(ts+p) for all (s, ǫ) ∈ S×E. Therefore,

v̂a(p) = max

{

∑

s∈S

∫

E

π̂s(ǫ)u(ν̂s(ǫ)α̂(ǫ) + w − ls)f̂s(ǫ)dǫ

}

(6)

over all measurable α̂ : E → R+ such that ν̂s(ǫ)α̂(ǫ) + w − ls ≥ 0 for all
(s, ǫ) ∈ S × E. The concavity of u and the interior solution assure that the
F.O.C. is a sufficient condition for the optimality. Write

v̂(α̂) =
∑

s∈S

π̂s(ǫ)

∫

E

u(ν̂s(ǫ)α̂(ǫ) + w − ls)f̂s(ǫ)dǫ.

If α̂ is an interior solution of (6) then14 limτ→0+(v̂(α̂+ τh)− v̂(α̂))/τ ≤ 0 for
each h : E → R. Define g(τ) = v̂(α̂ + τh). Then this is the same as stating
that g′(0) ≤ 0. Therefore the F.O.C. evaluated at the optimal insurance
choice α̂ satisfies

∫

E

h(ǫ)

(

∑

s∈S

π̂s(ǫ)ν̂s(ǫ)u
′(ν̂s(ǫ)α̂(ǫ) + w − ls)f̂s(ǫ)

)

dǫ ≤ 0

and hence, choosing

h(ǫ) =
∑

s∈S

f̂s(ǫ)π̂s(ǫ)ν̂s(ǫ)u
′(ν̂s(ǫ)α̂(ǫ) + w − ls) for all ǫ ∈ E

14This is the Gateaux concept of derivative.



then we conclude that15

∑

s∈S

f̂s(ǫ)π̂s(ǫ)ν̂s(ǫ)u
′(ν̂s(ǫ)α̂(ǫ) + w − ls) = 0 for all ǫ ∈ E. (7)

✷

Proof: of Theorem 2.7. Recall by (5) that ĉs(ǫ) = ν̂s(ǫ)α̂(ǫ) + w − ls
where ν̂s(ǫ) = ts−p− ǫ(ts+p) for all s ∈ S. Therefore ν̂sα̂(ǫ) = ĉs(ǫ)+ ls−w
for all ǫ ∈ E. Write

ξ̂∗s (ǫ) = (ξ̂(π̂s, ǫ) + ξ̂(f̂s, ǫ) + ξ̂(ν̂s, ǫ))/ξ̂(ν̂s, ǫ) for all (ǫ, s) ∈ E × S.

Define for each ǫ ∈ E

gs(ǫ) = f̂s(ǫ)π̂s(ǫ)ν̂s(ǫ) and hs(ǫ) = u′(ν̂s(ǫ)α̂(ǫ) + w − ls) for all s ∈ S.

Thus

g′s(ǫ) = f̂ ′
s(ǫ)π̂s(ǫ)ν̂s(ǫ) + f̂s(ǫ)π̂

′
s(ǫ)ν̂s(ǫ) + f̂s(ǫ)π̂s(ǫ)ν̂

′
s(ǫ)

= f̂s(ǫ)π̂s(ǫ)ν̂s(ǫ)(f̂
′
s(ǫ)/f̂s(ǫ) + π̂′

s(ǫ)/π̂s(ǫ) + ν̂ ′
s(ǫ)/ν̂s(ǫ))

= ǫ−1f̂s(ǫ)π̂s(ǫ)ν̂s(ǫ)ξ̂(ν̂s, ǫ)ξ̂
∗
s (ǫ)

and

h′
s(ǫ) = (ν̂ ′

s(ǫ)α̂(ǫ) + ν̂s(ǫ)α̂
′(ǫ))u′′(ν̂s(ǫ)α̂(ǫ) + w − ls)

= −â(ĉs(ǫ))u
′(ĉs(ǫ))(ǫ

−1ξ̂(ν̂s, ǫ)ν̂s(ǫ)α̂(ǫ) + ν̂s(ǫ)α̂
′(ǫ)).

Since ν̂s(ǫ)α̂(ǫ) = ĉs(ǫ)+ ls−w then ν̂s(ǫ)α̂(ǫ)â(ĉs(ǫ)) = −r̂s(ĉs(ǫ)) and hence

h′
s(ǫ) = ǫ−1u′(ĉs(ǫ))ξ̂(ν̂s, ǫ)r̂s(ĉs(ǫ))− u′(ĉs(ǫ))ν̂s(ǫ)α̂

′(ǫ)â(ĉs(ǫ))

Therefore, differentiating (7) with respect to ǫ we get

0 =
∑

s∈S

g′s(ǫ)hs(ǫ) + gs(ǫ)h
′
s(ǫ)

= ǫ−1
∑

s∈S

u′(ĉs(ǫ))f̂s(ǫ)π̂s(ǫ)ν̂s(ǫ)ξ̂(ν̂s, ǫ)
(

ξ̂∗s (ǫ) + r̂s(ĉs(ǫ))
)

− α̂′(ǫ)
∑

s∈S

u′(ĉs(ǫ))f̂s(ǫ)π̂s(ǫ)ν̂
2

s (ǫ)â(ĉs(ǫ)).

15This inequality holds because f is continuous and we are considering the Lebesgue
integral.



Moreover, ν̂s(ǫ)ξ̂(ν̂s, ǫ) < −ǫ(ts + p) < 0 for all ǫ ∈ E and all s ∈ S. By
Assumption 2.6

r̂s(ĉs(ǫ)) + ξ̂∗s (ǫ) > 0 for all ǫ ∈ E and all s ∈ S

and hence α̂′(ǫ) < 0 since â(ĉs(ǫ)) > 0 for all ǫ ∈ E. ✷

Proof: of Theorem 2.12. Equation (7) implies that

∑

s∈S

f̂s(ǫ)π̂s(ǫ)ν̂s(ǫ)u
′(ν̂s(ǫ)α̂(ǫ) + w − ls) = 0 for all ǫ ∈ E.

and
∑

s∈S

f̂ ∗
s (ǫ)π̂s(ǫ)ν̂s(ǫ)u

′(ν̂s(ǫ)α̂
∗(ǫ) + w − ls) = 0 for all ǫ ∈ E.

Thus given an arbitrary ǫ ∈ E there exists s ∈ S such that

f̂s(ǫ)π̂s(ǫ)ν̂s(ǫ)u
′(ν̂s(ǫ)α̂(ǫ) +w− ls) ≤ f̂ ∗

s (ǫ)π̂s(ǫ)ν̂s(ǫ)u
′(ν̂s(ǫ)α̂

∗(ǫ) +w− ls).

Suppose that ν̂s(ǫ) > 0. Then

f̂s(ǫ)u
′(ν̂s(ǫ)α̂(ǫ) + w − ls) ≤ f̂ ∗

s (ǫ)u
′(ν̂s(ǫ)α̂

∗(ǫ) + w − ls).

By assumption f̂ ∗
s (ǫ) < f̂s(ǫ) and hence

u′(ν̂s(ǫ)α̂(ǫ) + w − ls) < u′(ν̂s(ǫ)α̂
∗(ǫ) + w − ls)

that is, α̂(ǫ) > α̂∗(ǫ). If ν̂s(ǫ) < 0 then

f̂s(ǫ)u
′(ν̂s(ǫ)α̂(ǫ) + w − ls) ≥ f̂ ∗

s (ǫ)u
′(ν̂s(ǫ)α̂

∗(ǫ) + w − ls).

and the conclusions follow analogously by reversing the arguments. Therefore
α̂(ǫ) > α̂∗(ǫ) for all ǫ ∈ E. Moreover, Theorem 2.7 states that ǫ ≤ ǫ′ implies
α̂(ǫ) ≥ α̂(ǫ′). Therefore, using that ǫ̃ is weaker than ǫ̃∗

α̂(ǫ̃s(z)) ≥ α̂(ǫ̃∗s(z)) > α̂∗(ǫ̃∗s(z)) for all (z, s) ∈ Z × S.

Therefore,

∫

Z

α̂(ǫ̃s(z))ζ(dz) >

∫

Z

α̂∗(ǫ̃∗s(z))ζ(dz) for all s ∈ S



and hence
∑

s∈S

π̂s(0)E[α̂ ◦ ǫ̃s] >
∑

s∈S

π̂s(0)E[α̂∗ ◦ ǫ̃∗s]

✷

Proof: of Theorem 2.13. The Kolmogorov strong law of large numbers16

states that

lim
N→∞

1

N

∑

n≤N

u(ĉsn(ǫn)) =
∑

s∈S

πs

∫

E

u(ĉs(ǫ))f̂s(ǫ)dǫ.

Since ĉs(ǫ) < w − ls + (ts − p)α̂(ǫ) for all (ǫ, s) ∈ E × S with ǫ > 0 then

∑

s∈S

πs

∫

E

u(ĉs(ǫ))f̂s(ǫ)dǫ =

∫

E

∑

s∈S

πsu(ĉs(ǫ))f̂s(ǫ)dǫ < v̂ac(p).

Thus

v̂ac(p) > lim
N→∞

1

N

∑

n≤N

u(ĉsn(ǫn)).

✷
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Estudos Econômicos USP 49 (2), 235–264.

Kunreuther, H., R. Hogarth, and J. Meszaros (1993). “Insurer ambiguity
and market failure”. Journal of Risk and Uncertainty 7 (1), 71–87.

Mossin, J. (1968). “Aspects of rational insurance purchasing”. Journal of
Political Economy 76, 553–568.

Pratt, J. W. (1964). “Risk aversion in the small and in the large”. Econo-
metrica 32 (1/2), pp. 122–136.

Pratt, J. W. and R. J. Zeckhauser (1987). “Proper risk aversion”. Econo-
metrica 55 (1), 143–154.

Rothschild, M. and J. Stiglitz (1976). “Equilibrium in competitive insur-
ance markets: An essay on the economics of imperfect information”. The
Quarterly Journal of Economics 90 (4), 629–649.

Tibiletti, L. (1995). “Beneficial changes in random variables via copulas:
An application to insurance”. The Geneva Papers on Risk and Insurance
Theory 20 (2), 191–202.


