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Abstract
We use the term instrument-like variables to describe a variable that is highly correlated with treatment (or programme

participation) and weakly correlated with outcome. This kind of variable cannot be used in instrumental variable

estimation because they are not instruments and the literature also show that they should not also be used in

Propensity Score Matching (PSM) because of their high correlation with treatment. The literature is therefore silent on

the estimation approach that performs better when it is necessary to control for such an instrument-like variable. In

this paper, we consider the estimation of treatment effect in the presence of an instrument-like variable and an

unobserved confounder. The result shows that a particular variant of propensity score estimation namely Covariate

Balancing Propensity Score (CBPS) performs better than alternatives in the presence of instrument-like variable and

an unmeasured confounder. Our simulation result suggests that by trading off treatment prediction for balance CBPS

reduces the influence of instrument-like variables on the propensity scores. This leads to lower bias and mean square

error for the estimate that is based on the CBPS model.
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1. Introduction 
Rosenbaum and Rubin (1983) show that under the Conditional Independence Assumption 

(CIA) and the Common Support Assumption (CSA), matching on (a one dimensional) 

propensity score suffices to adjust for differences in covariates. There are a number of 

simulation studies that have investigated the performance of Propensity Score Matching (PSM) 

estimators in terms of bias and mean square error (MSE) (for example, see Busso et al, (2014), 

Zhao (2004) and Frolich (2004). One estimation concern that has been raised by these studies 

(and others) is how to choose variables to be included in propensity score specification (see 

Cuong (2013) for example). The literature strongly recommends that only variables that affect 

both programme participation and outcome should be used in propensity score estimation 

(Cuong, 2013; Kang & Schafer, 2007; Lechner, 2008; Caliendo and Kopeinig, 2008). 

However, this advice seems to ignore the fact that correlation with participation and outcome 

can be thought of as a spectrum. By this, we mean that there are variables that are highly 

correlated with participation but only weakly correlated with outcome (we refer to this kind of 

variable as being instrument-like hereafter) while the converse is also possible.  

The literature provides direction on how to handle the extreme cases, i.e. variables that are 

correlated with participation or outcome alone (Bhattacharya and Vogt, 2007; Augurzky and 

Schmidt, 2001; Cuong, 2013). In the case of the former (variables that affect participation 

alone) this variable can be thought of as an instrument because it only affects the outcome 

through participation. Bhattacharya and Vogt (2007) show that absent strong ignorability1, 

using PSM yields greater inconsistency than the naïve estimator when an instrument is used in 

propensity score estimation. Cuong (2013) show that in the case of the latter (variables that 

affect outcome alone) there are efficiency gains when such variables are used in the estimation 

of propensity scores. In the case of variables that are highly correlated with participation but 

weakly correlated with outcome (instrument-like variables), Zhao (2004) show that when 

strong ignorability is satisfied, such variables increase bias but reduces the standard error of 

matching estimators.  

In this note, we focus on the case where ignorability is not satisfied  (similar to Bhattacharya 

and Vogt (2007)) and there is a variable that is highly correlated with participation but only 

weakly correlated with the outcome. Under such conditions, the variable does not qualify as an 

instrument and given the advice in the literature (Bhattacharya and Vogt, 2007), it should not 

be included as a covariate in propensity score estimation. However, this variable may be 

necessary to make the conditional independence assumption more plausible. The key question 

in this paper is, what is the best estimator under these set of conditions? 

Our simulation result shows that Covariate Balancing Propensity Score (CBPS) performs better 

than other estimators (i.e. instrumental variable and PSM based on logit model) that may be 

appealing under the stated set of conditions. The rest of the paper is organized as follows: 

section 2 provides a brief review of CBPS. Section 3 discusses our Data Generating Process 

(DGP) for the simulation study. Section 4 presents the results and section 5 concludes. 

2. Brief review 
There has been a lot of developments in the matching literature (for example, see Diamond and 

Sekhon (2013), Imai and Ratkovic (2014) and Iacus et. al (2012)). The one we focus on in the 

light of the problem just discussed is called the Covariate Balancing Propensity Score (CBPS). 

Introduced by Imai and Ratkovic (2014), CBPS exploits the dual characteristics of propensity 

                                                           
1 i.e. when there is an unmeasured confounder 



scores as a  covariate balancing score and the conditional probability of treatment assignment. 

CBPS extends logistic regression to simultaneously optimize covariate balance and treatment 

prediction (Wyss et. al, 2014). This is achieved by trading off some accuracy in treatment 

assignment precision in order to satisfy the balancing condition2.  

Imai and Ratkovic (2014) show that CBPS performs better in terms of bias and MSE when 

compared to the conventional logit estimation of propensity score (under strong ignorability). 

They also show that the method is robust to propensity score model misspecification.  In this 

note, we show that when there is an unmeasured confounder and an instrument-like variable, 

CBPS outperforms the conventional logit model and the Instrumental Variable (IV) approach 

in terms of bias and Mean Square Error (MSE). In providing a plausible explanation for our 

finding, we argue that trading-off precision in predicting the probability of participation in 

favour of satisfying the balancing condition becomes important in the context of variables that 

are highly correlated with participation but weakly correlated with outcome. Specifically, this 

trade-off eases imbalance by dampening the influence of the instrument-like variable on the 

propensity score distribution. 

 A logistic propensity score model uses Maximum Likelihood Estimation (MLE), which is 

designed to find parameter estimates by maximizing the assumed likelihood function.  When 

the model is misspecified, parameter estimates that maximize the fit of the data, or minimize 

prediction error may not correspond to the parameter estimate that minimizes imbalance (Wyss 

et. al, 2014). CBPS replaces MLE with a Generalized Method of Moments (GMM) estimation 

to simultaneously optimize prediction of treatment assignment and covariate balance (Imai and 

Ratkovic, 2014, Wyss et. al, 2014)3. The implication of this is that the optimal parameters 

(betas) under the CBPS and the conventional logit model will be different (see Oyenubi (2019) 

for example). Specifically, the influence of variables in the logit model is unrestricted while 

under CBPS this influence is mediated by the balancing condition (one can think of this as 

constrained versus unconstrained optimization where the constraint is the balancing condition). 

When there is a variable that is highly correlated with participation and weakly correlated with 

outcome, the influence of such variables (which are likely to increase imbalance by creating 

support problems) is dampened by balance consideration under CBPS. Better balance will then 

lead to less bias and a more precise estimate of treatment effect. 

Lechner (2008 pg 224) noted that from the small sample perspective4, it is preferable to omit 

some good predictors of treatment which have only a small influence on the outcome. The 

problem with such variables is that just like instruments they are likely to create a common 

support problem by reducing the randomness required for identification by the CIA. In other 

words, in an attempt to make the CIA more plausible, common support may be compromised. 

Note that this compromise may come in the form of thin support problem which increases 

biases and variances of estimators (e.g. Crump et al, 2009; Khan and Tamer, 2010). However, 

unlike instruments, because instrument-like variables are correlated with the outcome (howbeit 

weakly) they cannot be used for instrumental variable estimation. We show that absent 

ignorability, placing a little less emphasis on predicting the probability of treatment, seem to 

help CBPS handles instrument-like variables better by dampening their influence on the 

propensity scores. 

                                                           
2 One can think of the balancing condition as a constraint in the optimization that estimate probability of 

treatment assignment. 
3 See the paper Imai and Ratkovic (2014) for detailed description of the CBPS method and the generalized 

methods of moments estimation. 
4 But not a asymptotic one 



Bhattacharya and Vogt (2007) consider a case where ignorability is not satisfied and they show 

that using an instrument to estimate propensity score lead to inconsistency in  the effect 

estimate. Heckman and Navarro-Lozano (2004) consider a similar situation and show that 

using a variable that is highly correlated with treatment, but weakly correlated with the outcome 

also increases inconsistency of the effect estimate. In this paper, we show that when 

ignorability is not satisfied and there is an instrument-like variable, CBPS improves the effect 

estimate from matching relative to the conventional logistic approach (to estimating propensity 

scores) and the instrumental variable approach.  

3. Simulation Study 
The simulation study follows the work of  Bhattacharya and Vogt (2007). Let ݖ be an 

instrument-like variable, �ଵ and �ଶ are the error terms in the outcome and treatment equation, ݀ is an indicator for treatment, and ݕ is the outcome variable. We assume the following data 

generating process for the Monte Carlo experiments: ݖ~ܾ݁�ܽሺͲ.Ͳͷ, Ͳ.Ͳͷሻ ∗ 85 ሺ�ଵ, �ଶሻ~� ([ͲͲ] , [ͳ �� ͳ]) ݀ = −Ͷ + ߚݖ + ଵߚଵݔ + ଶߚଶݔ − �ଵ ݕ = �݀ + ݖߛ + ଵߚଵݔ + ଶߚଶݔ + ଷߚଷݔ + �ଶ ݔ�~�ሺͲ,ͳሻ , � = ͳ �ݔ .͵ ଵ and ݔଶ are correlated with both treatment and outcome while ݔଷ is 

correlated with treatment alone. The parameter � describes the correlation between �ଵ and �ଵ, 

we consider � = Ͳ, Ͳ.ʹ , Ͳ.Ͷ , Ͳ. , Ͳ.8. When � = Ͳ, strong ignorability holds, as � increases, 

the strength of the unobserved confounder increases. To vary the correlation of the instrument-

like variable with the outcome we consider ߛ = Ͳ ܽ݊݀ Ͳ.ʹ.  
The remaining parameters are set as follows � = Ͳ.ͳ6, ߚ = ͳ, ଵߚ = Ͳ.ͳ, ଶߚ = Ͳ.ͳ, ଷߚ =Ͷ. Each simulation contains 400 observations with about 80% in the treatment group, this is 

done to mimic the situation in which there is a scarcity of good control units. The simulation 

is repeated 500 times, in each case, we match using propensity scores obtained from  CBPS 

and logit model, we also use the IV estimator (using ݖ as an instrument) to calculate the 

treatment effect.  

One can think of the beta estimate from a logit or CBPS model as weights assigned to covariates 

in order to reduce the dimension of the covariates. Variables that are highly correlated with 

participation will, therefore, have high betas. To get a sense of the influence of the instrument-

like covariate on the propensity scores, we calculate 
�∑ ��+��  i.e. the proportion of the total weight 

due to the instrument-like variable or the influence of ݖ on the propensity scores. 

 What we expect is that since CBPS trades-off likelihood maximization for balance, this trade-

off will imply lower influence for variables that are highly correlated with treatment (in 

general). The lower influence will be off-set by improved balance. So that relative to the 

                                                           

5 For the simulation in Bhattacharya and Vogt (2007) ݖ follows an exponential distribution. We chose to make it 

a bimodal distribution which inform the choice of beta distribution with the listed parameters. This induces a 

difference in means of this variable across treatment arms which makes the variable a good predictor of 

treatment. While we have generated this characteristic artificially, it is not strange to find variable with 

significant difference in means across treatment arms  in observational studies.  
6 Note that this means that the treatment effect is constant over the support. 



conventional logit model we expect the influence of ݖ to be lower in the CBPS model. This 

lower influence and better balance should lead to better behaviour for the estimator relative to 

the logit model and the IV approach (note that an instrument-like variable should fail under the 

IV approach since it is not a proper instrument). In the extreme case where ߛ = Ͳ, ݖ is a proper 

instrument and we expect the IV approach to dominate other estimators.  

4. Results 
Table 1 presents the simulation results. There are two panels, panel 1 shows the result when ߛ = Ͳ and panel 2 shows the result when ߛ = Ͳ.ʹ. The last three rows in each panel show the 

correlation between treatment and the instrument-like variable (ࢉ���ሺࢠ,  ሻ), the correlationࢊ

between the outcome and the instrument-like variable (ࢉ���ሺࢠ,  ሻ) and the percentage of treatment࢟

observations (ratio(d/n)) respectively. It is clear that in both panels that  ݖ is highly correlated with ݀ 

but weakly correlated with ݕ. Note that in panel 1 the correlation coefficient ࢉ���ሺࢠ,  ሻ is very close࢟

to zero this is because we set  ߛ = Ͳ in panel 1 which means ݖ is a proper instrument (by design). 

The next three rows (rows 6,7 and 8 from the top) show the MSE for the different estimators 

(i.e. CBPS MSE, logit MSE and IV MSE). Rows 3, 4 and 5 show the bias of the different 

estimators (CBPS bias, logit bias, IV bias) while the first two rows show the percentage of total 

beta attributable to ݖ. 

 

Table 1: Simulation Results 
 � =  � 0 0.2 0.4 0.6 0.8 

Panel 1 

CBPS beta % 0.5431 0.5255 0.5370 0.5304 0.5306 

logit beta % 0.6315 0.6254 0.6326 0.6197 0.6254 

      

CBPS Bias 0.6106 0.6356 0.7101 0.7381 0.8410 

logit Bias 0.7344 0.7278 0.7676 0.7795 0.9047 

IV Bias 0.1357 0.1324 0.1268 0.1296 0.1344 

      

CBPS MSE 0.6364 0.6903 0.8674 0.8578 1.1165 

logit MSE 0.8693 0.8344 0.9956 1.0394 1.2947 

IV MSE 0.0283 0.0275 0.0254 0.0278 0.0297 

,ࢠሺ���ࢉ       ,ࢠሺ���ࢉ ሻ 0.8622 0.8650 0.8640 0.8649 0.8646ࢊ  ሻ 0.0095 0.0060 0.0126 0.0153 0.0099࢟

ratio (d/n) 0.8311 0.8337 0.8357 0.8323 0.8268 
      

 � = .  

Panel 2 

CBPS beta % 0.5431 0.5255 0.5370 0.5304 0.5306 

logit beta % 0.6315 0.6254 0.6326 0.6197 0.6254 

      

CBPS Bias 0.6104 0.6353 0.7060 0.7323 0.8347 

logit Bias 0.7350 0.7281 0.7680 0.7796 0.9060 



IV Bias 1.7707 1.7824 1.7860 1.7895 1.7782 

      

CBPS MSE 0.6320 0.6881 0.8591 0.8467 1.0993 

logit MSE 0.8703 0.8352 0.9961 1.0389 1.2987 

IV MSE 3.1655 3.2078 3.2196 3.2328 3.1965 

,ࢠሺ���ࢉ       ,ࢠሺ���ࢉ ሻ 0.8622 0.8650 0.8640 0.8649 0.8646ࢊ  ሻ 0.1861 0.1823 0.1885 0.1912 0.1860࢟

ratio (d/n) 0.8311 0.8337 0.8357 0.8323 0.8268 

 

Panel 1 shows that when ݖ is a proper instrument the IV approach yields the lowest bias and 

MSE (which is expected). Furthermore, as the strength of the unmeasured confounder increases 

the performance of the CBPS and conventional logit model deteriorates. This is also expected 

since these estimators assume ignorability. However, we note that the CBPS approach performs 

better than the conventional logit model across panel 1 (in terms of bias and MSE). 

The central result of this paper is presented in panel 2. For panel 2, ݖ is not a proper instrument. 

Therefore, both the bias and MSE for the IV estimate increase considerably (relative to panel 

1), while the result for the other two estimators remains largely unchanged. Furthermore, 

similar to panel 1 the CBPS continues to outperform the logit model. This means that in the 

presence of an unmeasured confounder and an instrument-like variable the matching estimate 

from the CBPS model outperforms the other estimators. 

Rows 1 and 2 of both panels provide a plausible explanation for why the CBPS performs better 

than the conventional logit model in the presence of an instrument-like variable and an 

unmeasured confounder (the reason why it outperforms the IV approach is obvious). Note that 

the influence of the beta estimate for ݖ is on average 10% higher under the conventional logit 

model compared to the CBPS approach. Also note that the beta due to ݖ is the largest influence 

on the predicted probabilities accounting for more than 50% of the total sum of betas.  This 

means that the influence of ݖ on the support of the propensity score density is reduced in the 

CBPS model, and this will enhance pre-matching and post-matching balance. All things being 

equal as ߚ increases, there will be more selection due to 7ݖ, this will increase the variance of ݀ and stretch out the propensity score distribution (across treatment arms). A similar argument 

can be found in Zhao (2004; pg 97)8.  

The point here is that by dampening the effect of the instrument-like variables CBPS makes 

the (pre-matching) propensity score densities “closer”  to each other. This enhances overall 
balance and improves the performance of the matching estimator. CBPS can, therefore, 

enhance balance by reducing the influence of an instrument-like variable on the propensity 

scores. The fact that CBPS improves the performance of matching estimators has been 

highlighted by Imai and Ratkovic (2014), what our result shows is that in the presence of an 

                                                           
7 Note that more selection in general means increased disparity between the covariates (across treatment arms) 

or the propensity score density that summarizes the covariates. In results not presented here but available on 

request from the author, we calculate the Kolmogorov Smirnov distance and Standardized difference in means 

between the propensity score densities across treatment arms. The result show that the pre-matching distances 

between the densities under CBPS is on average slightly less than the pre-matching distance between the 

densities under the logit model. This is the case even though we use the same specification and covariates. 

However, this is not surprising since CBPS is constrained by the balancing condition. 
8 Specifically paragraph 2 of the cited paper discusses how decreasing a parameter � (which is equivalent to ߚ 

in our set up) can decrease the variance of the propensity score distribution 



unmeasured confounder and an instrument-like variable, CBPS performs better than competing 

models that may be appealing under such conditions. 

Next, we investigate if there is a threshold for ߛ beyond which CBPS becomes the best 

estimator in the class of estimators considered in this study. Recall that when ߛ = Ͳ IV 

dominates the other estimators and when ߛ = Ͳ.ʹ CBPS dominates the other estimators . This 

means that there is some threshold at which the dominance shifts from IV to CBPS. To explore 

this table 2 present the results presented in table 1 when ߛ = Ͳ.Ͳͷ ܽ݊݀ Ͳ.ͳ. For ߛ = Ͳ.Ͳͷ (in 

table 2) the IV estimator still dominates other estimators (but the size of bias has increased 

relative to ߛ = Ͳ).  While for ߛ = Ͳ.ͳ the CBPS performs better. Therefore for the 

configuration of data in our simulation, somewhere between ߛ = Ͳ.Ͳͷ and ߛ = Ͳ.ͳ CBPS 

should be preferred to the IV estimator. We note that this range may be different under a 

different set of data configuration. 

Table 2: Simulation Results 
 � = .05 � 0 0.2 0.4 0.6 0.8 

Panel 1 

CBPS beta % 0.5431 0.5255 0.5370 0.5304 0.5306 

logit beta % 0.6315 0.6254 0.6326 0.6197 0.6254 

      

CBPS Bias 0.6105 0.6355 0.7090 0.7366 0.8393 

logit Bias 0.7346 0.7279 0.7677 0.7795 0.9050 

IV Bias 0.4377 0.4537 0.4555 0.4595 0.4472 

      

CBPS MSE 0.6351 0.6896 0.8651 0.8549 1.1119 

logit MSE 0.8695 0.8346 0.9957 1.0393 1.2957 

IV MSE 0.2196 0.2333 0.2332 0.2389 0.2298 

,ࢠሺ���ࢉ       ,ࢠሺ���ࢉ ሻ 0.8622 0.8650 0.8640 0.8649 0.8646ࢊ  ሻ 0.0544 0.0508 0.0574 0.0601 0.0547࢟

ratio (d/n) 0.8311 0.8337 0.8357 0.8323 0.8268 
      

 � = .  

Panel 2 

CBPS beta % 0.5431 0.5255 0.5370 0.5304 0.5306 

logit beta % 0.6315 0.6254 0.6326 0.6197 0.6254 

      

CBPS Bias 0.6105 0.6354 0.7080 0.7352 0.8375 

logit Bias 0.7347 0.7279 0.7678 0.7795 0.9053 

IV Bias 0.8818 0.8964 0.8989 0.9028 0.8905 

      

CBPS MSE 0.6339 0.6890 0.8630 0.8520 1.1076 

logit MSE 0.8698 0.8348 0.9958 1.0391 1.2967 

IV MSE 0.8062 0.8320 0.8348 0.8434 0.8244 

      



,ࢠሺ���ࢉ ,ࢠሺ���ࢉ ሻ 0.8622 0.8650 0.8640 0.8649 0.8646ࢊ  ሻ 0.0990 0.0953 0.1018 0.1045 0.0991࢟

ratio (d/n) 0.8311 0.8337 0.8357 0.8323 0.8268 

 

 

5. Conclusion 
This paper considers the estimation of treatment effect when there is an unmeasured 

confounder and a variable that is highly correlated with participation but does not qualify to be 

an instrument because it is also weakly correlated with outcome. Specifically, in the presence 

of such instrument-like variable, there is no clear advise in the literature as to what the preferred 

estimator should be. Instrumental variable and PSM (in general) are approaches that might be 

attractive in such situations. We show through a simulation study that a particular variant of 

the propensity score estimation method namely CBPS works best under the stated conditions. 

Our result suggests that CBPS works better under the stated condition because it trades-off 

treatment prediction for balance and this is particularly important when instrument-like 

variables are needed to justify the conditional independence assumption. The result echoes the 

point made by Imai and Ratkovic (2014) i.e. CBPS will improve the balance of observed 

covariates even if there are unmeasured confounders.   

Finally, as noted by Wyss et. al (2014) it is unlikely that a single propensity score estimation 

method will be optimal in every setting. More work is needed to better understand the 

performance of different propensity score estimators. We see this work as providing a set of 

conditions under which CBPS works better than competing estimators. 
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