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Abstract
This paper studies duopolistic price competition in a two-sided market with positive and negative indirect network
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1. Introduction

Advertising-supported media are two-sided platforms in that advertising slots help irms
reach consumers, but the consequence of advertising is not simple. Consumers tend to
incur disutility each time they see an advertisement. Some empirical studies, however,
claim that consumers may obtain utility that increases in the number of advertisements
(e.g., Kaiser and Song 2009).1 It is thus relevant that some consumers obtain higher
utility while others incur greater disutility from a medium with a larger number of adver-
tisements. Firms in general can earn higher expected revenues by showing their adver-
tisements to a larger number of consumers. Regarding proits, nevertheless, irms with
limited capacities (e.g., individual professionals and family-owned restaurants) might face
excess demand and incur additional costs. This fact implies that some irms might ex-
hibit higher willingness to pay for media with smaller audiences (e.g., local newspapers)
because those media yield higher expected proits to the irms. The consideration above
suggests that an indirect network externality (simply called an ǳexternalityǴ hereafter)
is positive for some economic agents and negative for others on both sides of a media
market. To the best of my knowledge, the literature seldom investigates this situation.2

An exception is Sokullu (2016a, 2016b), who empirically shows that the market demand
functions are not monotone in opposite-side demand on both sides of the U.S. newspaper
and German magazine industries. Sokullu (2016a, 2016b), however, constructs a model
for a monopolistic medium.3 The present paper studies price competition when positive
and negative externalities coexist on each side of a duopolistic two-sided market.

I ind that the pattern of the equilibrium coniguration varies according to the pro-
portion of potential users who incur a negative externality. If the proportion is smaller
than half, one platform exceeds the rival platform in market share and price on both
sides. This equilibrium coniguration replicates the pattern in Gabszewicz and Wauthy
(2004, 2014), who analyze the case of a positive externality exerted on each potential
user and interpret the coniguration as vertical diferentiation in terms of market share.
The coniguration in the present paper is notable in that the lower market share is an
advantage for the rival to attract agents who incur a negative externality, in which sense
each platform engages in horizontal diferentiation. If the externality is negative for the
majority of potential users, then each platform attracts a larger number of agents on one
side than the rival but fewer agents on the other side. Ambrus and Argenziano (2009)
analyze the case of a positive externality exerted on each potential user and apply the
concept of coalitional rationalizability proposed by Ambrus (2006),4 and they show that
a similar user allocation may arise in equilibrium. The diference is that each platform
charges higher fees on its side with a larger number of users (incurring a weaker negative
externality) in the present paper, whereas each platform chooses a lower price on such a
side (where a weaker positive externality is exerted) in Ambrus and Argenziano (2009).

1Kaiser and Song (2009) conduct an empirical analysis of the German magazine industry and obtain
the following results. First, consumer utility tends to increase in the number of advertising pages divided
by that of content pages. Second, simulated models with consumer heterogeneity suggest the existence
of both consumers who enjoy advertisements and who do not in some magazine segments.

2Rochet and Tirole (2003, 2006), Weyl (2010), and White and Weyl (2016) develop general models
that allow for this situation but do not explicitly discuss the competitive outcome in this situation.

3Sokullu (2016b) calculates the relative prices of the magazines to account for competition but does
not explicitly model price competition among magazines.

4Coalitional rationalizability rules out any bundle of strategies that are never optimal for an arbitrary
group of players given other players’ strategies.



Platforms avoid ierce competition in my model because each platform mildly competes
on its side with fewer users. In sum, two diferent patterns of user allocations arise under
a standard equilibrium concept in a single model with the coexistence of positive and
negative externalities.

This paper shows that social welfare is maximized only if one platform attracts all
agents on one side (say, side A). If the externality is positive for a suiciently large
number of agents, all agents on the other side (side B) should join the platform. As the
proportion of agents who incur a negative externality grows, the number of side-B agents
who should choose the platform decreases because the welfare impacts of the negative
externality cannot be ignored. In particular, the other platform should attract all agents
on side B if the proportion is suiciently high. This result arises only in the case in which
positive and negative externalities coexist.

2. Model

This section develops a duopoly model for a two-sided market á la Gabszewicz and Wau-
thy (2004, 2014) but with two diferences. First, the externality is positive for some
potential users and negative for others on each of the two sides. Second, both sides of
the market are assumed to be fully covered.

There are two diferent groups of unit-mass agents on sides A and B of a platform
market. Platforms 1 and 2 are symmetric irms that provide agents on both sides with
their services, charging participation fees. Each platform consists of stand-alone and
intermediation services. A stand-alone service has an agent-, platform-, and side-common
intrinsic value, which is denoted by v ∈ R++ and is high enough for any potential user to
enjoy a strictly positive payof from either platform. An intermediation service connects
agents on side A with those on side B, which causes the side-A users of a platform to exert
an externality on the side-B users of the platform and vice versa. The agents on each side
are assumed to have diferent valuations of intermediation services, in that the externality
is exerted positively on some of them and negatively on others, and that the impact of
the externality depends on each agent’s type.5 The types are uniformly distributed on a
unit interval [−α, 1 − α], where α ∈ (0, 1) is an exogenous side-common parameter that
indicates the proportion of agents who incur a negative externality.6 Potential users on
each side simultaneously choose one platform after each platform determines its prices.
Provided that platform 1 attracts nA

1 ∈ [0, 1] agents on side A and charges pB1 ∈ R on

5This formulation can apply to the advertising side of a media market. Firms generally obtain higher
beneits from a medium with a larger audience, which is the case of a positive externality. Some irms,
however, possibly run their businesses with too small stafs to accept a large number of consumers (e.g.,
individual professionals and family-owned irms). These irms might incur higher costs if showing their
advertisements to a larger audience because they need to address demand that exceeds their capacities.
In this sense, a negative externality may be exerted on some irms.

The formulation can also apply to the subscription side. Although some consumers might enjoy
advertisements per se, it is a natural assumption that consumers are likely to incur disutility by seeing
advertisements. Nevertheless, the latter consumers can also obtain beneits if they see matched advertise-
ments and purchase the advertised products. The sign of such a consumer’s payof from advertisements
is determined by the relation between the total disutility of seeing them and the total utility from his/her
purchase(s). In sum, positive and negative externalities plausibly coexist on the side.

6Appendix B shows that the main results are robust if the parameter α is side-speciic as long as the
side-A and side-B parameters are not substantially diferent.



side B, an agent of type θ ∈ [−α, 1− α] on side B receives a payof of
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If nAe
1 > nAe

2 and under the full-coverage assumption,8 platform 1 (which attracts a larger
number of side-A agents) is chosen by the side-B potential users of type θ such that
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7See footnote 14 for the derivation of an equilibrium when nAe
1 = nAe

2 and/or nBe
1 = nBe

2 , which is
unstable in that it may arise only if both platforms attract exactly the same number of agents on one or
both side(s).

8Side B is fully covered if agents of the lowest type (θ = −α) eventually obtain weakly positive
payofs, where v ≥ αnA

2 + pB2 .



Before proceeding to proit maximization, I formulate the process to form market-
share expectations. This paper assumes that potential users expect the opposite-side
market shares independently of the opposite-side prices and that their expectations are
fulilled in equilibrium.9 Under this formulation, the market demand functions are deined
as those of the own-side prices and the expected opposite-side market shares only.

Platforms 1 and 2 maximize their own proits with respect to their participation fees,
given one another’s price strategy and the potential users’ expectations of the market
shares. Speciically, platform 1 chooses (pA1 , p

B
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Note that the marginal and ixed costs of production are normalized to zero for both plat-
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Platform 2’s optimal side-B price is analogous:
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strategy on side A.
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In equations (3) and (4), each platform’s proit-maximizing prices are consistent with
the competitor’s expectation of them. In equations (5) and (6), the potential users’
expectations of each platform’s market share are fulilled.

9This formulation follows Gabszewicz and Wauthy (2004, 2014), who adapt Katz and Shapiro’s (1985)
fulilled-expectation concept to the context of a two-sided market. There is another expectation concept
(see Hagiu and Hałaburda 2014 for a discussion), employed for instance by Armstrong (2006), that allows
for expectation dependent on the opposite-side prices. Appendix B discusses the robustness of the main
results if the latter concept applies.

10The derivatives of π1(p
A
1 , p

B
1 ; ·) contain no term derived from the respective other sides because

(i) platform choices are made independently of the opposite-side prices and (ii) the platform incurs zero
production cost. The platform therefore maximizes its side-A and side-B proits separately. In particular,
this separation causes the platform to charge a positive price on each side. This discussion would also
apply if the market were partially covered.



The policymaker is interested in a welfare-maximizing user allocation.11 In this paper,
social welfare is the sum of the total beneits on sides A and B because the costs are zero.
Consider irst the total beneit on side B, denoted by WB(nB

1 , n
B
2 ;n

A
1 , n

A
2 ). The agents of

higher types should join the platform with a larger number of opposite-side users. Recall
that the types are uniformly distributed on a unit interval. Similar to the equilibrium
analysis, hereafter, assume that
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and focus on the full-coverage case.12 Then,
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Social welfare is therefore
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3. Equilibrium and Its Welfare Consequence

This section discusses the equilibrium and welfare maximization. I show that each plat-
form in equilibrium chooses a diferent price strategy according to the proportion of
agents who incur a negative externality. The section establishes that the eicient alloca-
tion pattern also depends on the proportion and difers from the equilibrium coniguration
(except when α = 1/2). See Appendix A for proofs of the propositions.

11This paper formulates welfare maximization as the problem to obtain an eicient outcome that would
arise if the policymaker could directly allocate all agents. One can instead consider an alternative formu-
lation such that (i) the policymaker announces an eicient user allocation and (ii) agents simultaneously
make platform choices as announced. The former and latter formulations are equivalent if agents follow
the announcement while expecting the opposite-side market shares. By contrast, both formulations re-
sult in diferent outcomes if agents somehow do not incorporate the announcement in their market-share
expectations. The latter case can be addressed by reformulating welfare maximization as the problem
to maximize social welfare given each agent’s expectation, which is parallel to competition described in
this paper. Appendix B discusses this welfare-maximization problem and establishes that the welfare
implications of the competitive outcome are qualitatively unchanged.

12Appendix B shows that full coverage is eicient because social welfare decreases as any agent on
each side exits from the market.

13If nB
1 < nB

2 , for instance, the side-A agents of higher types should use platform 2.



Table 1: Equilibrium Coniguration If 0 < α < 1/2 in Proposition 1

Side A Side B
Platform 1 n∗: high / p∗: high n∗: high / p∗: high

types: + types: +
Platform 2 n∗: low / p∗: low n∗: low / p∗: low

types: + and − types: + and −

Note: The sub- and superscripts of n∗ and p∗ are omitted, which applies to Table 2.

3.1. Competitive Outcome

The following proposition states the equilibrium conigurations.14

Proposition 1. The equilibrium under condition (1) is characterized as follows.

1. If α ∈ (0, 1/2), pA∗

1 = pB∗

1 = (1 − 2α)(2 − α)/9, pA∗

2 = pB∗

2 = (1 − 2α)(1 + α)/9,
nA∗

1 = nB∗

1 = (2− α)/3, and nA∗

2 = nB∗

2 = (1 + α)/3.
2. If α ∈ (1/2, 1), pA∗

1 = pB∗

2 = (2α − 1)(1 + α)/9, pA∗

2 = pB∗

1 = (2α − 1)(2 − α)/9,
nA∗

1 = nB∗

2 = (1 + α)/3, and nA∗

2 = nB∗

1 = (2− α)/3.

Table 1 summarizes the properties of the equilibrium coniguration when the exter-
nality is positive for the majority of potential users. Platform 1 obtains larger market
shares on both sides and attracts agents of higher types under higher participation fees.
Platform 2 forms smaller networks on both sides, where agents of lower types partici-
pate and pay lower fees. Gabszewicz and Wauthy (2004, 2014) demonstrate a similar
coniguration in the absence of a negative externality and regard the coniguration as the
occurrence of vertical diferentiation in opposite-side market share. The coniguration
when 0 < α < 1/2 in the present paper, on the other hand, exhibits horizontal diferen-
tiation due to the coexistence of positive and negative externalities. Platform 1 attracts
only agents of positive (and higher) types, who choose the platform because it yields
higher beneits to them. Platform 2 attracts all of the agents incurring a negative exter-
nality, who can mitigate their disutilities by choosing the platform. One can clarify this
property by altering the type distributions. Suppose, in addition to the agents of types
θ ∈ [−α, 1 − α], that there is a small mass of potential users whose type is δ < −α on
each side. Once δ decreases enough, platform 2 can improve its proit by attracting only
the type-δ agents (nA∗

1 > nA∗

2 and nB∗

1 > nB∗

2 ) under participation fees higher than those
of platform 1 (pA∗

2 > pA∗

1 and pB∗

2 > pB∗

1 ),15 some of whose users incur a weak negative
externality. This example supports the possibility of the platform with the lower market
shares charging higher fees as a consequence of horizontal diferentiation.

Table 2 shows the equilibrium coniguration when the externality is negative for the
majority of potential users. Each platform has a side with a larger market share (called its

14There also exist equilibria in which both platforms are expected on, say, side B to attract the same
number of side-A agents. The platforms face Bertrand competition on side A, and the allocation on that
side is determined by the expectation formed on side B. If the side-B expectation is that nAe

1 > nAe
2 ,

pA∗

1 = pB∗

1 = pA∗

2 = pB∗

2 = 0, 0 ≤ nA∗

2 < nA∗

1 ≤ 1, and nB∗

1 = nB∗

2 = 1/2, which arises only when α = 1/2.
If the expectation is that nAe

1 = nAe
2 , nA∗

1 = nA∗

2 = nB∗

1 = nB∗

2 = 1/2 and pA∗

1 = pA∗

2 = pB∗

1 = pB∗

2 = 0
for all α, as in Gabszewicz and Wauthy (2004, 2014).

15Weyl (2010) and White and Weyl (2016) propose pricing that enables the platform to attract a
desired number of agents only.



Table 2: Equilibrium Coniguration If 1/2 < α < 1 in Proposition 1

Side A Side B
Platform 1 n∗: high / p∗: high n∗: low / p∗: low

types: − types: + and −
Platform 2 n∗: low / p∗: low n∗: high / p∗: high

types: + and − types: −

Table 3: Welfare-Maximizing Allocation Coniguration If 0 < α < 1/2 in Proposition 2

Market Share on Side A Market Share on Side B
Platform 1 1 1 (0 < α ≤ 1/4)

high (1/4 < α < 1/2)
Platform 2 0 0 (0 < α ≤ 1/4)

low (1/4 < α < 1/2)

larger side) occupied totally by negative types of agents and a side with a smaller market
share, which enables each platform to mitigate the negative externality incurred by the
platform’s users on its larger side and to charge higher participation fees there. Each
platform also makes price competition less severe because a platform obtains a larger
market share on a side if the other platform attracts fewer agents on that side. Note that
this coniguration displays a similar user allocation to Ambrus and Argenziano’s (2009).
However, the characteristics of Ambrus and Argenziano’s (2009) coniguration are that
each user on a larger side enjoys a small beneit and each platform cannot charge high
fees on its larger side. This diference occurs because the present paper allows for the
coexistence of positive and negative externalities.

3.2. Welfare Maximization and Eiciency

The following proposition shows the eicient allocation pattern for each α.

Proposition 2. Under condition (7), social welfare is maximized if and only if the agents
are allocated as follows.16

1. If α ∈ (0, 1/4], nA∗∗

1 = nB∗∗

1 = 1 and nA∗∗

2 = nB∗∗

2 = 0.
2. If α ∈ (1/4, 3/4), nA∗∗

1 = 1, nB∗∗

1 = (3− 4α)/2, nA∗∗

2 = 0, and nB∗∗

2 = (4α− 1)/2.
3. If α ∈ [3/4, 1), nA∗∗

1 = 1, nB∗∗

1 = 0, nA∗∗

2 = 0, and nB∗∗

2 = 1.

Tables 3 and 4 display the eicient allocation conigurations according to the propor-
tion of agents who incur a negative externality. When the externality is positive for a
suiciently large number of agents, social welfare is maximized if platform 1 gathers all
agents on both sides because most agents have high enough types to enjoy the highest
beneits from the platform. When the externality is negative for a suiciently large num-
ber of agents, social welfare is maximized if platform 1 attracts all agents on side A but

16This statement holds whenever nA
1 ̸< nA

2 because W (1/2, 1/2, 1/2, 1/2) = lim(nA

1
,nB

1
)→(1/2,1/2) W (·).



Table 4: Welfare-Maximizing Allocation Coniguration If 1/2 < α < 1 in Proposition 2

Market Share on Side A Market Share on Side B
Platform 1 1 0 (3/4 ≤ α < 1)

low (1/2 < α < 3/4)
Platform 2 0 1 (3/4 ≤ α < 1)

high (0 < α ≤ 1/4)

none on side B because most agents have suiciently low types and that allocation min-
imizes their disutilities. When the proportion of agents who incur a negative externality
is moderate, social welfare is maximized if platform 1 attracts all agents on side A and
some agents on side B. The platform’s eicient side-B market share decreases in the pro-
portion of agents who incur a negative externality. The conigurations discussed above
signiicantly difer from those in Gabszewicz and Wauthy (2004, 2014) and Ambrus and
Argenziano (2009), where social welfare is maximized if one platform attracts all agents
on both sides. This diference arises because agents who incur a negative externality play
important roles in reducing social welfare in the present paper.

Proposition 2 implies that none of the equilibrium conigurations established in Propo-
sition 1 is eicient. On side A, platform 1 in equilibrium always attracts a smaller number
of potential users than the eicient level (nA∗

1 < nA∗∗

1 ). On side B, the equilibrium and
eicient market shares difer. Platform 1 in equilibrium obtains a smaller market share
than the eicient level (nB∗

1 < nB∗∗

1 ) if the externality is positive for more than half of
agents (0 < α < 1/2), which means that the positive externality on each side is less
enhanced. The platform in equilibrium attracts a larger number of potential users than
the eicient level (nB∗

1 > nB∗∗

1 ) if the externality is negative for more than half of agents
(1/2 < α < 1), where the negative externality on each side is less mitigated.

4. Conclusion

This paper studies the equilibrium and eicient outcomes in a two-sided market where
positive and negative externalities coexist on both sides. Each potential user’s expec-
tation of opposite-side market demand diferentiates the platforms such that a positive
externality is enhanced and a negative externality is mitigated. Social welfare is maxi-
mized only if a platform attracts all agents on one side, in which the platform’s eicient
market share on the other side weakly decreases as the proportion of agents who incur a
negative externality grows. The equilibrium and eicient outcomes almost always difer.



Appendix

A. Proofs

This section contains proofs of the propositions established in the main text.

A.1. Proof of Proposition 1

Consider the equilibrium allocation and prices on side B. Equations (3) and (4) yield
each platform’s side-B price:

pB∗

1 =

pB∗

1
+(nA∗

1
−nA∗

2 )α
2

+ (1− α)
(
nA∗

1 − nA∗

2

)

2
⇐⇒ pB∗

1 =
(2− α)

3

(
nA∗

1 − nA∗

2

)
(8)

pB∗

2 =

(2−α)(nA∗

1
−nA∗

2 )
3

+
(
nA∗

1 − nA∗

2

)
α

2
=

(1 + α)

3

(
nA∗

1 − nA∗

2

)
. (9)

The price diference on side B is

pB∗

1 − pB∗

2 =
(1− 2α)

(
nA∗

1 − nA∗

2

)

3
.

Equation (6) yields the equilibrium side-B demand for each platform:

nB∗

1 = 1− α−
(1−2α)

3

(
nA∗

1 − nA∗

2

)

nA∗

1 − nA∗

2

=
2− α

3
(10)

nB∗

2 =
(1−2α)

3

(
nA∗

1 − nA∗

2

)

nA∗

2 − nA∗

2

+ α =
1 + α

3
. (11)

Therefore, nB∗

1 > nB∗

2 if α ∈ (0, 1/2), and nB∗

1 < nB∗

2 if α ∈ (1/2, 1). The diference in
market share on side B is

nB∗

1 − nB∗

2 =
1− 2α

3
.

The equilibrium prices and side-A allocation are obtained as follows. If α ∈ (0, 1/2),
the derivations of pA∗

1 , pA∗

2 , nA∗

1 , and nA∗

2 are analogous to those of expressions (8) to (11),
respectively. The equilibrium prices are

pB∗

1 =
2− α

3
·
1− 2α

3
= pA∗

1 pB∗

2 =
1 + α

3
·
1− 2α

3
= pA∗

2 .

If α ∈ (1/2, 1), the same discussion applies except that (pA∗

1 , nA∗

1 ) and (pA∗

2 , nA∗

2 ) replace
one another.

A.2. Proof of Proposition 2

This proof consists of two parts. The irst part shows that the irst-order conditions for the
welfare-maximization problem violate one of the second-order conditions, which implies
that the welfare-maximizing outcomes are corner solutions. The second part obtains the
welfare-maximizing allocation under condition (7).



A.2.1. Second-Order Conditions for Welfare Maximization

Suppose that nB
1 > nB

2 . Note that nA
2 = 1 − nA

1 and nB
2 = 1 − nB

1 , which implies that
dnA

2 /dn
A
1 = dnB

2 /dn
B
1 = −1. I have the following:

∂WA
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nA
1 , n

A
2 ;n

B
1 , n

B
2

)

∂nA
1

= nB
1 ·
(
1− α− nA

1

)
−
(
nA
2 − α

)
nB
2

= nB
1 ·
(
1− α− nA

1

)
−
(
1− nA

1 − α
) (

1− nB
1

)
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1 − 2nA

1 n
B
1 + 2 (1− α)nB

1 − (1− α)

∂WB
(
nB
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B
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A
1 , n

A
2

)

∂nA
1

= (1− α)nB
1 −

(
nB
1

)2

2
−

(
nB
2

)2

2
+ αnB

2

= (1− α)nB
1 −

(
nB
1

)2

2
−

(
1− nB

1

)2

2
+
(
1− nB

1

)
α

= −
(
nB
1

)2
+ 2 (1− α)nB

1 −
1

2
+ α.

The irst-order condition with respect to nA
1 is that

∂W
(
nA
1 , n

A
2 , n

B
1 , n

B
2

)

∂nA
1

=
∂

∂nA
1

[
WA

(
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A
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1 , n

B
2

)
+WB

(
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1 , n

B
2 ;n

A
1 , n

A
2

)]

= nA
1 − 2nA

1 n
B
1 −

(
nB
1

)2
+ 4 (1− α)nB

1 + 2α−
3

2
= 0.

Analogously, the irst-order condition with respect to nB
1 is that

∂W
(
nA
1 , n

A
2 , n

B
1 , n

B
2

)

∂nB
1

= −
(
nA
1

)2
+ 4 (1− α)nA

1 − 2nA
1 n

B
1 + nB

1 + 2α−
3

2
= 0.

Extracting the condition on side B from that on side A yields the following:

nA
1 − nB

1 −
(
nB
1

)2
+
(
nA
1

)2
+ 4 (1− α)

(
nB
1 − nA

1

)
= 0

⇐⇒
(
nA
1 − nB

1

) (
nA
1 + nB

1 + 4α− 3
)
= 0

⇐⇒ nA
1 = nB

1 or nA
1 + nB

1 = 3− 4α.

If the latter equality is the case (which holds only if 1/4 < α < 1/2), the irst-order
condition with respect to nA

1 is rewritten as

∂W
(
nA
1 , n

A
2 , n

B
1 , n

B
2

)

∂nA
1

= nA
1 −

(
nA
1 + nB

1

)2
+
(
nA
1

)2
︸ ︷︷ ︸

=−2nA
1
nB
1
−(nB

1 )
2

+4 (1− α)nB
1 + 2α−

3

2

= nA
1 +

[
− (3− 4α)2 +

(
nA
1

)2]
+ 4 (1− α)

(
3− 4α− nA

1

)
︸ ︷︷ ︸

=nB
1

+2α−
3

2

=
(
nA
1

)2
− (3− 4α)nA

1 +
1

2
(3− 4α)

︸ ︷︷ ︸
≡f(nA

1 )

= 0.

The function f(nA
1 ) is minimized if

df
(
nA
1

)

dnA
1

= 0 ⇐⇒ nA
1 =

(3− 4α)

2
.



The irst-order condition with respect to nA
1 does not hold in this case because

f

(
3− 4α

2

)
=

(3− 4α)2

4
−

(3− 4α)2

2
+

1

2
(3− 4α)

=
2 (3− 4α)− (3− 4α)2

4

=
−16α2 − 3 + 16α

4

=
−16

(
α− 1

2

)2
+ 1

4
> 0

as long as 1/4 < α < 1/2 (the value is close to 0 as α → 1/4). Therefore, nA
1 = nB

1 ≡
n1 ∈ (1/2, 1) if nA

1 and nB
1 solve the irst-order conditions. One can derive the following

single condition from the original irst-order condition with respect to nA
1 multiplied by

2:
−6n2

1 + 2 (5− 4α)n1 + 4α− 3 = 0 (12)

for all α. The second-order partial derivatives of W (nA
1 , n

A
2 , n

B
1 , n

B
2 ) regarding platform 1

are
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A
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B
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B
2

)

∂ (nA
1 )

2 = −2nB
1 + 1 < 0

∂2W
(
nA
1 , n

A
2 , n

B
1 , n

B
2

)

∂ (nB
1 )

2 = −2nA
1 + 1 < 0

∂2W
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nA
1 , n

A
2 , n

B
1 , n

B
2

)

∂nA
1 ∂n

B
1

= −2
(
nA
1 + nB

1

)
+ 4 (1− α) ,

which is simpliied as follows:
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= −2n1 + 1

∂2W
(
nA
1 , n

A
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∂nA
1 ∂n

B
1
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nA
1
=nB

1
=n1

= −4 [n1 − (1− α)] .

The determinant of the Hessian matrix is a function of n1:

H (n1) ≡
(
4n2

1 − 4n1 + 1
)
−
[
16n2

1 − 32 (1− α)n1 + 16 (1− α)2
]

= −12n2
1 + 4 (7− 8α)n1 − 16α2 + 32α− 15.

Multiplying equation (12) by 2 and solving the equation for H(n1) yields

− 12n2
1 + 4 (5− 4α)n1 + 8α− 6 = 0

⇐⇒ − 12n2
1 + 4 (7− 8α)n1 − 4 (2− 4α)n1 +

(
−16α2 + 32α− 15

)

+ 16α2 − 24α + 9 = 0

⇐⇒ H (n1) = 8 (1− 2α)n1 − 16α2 + 24α− 9,



which is linear in n1. One can obtain the supremum of H(n1) as follows:




lim
n1→1

H (n1) = −16α2 + 8α− 1 = −16
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1
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)2
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1

2

H (n1) = 0 · n1 − 16 ·
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1

2
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+ 24 ·
1

2
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1

2

lim
n1→

1

2

H (n1) = −16α2 + 16α− 5 = −16

(
α−

1

2

)2

− 1 < 0 if
1

2
< α < 1.

The determinant of the Hessian matrix cannot be strictly positive if the irst-order con-
ditions hold. There is no interior welfare-maximizing allocation such that nB

1 > nB
2 for

any α.
Suppose now that nB

1 < nB
2 . The irst-order derivatives of social welfare with respect

to nA
2 and nB

1 are mirror images of one another. Similarly to the case in which nB
1 > nB

2 ,
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The derivative with respect to nA
2 thus equals
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Regarding nB
1 , an analogous calculation is presented:
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Both derivatives correspond to the values of −∂W (nA
1 , n

A
2 , n

B
1 , n

B
2 )/∂n

A
1 and −∂W (nA

1 , n
A
2 ,

nB
1 , n

B
2 )/∂n

B
1 obtained when nB

1 > nB
2 , respectively, but replace nA

1 with nA
2 . The irst-

order conditions can thus be rewritten as analogous equalities to those in the preceding
paragraph. The own-variable second-order derivatives equal those in that paragraph
that are multiplied by −1 and replace nA

1 with nA
2 ; thus, the own-variable second-order

conditions hold (because 0 < nA
2 < 1/2 and 0 < nB

1 < 1/2). Moreover, the cross-
variable second-order derivatives are also those in that paragraph that are multiplied by
−1 and replace nA

1 with nA
2 , which implies that the determinant of the Hessian matrix

is analogous. One can therefore establish the absence of an interior welfare-maximizing
outcome such that nB

1 < nB
2 for any α in the same way as above. I summarize below how

to prove this statement. First, the irst-order conditions imply that

nA
2 = nB

1 or nA
2 + nB

1 = 3− 4α,

but the latter equality is incompatible with the condition of nA
2 . Second, if nA

2 = nB
1 , the

second-order condition with regard to the Hessian matrix does not hold for any α.



A.2.2. Welfare-Maximizing Allocation

The preceding discussion establishes that the welfare-maximization problem has a corner
solution only: nA∗∗

1 = 1 and nA∗∗

2 = 0. Social welfare can thus be expressed as W (nB
1 ) ≡

W (1, 0, nB
1 , 1 − nB

1 ). If 1/4 < α < 3/4, nB∗∗

1 is nB
1 derived from the irst-order condition

to maximize W (nB
1 ):

dW
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1

)

dnB
1

=
1− 2α

2
+
(
1− α− nB

1

)
= 0 ⇐⇒ nB

1 =
3− 4α

2
,

which satisies the second-order condition (d2W (nB
1 )/d(n

B
1 ) = −1 < 0 for any nB

1 ).
Otherwise, nB∗∗

1 = 1 if 0 < α ≤ 1/4, and nB∗∗

1 = 0 if 3/4 ≤ α < 1.

B. Discussions on the Major Assumptions

This section reviews a few major assumptions made in the main text. I relax these
assumptions and examine their impacts on this paper’s main statements. For simplicity,
this section focuses on the case in which conditions (1) and (7) in the main text hold.

B.1. Eiciency of Full Coverage

To examine the relevance of focusing on the full-coverage case in the welfare analysis,
consider the welfare impacts of a deviation from the outcome in Proposition 2 such that
an agent who has the lowest type (θ = −α) exits. First, I remark that the lowest-type
agents on side A are allocated platform 1 for any α in the case of welfare maximization.
Suppose that 0 < α ≤ 1/4, where the lowest-type agents on side B are also allocated
platform 1. Exit by an agent of the lowest type on side A reduces social welfare in

(v − α)︸ ︷︷ ︸
side A

+
1− 2α

2︸ ︷︷ ︸
side B

,

which is positive for any strictly positive v because this decrement equals

v +

(
−2α +

1

2

)

︸ ︷︷ ︸
∈[0, 1

2
)

> 0.

The decrement of social welfare as an agent of the lowest type on side B exits is analogous.
Suppose that 1/4 < α < 1/2, where the lowest-type agents on side B are allocated
platform 2. Exit by an agent of the lowest type on side A reduces social welfare in

(
v − αnB∗∗

1

)
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2 (1− α)−
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]
+ (1− α)

= v +
4α− 1

8
,

which is positive for any strictly positive v because

0 <
4α− 1

8
<

1

8
.



The decrement of social welfare as an agent of the lowest type on side B exits is just v > 0
because platform 2 obtains no market share on side A. Suppose that 1/2 < α < 3/4.17

Notice that the lowest-type agents on each side are allocated the same as when 1/4 <
α < 1/2 (i.e., platform 1 for those on side A and platform 2 for those on side B) and
that the mathematical form of nB∗∗

1 is also the same, which implies that social welfare
decreases as an agent of the lowest type on each side exits for any strictly positive v. If
3/4 ≤ α < 1, for any strictly positive v, exit by an agent of the lowest type on each side
reduces social welfare in v because all agents incur no negative externality (i.e., nA∗∗

1 = 1
but nB∗∗

1 = 0 and nA∗∗

2 = 0 but nB∗∗

2 = 1).
I now discuss the welfare implications of the above result. Social welfare decreases

for any strictly positive v as an agent of the lowest type exits from the market. Exit
by any other agent on each side also reduces social welfare for any strictly positive v
because, under the assumption that both platforms have the same intrinsic value, the
agent obtains a higher beneit than that of the lowest type. Therefore, the policymaker
does not have an incentive to make the market partially covered for any strictly positive
v.

B.2. Side-Asymmetric Type Distributions

This subsection discusses how the main results are changed if the types of agents on
each side are asymmetrically distributed. I maintain the type distribution on side A but
modify the type distribution on side B in that (α + ϵ) replaces α, where ϵ ∈ R is an
exogenous parameter such that 0 < (α+ ϵ) < 1 (i.e., −α < ϵ < 1−α), which means that
the externality is negative for (α+ ϵ) potential users on side B. In sum, the main results
are robust unless the type distributions on both sides substantially difer.

I irst investigate the impacts of this extension on the equilibrium conigurations.
Equations (8) to (11) apply to (pA∗

1 , pA∗

2 ) and (nA∗

1 , nA∗

2 ) with α being replaced by (α+ ϵ)
and to (pA∗

1 , pA∗

2 ) and (nA∗

1 , nA∗

2 ) with no change. The equilibrium allocation on side B is

nB∗

1 =
2− (α + ϵ)

3
nB∗

2 =
1 + (α + ϵ)

3
,

which implies that

nB∗

1 > nB∗

2 ⇐⇒
1

2
< nB∗

1 < 1

⇐⇒ −1− α︸ ︷︷ ︸
<−α

< ϵ <
1

2
− α

nB∗

1 < nB∗

2 ⇐⇒ 0 < nB∗

1 <
1

2

⇐⇒
1

2
− α < ϵ < 2− α︸ ︷︷ ︸

>1−α

.

The equilibrium allocation on side A is unchanged; therefore, its property is the same as
in the original case. The equilibrium prices on side B are

pB∗

1 =
[2− (α + ϵ)] (1− 2α)

9
pB∗

2 =
[1 + (α + ϵ)] (1− 2α)

9
,

17The statement below holds if α = 1/2 by relaxing condition (7) regarding the allocation on side B.



which means that pB∗

1 > pB∗

2 if 0 < α < 1/2 and nB∗

1 > nB∗

2 and that pB∗

1 < pB∗

2 if
1/2 < α < 1 and nB∗

1 < nB∗

2 . The properties of pA∗

1 and pA∗

2 are qualitatively the same
as in the original case because pA∗

1 and pA∗

2 do not depend on ϵ if nB∗

1 and nB∗

2 are given.
Proposition 1 is therefore robust to the extent that





−α < ϵ <
1

2
− α if 0 < α <

1

2
1

2
− α < ϵ < 1− α if

1

2
< α < 1.

Consider how the side-asymmetric type distributions afect welfare maximization.
Appendix A shows that no interior solution exists under the symmetric type distributions
because the second-order conditions do not totally hold. The statements of that section
are robust if α is not close to 1/4 and |ϵ| is moderate. The proof of Proposition 2 applies
with the following modiication:

dW
(
1, 0, nB

1 , 1− nB
1

)

dnB
1

=
1− 2α

2
+
[
1− (α + ϵ)− nB

1

]
= 0

⇐⇒ nB∗∗

1 =
3− 4

(
α + ϵ

2

)

2
,

where the marginal beneit yielded on side A is unchanged. The eicient allocation
coniguration has the same properties for each α except that (α + ϵ/2) replaces α.

B.3. Active Beliefs

In this subsection, the concept called ǳactive beliefsǴ (Gabszewicz and Wauthy 2004)
or ǳresponsive expectationsǴ (Hagiu and Hałaburda 2014) applies to the formation of
each potential user’s demand expectation. This concept allows for agents who form the
rational expectations of the opposite-side market demand functions, which depend on the
opposite-side prices. If the price of platform 1 increases on side A, for instance, potential
users on side B expect the platform to lose some users on side A. Each platform considers
this additional price efect when the platform determines its price strategy. To briely
see the impacts of this expectation formation, I investigate how the platforms deviate
from the respective equilibrium price strategies in the main text, how their deviations
change the equilibrium allocation on each side, and how robust the comparison between
the equilibrium and eicient outcomes in the main text is.18

Suppose that 0 < α < 1/2, where the original equilibrium is characterized by strictly
positive threshold types and side-symmetric expectations. Assume that these properties
remain to hold. The partial derivative of a platform’s proit with respect to each of its
prices evaluated at the original equilibrium is strictly negative because the platform can
attract additional agents on a side by reducing the participation fees on the other side.
The partial derivatives with regard to sides A and B are symmetric. The partial derivative

18This subsection examines none of the second-order conditions for proit maximization. However, I
below focus on the situation in which each platform chooses a price strategy that enhances its proit
(i.e., the price strategy does not minimize the platform’s proit), and show that both platforms have
no incentive to change their prices intensely and that the sign of the resulting threshold type on each
side is unchanged (i.e., the solution candidates seem to be interior and unique). This discussion sup-
ports the uniqueness and optimality of the price strategy derived as a solution to each platform’s proit
maximization.



of platform 1’s proit is strictly lower than that of platform 2’s regarding each side because
the former platform charges higher participation fees in the original equilibrium. Thus,
the participation fees of a platform decrease on both sides in the same value, and the
decrements of platform 1’s prices are higher than those of platform 2’s. These imply
that the threshold types on both sides decrease and are symmetric. The new threshold
types are strictly negative because the cross-side price efects shrink as the threshold
types approach zero while there exist own-side price counterefects. Both platforms in
this case obtain market shares such that (1/2 <)(2 − α)/3 < nA

1 = nB
1 < 1 − α(< 1)

and (0 <)α < nA
2 = nB

2 < (1 + α)/3(< 1/2), where nA
1 < nA∗∗

1 and nB
1 < nB∗∗

1 for
any α ∈ (0, 1/2). Platform 1 keeps its prices and market shares strictly higher than
platform 2 (pA1 = pB1 > pA2 = pB2 and nA

1 = nB
1 > nA

2 = nB
2 ).19 This outcome is consistent

with the above two properties. Therefore, the equilibrium coniguration and its welfare
consequence are qualitatively unchanged from those in the main text in that pA∗

1 > pA∗

2 ,
pB∗

1 > pB∗

2 , nA∗

2 < nA∗

1 < nA∗∗

1 , and nB∗

2 < nB∗

1 < nB∗∗

1 .
Suppose next that 1/2 < α < 1, where the original equilibrium is characterized by

strictly negative threshold types and side-asymmetric expectations. Assume that these
properties remain to be satisied. The partial derivative of a platform’s proit with respect
to each of its prices evaluated at the original equilibrium is strictly positive because the
platform can attract additional agents on a side by raising the participation fees on the
other side. The partial derivative regarding the side with fewer users is higher than
that regarding the other side because the platform in the original equilibrium charges
higher participation fees on the latter side. Each platform thus chooses a higher price
on its side with fewer users and reduces the number of users on the side, which also
enables the platform to raise its price on the other side with the number of users kept
larger than that in the original equilibrium. The threshold types on both sides increase
(from a strictly negative value) and are symmetric except for the allocations. One can
ind that the new threshold types are strictly negative from, again, the balance between
the cross-side price efects and the own-side price counterefects. The two platforms
here obtain market shares such that (1/2 <)(1 + α)/3 < nA

1 = nB
2 < α(< 1) and

(0 <)1 − α < nA
2 = nB

1 < (2 − α)/3(< 1/2), where nA
1 < nA∗∗

1 and nB
1 > nB∗∗

1 for any
α ∈ (1/2, 1). The property of the allocation on each side is not substantially changed from
that in the original equilibrium in that pA1 = pB2 > pB1 = pA2 and nA

1 = nB
2 > nB

1 = nA
2 . The

outcome derived in this paragraph is consistent with the above two properties. Therefore,
the equilibrium coniguration and its welfare consequence have qualitatively the same
properties as those in the main text in that pA∗

1 > pA∗

2 , pB∗

1 < pB∗

2 , nA∗

2 < nA∗

1 < nA∗∗

1 ,
and nB∗∗

1 < nB∗

1 < nB∗

2 .

B.4. Welfare Maximization Given Agents’ Expectations

This subsection investigates social-welfare maximization when the policymaker also treats
each agent’s market-share expectation as given. The main text follows the work of Gab-
szewicz and Wauthy (2004, 2014), and assumes in the equilibrium analysis that agents
form market-share expectations independently of the opposite-side prices and that their
expectations are fulilled with the realizations. The irst assumption is adapted to welfare
maximization by redeining social welfare as

W̃
(
nA
1 , n

A
2 , n

B
1 , n

B
2 ;n

Ae
1 , nAe

2 , nBe
1 , nBe

2

)

19The process to derive expression (2) implies that the denominator of the threshold type on each side
is strictly positive, which also applies to the next paragraph.



≡WA
(
nA
1 , n

A
2 ;n

Be
1 , nBe

2

)
+WB

(
nB
1 , n

B
2 ;n

Ae
1 , nAe

2

)
,

where the total beneit equals WA(nA
1 , n

A
2 ;n

Be
1 , nBe

2 ) on side A and WB(nB
1 , n

B
2 ;n

Ae
1 , nAe

2 )
on side B. The second assumption is adapted by reformalizing welfare maximization as
the problem to maximize W̃ (nA

1 , n
A
2 , n

B
1 , n

B
2 ; ·) with respect to nA

1 , nA
2 , nB

1 , and nB
2 (given

nAe
1 , nAe

2 , nBe
1 , and nBe

2 ) subject to nAe
1 = nA∗∗

1 , nAe
2 = nA∗∗

2 , nBe
1 = nB∗∗

1 , and nBe
2 = nB∗∗

2 .
Notice that the irst-order derivatives of the function contain no term of the realized
market shares on the respective other sides under this framework, which implies that the
second-order condition with regard to the Hessian matrix does not need to be examined.

I solve the problem above. Recall that dnA
2 /dn

A
1 = dnB

2 /dn
B
1 = −1 because both sides

are fully covered. Consider irst the case in which nBe
1 > nBe

2 . The irst-order derivatives
of social welfare are

∂W̃
(
nA
1 , n

A
2 , n

B
1 , n

B
2 ; ·
)

∂nA
1

=
(
1− α− nA

1

)
nBe
1 −

(
nA
2 − α

)
nBe
2

(
The calculation process for

∂WA (·)

∂nA
1

in Appendix A applies.

)

= nA
1 − 2nA

1 n
Be
1 + 2 (1− α)nBe

1 − (1− α)

=
(
1− 2nBe

1

)
nA
1 − (1− α)

(
1− 2nBe

1

)

∂W̃
(
nA
1 , n

A
2 , n

B
1 , n

B
2 ; ·
)

∂nB
1

=
(
1− α− nB

1

)
nAe
1 −

(
nB
2 − α

)
nAe
2

(
A similar calculation process to that of

∂W̃ (·)

∂nA
1

applies.

)

=
(
1− 2nAe

1

)
nB
1 − (1− α)

(
1− 2nAe

1

)
,

and the second-order derivatives are

∂2W̃
(
nA
1 , n

A
2 , n

B
1 , n

B
2 ; ·
)

∂ (nA
1 )

2 = 1− 2nBe
1

∂2W̃
(
nA
1 , n

A
2 , n

B
1 , n

B
2 ; ·
)

∂ (nB
1 )

2 = 1− 2nAe
1 .

The irst-order conditions are that

∂W̃
(
nA
1 , n

A
2 , n

B
1 , n

B
2 ; ·
)

∂nA
1

= 0 ⇐⇒ nA
1 = 1− α

∂W̃
(
nA
1 , n

A
2 , n

B
1 , n

B
2 ; ·
)

∂nB
1

= 0 ⇐⇒ nB
1 = 1− α,

and the second-order conditions hold. Notice that the allocations derived above can
arise if and only if 0 < α < 1/2. Welfare maximization is characterized in this case
by the following outcome: nA∗∗

1 = nB∗∗

1 = 1 − α and nA∗∗

2 = nB∗∗

2 = α. Suppose
next that nBe

1 < nBe
2 . The irst-order and second-order conditions with respect to nB

1

are unchanged from those in the preceding case. The conditions with respect to nA
2

(not nA
1 ) are parallel to those with respect to nA

1 in the preceding case. Notice that
agents form consistent expectations with the allocations to be derived here if and only
if 1/2 < α < 1. Social welfare is thus maximized in the current case by the following
outcome: nA∗∗

1 = nB∗∗

2 = α(> 1/2) and nA∗∗

2 = nB∗∗

1 = 1− α(< 1/2).
An interpretation of this result is that all agents of positive types should join the

platform with the larger market share on the other side and the other agents should



participate in the other platform. This outcome is equivalent to what would arise if
both platforms chose identical prices and each potential user joined the platform to
maximize his/her payof. The outcome difers (except when α → 0 or α → 1) from
that in Proposition 2 because the former one abstracts the cross-side welfare impacts of
each agent’s participation in a particular platform; therefore, social welfare is enhanced
the most only in the case of Proposition 2. Nevertheless, one can straightforward ind
that the comparison between the equilibrium and eicient outcomes in the main text is
robust if welfare maximization is formulated as in this subsection: nA∗

1 < nA∗∗

1 for any
α ∈ (0, 1), and nB∗

1 < nB∗∗

1 if 0 < α < 1/2 and nB∗

1 > nB∗∗

1 if 1/2 < α < 1.
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