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Abstract
This paper studies the impact of financial liquidity on the macro-economy. We extend a classic macroeconomic model

and compute numerical simulations. The model confirms that persistently low inflation can occur despite a high degree

of financial liquidity due to a reallocation of cash, normal and risk-free bonds. In that regard, our model uncovers an

explanation of a flat Phillips curve. Overall, our approach contributes to a rather disregarded matter in macroeconomic

theory.
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1 Introduction
Since the global financial crisis of 2008, there is a lively debate about

macroeconomic modelling. There is widespread acknowledgment that the
dynamic stochastic general equilibrium models (DSGE) are challenged by
reality. Even Blanchard (2018) states that those models performed poorly
during the great recession, but there is little agreement on what alternative
should be pursued. The models do not integrate the financial sector appro-
priately and fail to incorporate behaviorial notions (Stiglitz, 2018). As a
consequence, the models have difficulties to explain the sluggish recovery
and the low inflation. One likely reason is the flawed modelling of financial
intermediation (Minsk, 1957; Brunnermeier and Sannikov, 2017).

In this paper, we provide a different approach incorporating liquidity
and money inside a classic LM-model. Similar to Calvo (2016), we extend
the model by two dimensions. First, we include a Taylor rule and second, we
consider the continuous time dynamics of prices in respect to the level of
interest rates and financial liquidity.

The main results are: First, a classic macroeconomic model, including
financial liquidity, is suitable to examine the aggregate price dynamics con-
tingent to liquidity and growth shocks. Second, our model exhibits evidence
to account for low inflation in case of prolonged low interest rates and a high
degree of liquidity. This surprising result is driven by the reallocation across
cash, normal and risk-free bonds. The macroeconomic conditions unravel
this unique anomaly in the aftermath of the global financial crisis.

The article is structured as follows. Section 2, describes the literature.
Section 3 discusses the model including the extension. In section 4, we
simulate the model. Concluding remarks are in section 5.

2 Literature Review

This paper is related to at least two areas in the literature. First, the
literature of macroeconomics, inflation, and monetary policy. This field
investigates the zero lower bound (ZLB) on interest rates and argues that
inflation targeting are likely to fail (Benhabib et al., 2001; Dupor, 1999).
The reason is that the existence of a ZLB implies that rational expectations
solutions are not unique and one solution involves a deflationary liquidity
trap (McCallum, 2001). There is similar work by Eggertsson and Woodford
(2003) and Levin et al. (2010). Yet, our approach is different because we
study the anomaly of liquidity and the ZLB on price dynamics.

The second related field of literature is the classic monetary theory. We
extend a standard model by Calvo (2016). Our theory includes liquidity,



risk-free bonds and a Taylor rule. Similarly to Steinsson (2003) and Hasui
et al. (2016), we study financial liquidity, however differently, we focus on
the price dynamics. Somewhat related is the work by Cochrane (2017), yet
the underlying mechanism is different in our work.

There is likewise a new literature about financial frictions in order to
explain some of the modelling flaws. This research builds on earlier work
by Bernanke et al. (1999), Kiyotaki and Moore (1997), Bianchi (2011) and
others (Samuelson, 1958; Bewley, 1977; Herzog, 2015; Moreira and Savov,
2017). This work is rediscovered by Brunnermeier and Sannikov (2017).

3 Model

The model consists of a liquidity-money (LM) market. The price theory
of money is extended by financial liquidity. Hence, the extended model is
given by

M

P
+ ξ

(
M

P

)

= L(i − im, y). (1)

where ξ denotes the liquidity supply function with the first derivative
of ξ ′(.) < 0,M is the money supply, P the price level, y the output and i the
nominal interest rate. In order to study the zero-lower bound, the central
bank adjusts the interest rate on money im. However, the opportunity cost
of holding liquidity is defined as i − im. Thus, the liquidity demand function
on the right-hand side is of L(i − im, y). Note, a interest rate cut of im ↓ by the
central bank causes increasing opportunity cost of holding money [i − im] ↑
and consequently a declining demand of money L(i − im, y) ↓ because of a
reallocation of the portfolio towards risk-free bonds. The liquidity demand
function has usual first-order derivatives of ∂L/∂(i − im) < 0 and ∂L/∂y > 0.
Furthermore, if real money supply increases (M/P), the overall impact on
the left-hand side of equation (1) is ambiguous.

Next, we consider the behavior of a representative agent under the as-
sumption of flexible prices. The agent maximizes the discounted expected
utility function given by

E[U ] =

∫ ∞

0
[u(ct) + v(mt) + h(bt)]e

−ρtdt, (2)

where u(ct) represents consumption utility, v(mt) money utility, h(bt) cash
utility from a risk-free bond. All utility functions have standard derivatives
such as u′, v′,h′ > 0 and u′′, v′′,h′′ < 0. Another differentiating feature is the
function h(bt) in this model. The agents’ overall (real) wealth is defined



by wt = mt + bt + xt, where xt is a normal bond with no liquidity service.
Noteworthy, in equilibrium xt = 0. The interest on xt is i and the interest on
bt is z. Similarly, the interest on money is of zero.

The real interest rate is determined by the Fisher equation it = rt + πt.
Thus, the agents’ real budget constraint has the following outcome

ẇt = y − ct + (0−πt)mt + (zt −πt)bt + (it −πt)xt
= y − ct + rtwt − itmt + (zt − it)bt .

(3)

The final equation is a first-order ordinary differential equation (ODE). It
can be rewritten in respect to the wealth dynamics wt :

ẇt − rt ∗wt = y − ct − itmt − (it − zt)bt . (4)

Proposition 1 The first-order inhomogeneous ordinary differential equation (4)
has a solution given by

wt = w0 +

∫ ∞

0
[y − ct − itmt − (it − zt)bt]e

−ρtdt. (5)

The proof of Proposition 1 is in Appendix A. Equation (5) is a familiar
expression in standard monetary models. Note bt is devoted to liquidity.
In equilibrium of the standard model, we have i = z and thus the bt-term
drops out. However, in our model, the real liquidity services imply i > z in
equilibrium.

The representative agent maximizes the discounted expected utility, sub-
ject to the wealth process wt , such as

max
ct ,mt ,bt

∫ ∞

0
[u(ct) + v(mt) + h(bt)]e

−ρtdt

s.t. wt = w0 +

∫ ∞

0
[y − ct − itmt − (it − zt)bt]e

−
∫ t

0
rsdsdt

(6)



The first-order conditions are

∂L

∂ct
= u′(ct)e

−ρt −λ[1 ∗ e−
∫ t

0
rsds]⇒ u′(ct)e

−ρt = λRt

∂L

∂mt
= v′(mt)e

−ρt −λ[it ∗ e
−
∫ t

0
rsds]⇒ v′(mt)e

−ρt = λitRt

∂L

∂bt
= h′(bt)e

−ρt −λ[(it − zt)e
−
∫ t

0
rsds]⇒ h′(bt)e

−ρt = λ(it − zt)Rt ,

where Rt := e
−
∫ t

0
rsds (Appendix B). In order to close the model, we assume

a interest rate rule for the central bank. There are several possibilities. Calvo
(2016) considers a simple rule such as zt = θπ where θ > 0. This can be
interpreted in the way that higher inflation leads to higher interest rates and
vice versa. We utilize a Taylor rule for modelling the central bank reaction
function (Taylor, 1993). The monetary policy rule1 is

zt = c1(π −π
∗) + c2yt + c3z̄, (7)

where c1, c2, and c3 represent Taylor’s constants for the inflation and
output gap and z̄ denotes the central bank’s estimate of the real rate of
interest. Using equations (A6) and (A7) and the monetary policy rule in
equation (7), we obtain for total liquidity:

Z

Pt
=m+ b = φ(ρ +πt) +ψ(ρ + (1− c1)πt +π

∗ + c2yt + c3z̄ + ǫt), (8)

where capital letters denote aggregate variables, such as price level Pt
and total liquidity Z and ǫt is an i.i.d. random variable. This is an implicit
first-order ODE of the price level Pt . Note that πt = Ṗt/Pt .

4 Results

In order to simulate the implicit differential equation (8), we need addi-
tional assumptions about the utility functions. We assume that the utility
functions have logarithmic form. This implies that the inverse functions
of φ(ρ +πt) and ψ(ρ + (1 − c1)πt +π

∗ + c2yt + c3z̄t−1 + ǫt) are of exponential
form. Given that the first-order derivatives of φ′ and ψ′ are both negative, we

1Including randomness, we obtain: zt = c1(π −π
∗) + c2yt + c3z̄ + ǫt .



rewrite the ODE in the following form Z
Pt
= e−(ρ+πt)+e−(ρ+(1−c1)πt+π

∗+c2yt+c3z̄+ǫt),

and finally, we rewrite the ODE in terms of prices:

Ṗt = −

[

ln
Z

Pt
+ (2ρ +π∗ + c2yt + c3z̄ + ǫt)

]

Pt
(2− c1)

. (9)

We simulate this ODE with the ODE45-algorithm in MATLAB under the
following two conditions: (i) the degree of liquidity increases in the range
of Z = [0;5;10;15;20], and (ii) the real interest rate ρ varies in the range of
ρ = [0;0.5;1]. Note, the nominal rate is of it = ρ+πt . The inflation target is of
π∗ = 2.0 and the parameters of the Taylor rule are according to the original
policy rule establishes by Taylor (1993, 1999): c1 = c2 = 0.5 and c3 = 0.2.

Figure (1) summarizes the dynamics of prices to a shock in the policy
rate z over time. Note, the left-hand panel denotes the case at the real zero-
lower-bound, where ρ = 0. Here, the nominal interest rate it is determined
by it = 0+πt or in steady state it = πt = 0, where πt = Ṗt/Pt . The middle panel
assumes a real rate of ρ = 0.5 and the right-hand panel captures the case of
ρ = 1.

The simulation reveals a novel insight of inflation in regard to financial
liquidity. There are two robust findings: Firstly, at the zero-lower-bound any
degree of liquidity is ineffective as we obtain an immediate pass through
to prices (left-hand panel)2. Secondly, if rates are positive as in normal
times, we observe a weaker pass-through dynamics in case of a high degree
of financial liquidity (middle and right-hand panel). In all scenarios, the
steady-state level is contingent on both the degree of financial liquidity and
the level of interest rates (Figure 1).

What drives this unconventional result is a new liquidity channel of
money as well as normal versus risk-free bonds. Indeed, a high degree of
liquidity does not necessarily increase spending because households might
reallocate the holding of money and normal bonds without liquidity ser-
vices.3 This mitigates the price dynamics and steady state price level, partic-
ularly at the ZLB. At the ZLB agents start hoarding risk-free bonds instead
of investing. This observation might be a new insight to the weak inflation
dynamics in the aftermath of the global financial crisis (Minsk, 1957; Admati
and Hellwig, 2014).

Furthermore, Figure (1) demonstrates that the steady state price level
declines, the lower the degree of liquidity. Surprisingly, the steady state is
significantly positive and persistent only at the medium real interest rate

2The same pattern occurs with negative real interest rates.
3This is particularly visible in high saving countries with negative yields (Germany).



Figure 1: Simulation Results

levels. Under those circumstances, the price level even grows along with the
degree of liquidity (middle panel). Consequently, the simulation exercise
provides an explanation of persistently low inflation at the zero lower bound.

Note, the simulation result is likely contingent on the assumption of
log-preferences, which affect the cross-derivatives of i and z, and the uti-
lization of separable household preferences on m, b and c. Nonetheless, the
model discovers a new interaction-channel between liquidity and prices. A
prolonged monetary expansion at the ZLB might not lift prices; at least in
our framework.

5 Conclusion

We extend a classic macroeconomic model with liquidity. We find that
the inflation dynamics is reliant on the interest rate level and the degree of
financial liquidity. In our model, a policy of low interest rates is conducive
to a sharp drop of the steady state price level. We corroborate the possibility
of a rapid pass through of liquidity to persistently low prices by simulation.
Under those circumstances, expansionary monetary policy is virtually insuf-
ficient to lift inflation. Consequently, the model offers one explanation for a
flat Phillips curve.

Nonetheless, there is the need for further research. It would be interesting
to investigate this mechanism in an equilibrium framework. We believe this
is a promising attempt to learn more about this relationship.
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Appendix A

Proof of Proposition 1. The general solution of the first-order inhomoge-
neous ODE can be decomposed into the sum of a homogenous (hom) and a
particular (par) solution: wt = w

hom
t +w

par
t .

First, we compute the homogenous solution of equation (4), where wt −

rtwt = 0. Here the solution is simply whomt = c ∗ e
∫ t

0
rsds = w0 ∗ e

∫ t

0
rsds together

with the initial condition: w0 = c ∗ e
∫ 0

0
rsds = ce0 = c.

Second, we compute a particular solution. Assume wpar = ct ∗e
∫ t

0
rsds. Next,

compute the derivative in respect to time:

ẇt = c
′
t ∗ e

∫ t

0
rsds + ct ∗ e

∫ t

0
rsds ∗ rt .

Next, substitute the budget constraint ẇt = rtwt + y − ct − itmt + (zt − it)bt
from equation (4) on the left-hand side. We obtain

rtwt + y − ct − itmt − (it − zt)bt = c
′
t ∗ e

∫ t

0
rsds + ct ∗ e

∫ t

0
rsds

︸     ︷︷     ︸

=wt

∗rt

y − ct − itmt − (it − zt)bt = c
′
t ∗ e

∫ t

0
rsds,

or c′t = [y − ct − itmt − (it − zt)bt]e
−
∫ t

0
rsds. Finally, integration of the last

equation yields

ct =

∫ ∞

0
[y − ct − itmt − (it − zt)bt]e

−
∫ t

0
rsdsdt,

and the particular solution is of

w
par
t = ct ∗ e

∫ t

0
rsds =

[∫ ∞

0
[y − ct − itmt − (it − zt)bt]e

−
∫ t

0
rsdsdt

]

∗ e
∫ t

0
rsds.



In summary, we obtain the general solution

wt = w
hom
t +w

par
t

= w0 ∗ e
∫ t

0
rsds + [

∫ ∞

0
[y − ct − itmt − (it − zt)bt]e

−
∫ t

0
rsdsdt] ∗ e

∫ t

0
rsds

=

(

w0 +

∫ ∞

0
[y − ct − itmt − (it − zt)bt]e

−
∫ t

0
rsdsdt

)

∗ e
∫ t

0
rsds.

Ruling out a Ponzi game limt→∞wte
−
∫ t

0
rsds ≥ 0, implies a non-negative

wealth such as:

lim
t→∞

wte
−
∫ t

0
rsds = lim

t→∞

(

w0 +

∫ ∞

0
[y − ct − itmt − (it − zt)bt]e

−
∫ t

0
rsdsdt

)

≥ 0.

Hence, we obtain wt = w0 +
∫ ∞

0
[y − ct − itmt − (it − zt)bt]e

−
∫ t

0
rsdsdt. After

assuming that r = ρ =
∫ t

0
rsds = constant , we obtain equation (5) �

Appendix B

Solution of Optimization. Set up the Lagrange function

L(ct ,mt , bt) =

∫ ∞

0
[u(ct)+v(mt)+h(bt)]e

−ρtdt−λ

[

w̄−w0 −

∫ ∞

0
[y − ct − itmt − (it − zt)bt]e

−
∫ t

0
rsdsdt

]

and compute the first-order conditions:

∂L

∂ct
= u′(ct)e

−ρt −λ[1 ∗ e−
∫ t

0
rsds]⇒ u′(ct)e

−ρt = λRt (A1)

∂L

∂mt
= v′(mt)e

−ρt −λ[it ∗ e
−
∫ t

0
rsds]⇒ v′(mt)e

−ρt = λitRt (A2)

∂L

∂bt
= h′(bt)e

−ρt −λ[(it − zt)e
−
∫ t

0
rsds]⇒ h′(bt)e

−ρt = λ(it − zt)Rt , (A3)

where Rt = e
−
∫ t

0
rsds. Next, we define total liquidity by Zt =Mt +Bt. The

central bank sets the interest rate zt on the liquid bond bt . The real variables

are indicated by lower case letters such as mt =
Mt
Pt

and bt =
Bt
Pt
. Therefore,



total liquidity is

Zt =mt ∗Pt + b ∗Pt = (mt + bt)Pt . (A4)

Solving for mt and bt in equation (A2) and (A3), while assuming that

r = ρ =
∫ t

0
rsds = constant, yields the following conditions

u′(ct) = λRte
ρt = λe−ρteρt = λ (A5)

v′(mt) = λit⇒m := φ(it) = φ(ρ +πt) (A6)

h′(bt) = λ(it − zt)⇒ b := ψ(it − zt) = ψ(ρ +πt − zt), (A7)

where φ′ < 0 and ψ′ < 0 �
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