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Abstract
The existing literature estimating nested CES production functions has so far neglected to provide a convincing method

to discriminate among alternative nested structures. This study proposes a new approach to evaluate empirically which

nested structure describes the production technology more closely. It is based on the estimation of translog point

elasticities and on the graphical analysis of their distribution. A Monte Carlo simulation framework is used to

demonstrate the applicability of the method given alternative parametrizations.
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1. Introduction 
 

Computable general equilibrium (CGE) models are typically employed to support decision-

making in evaluating the economic consequences of new public policies. These models require 

the definition of a set of functions that approximate, as closely as possible, agents’ production, 

consumption, and accumulation behaviors. Traditionally, CGE modelers have employed nested 

CES functions to describe production technologies for their global regularity and constant 

elasticities. However, McKitrik (1998) noted that nested CES functions are based on restrictive 

properties (homogeneity and input separability) that may not be empirically observed, and 

Lecca et al. (2011) and Feng and Zhang (2018) showed that CGE results are sensible to the 

input hierarchical structure. Furthermore, Lagomarsino (2020) reported that a convincing 

approach for selecting among alternative nested CES structures is still lacking.  

This study illustrates, in a Monte Carlo framework, a new empirical and graphical approach 

to evaluate whether a nested CES function is consistent with the data and to select between 

competing nested structures. The method is based on the concept of Allen and Hicks partial 

elasticities of substitution and on their underlying relationships in the nested CES context. 

Furthermore, this paper provides an empirical insight on the rules that characterize nested CES 

Morishima partial elasticities.  

Section 2 describes the approach, Section 3 outlines the Monte Carlo setting, Section 4 

shows results, Section 5 investigate Morishima partial elasticities of substitution, and  Section 

5 concludes. 

 

2. A graphical approach 
 

Let us consider a 3-input CES production function that relates inputs ݔ, with � = ͳ,ʹ,͵, 

to output �. This can be represented by any of the following 2-level nested structures:  �tCES = γ (ȽሺȾሺxଵ௧ሻ−ρభ + ሺͳ − Ⱦሻሺxଶ௧ሻ−ρభሻ ρρభ + ሺͳ − Ƚሻሺxଷ௧ሻ−ρ)ଵρ
 (1) �tCES = γ (ȽሺȾሺݔଵ௧ሻ−ρభ + ሺͳ − Ⱦሻሺݔଷ௧ሻ−ρభሻ ρρభ + ሺͳ − Ƚሻሺݔଶ௧ሻ−ρ)ଵρ
 (2) �tCES = γ (ȽሺȾሺݔଶ௧ሻ−ρభ + ሺͳ − Ⱦሻሺݔଷ௧ሻ−ρభሻ ρρభ + ሺͳ − Ƚሻሺݔଵ௧ሻ−ρ)ଵρ, (3) 

 

or by the 1-level non-nested CES: �௧��ௌ = �−ଵ௧ሻݔሺߙሺߛ + �−ଶ௧ሻݔሺߚ + ሺͳ − ߙ −  ଷ௧ሻ−�ሻଵ� (4)ݔሻሺߚ

 

where γ > Ͳ is the productivity parameter, Ƚ, Ⱦ ∈ ሺͲ,ͳሻ are the share parameters,  ρ,  ρଵ  ∈ሺ−ͳ , ∞ሻ are the substitution parameters,1 and � = ͳ, … , ܶ indexes observations. The constant 

elasticities of substitution can be derived as σ = ͳ/ሺͳ + ρሻ and σଵ = ͳ/ሺͳ + ρଵሻ.   

According to Sato’s (1967) definition, nested CES functions have constant elasticities 

of substitution, σ and σଵ, and partial elasticities of substitution that follow specific rules 

determined by the nested structure of the function.  Table I  presents these rules for the three 

nested CES presented in (1)-(3). The partial elasticities considered in the definition are the 

Hicks elasticities of substitution (HES) and the Allen elasticities of substitution (AES).2  

 

1 The subscript 1 indicates that the parameter refers to the inner nest.  

2 AES are defined as: σ��ௌ = ∑ ��=ଵ ݔݔݔ |ܦ||ܦ|  



 

Table I – Partial elasticities of substitution in nested CES functions 
Nested 

structures 

 ଷ elasticityݔ ଶandݔ ଷ elasticityݔ ଵandݔ ଶ elasticityݔ ଵandݔ 

HES AES HES AES HES AES 

(ሺݔଵ, ,ଶሻݔ ଷ) σଵ σݔ + ሺσଵ − σሻθଵ  

ͳθ�భଵ − ͳθଵσଵ + ͳθ�యଶ + ͳθଵσ  
σ 

ͳθ�మଵ − ͳθଵσଵ + ͳθ�యଶ + ͳθଵσ  
σ 

(ሺݔଵ, ,ଷሻݔ  (ଶݔ

ͳθ�భଵ − ͳθଵσଵ + ͳθ�మଶ + ͳθଵσ  
σ σଵ σ + ሺσଵ − σሻθଵ  

ͳθ�మଵ − ͳθଵσଵ + ͳθ�యଶ + ͳθଵσ  
σ 

(ሺݔଶ, ,ଷሻݔ  (ଵݔ

ͳθ�భଵ − ͳθଵσଵ + ͳθ�మଶ + ͳθଵσ  
σ 

ͳθ�భଵ − ͳθଵσଵ + ͳθ�యଶ + ͳθଵσ  
σ σଵ σ + ሺσଵ − σሻθଵ  

Notes: θ௦ is the expenditure share of the sth class inputs, θ��௦  is the relative share of the ith element of sth class. 

 

Summing up, HES between inputs belonging the same nest are constant, AES between 

each of the inputs inside the nest and the input outside are constant and identical.   

 In this paper, we argue that to understand if a given dataset supports a nested CES 

production function a researcher should check if these rules are met empirically by the non-

constant point elasticities of substitution of a translog production function. Indeed, under 

certain conditions, the translog is a linear approximation to a nested CES and its elasticities’ 
distribution follows closely the rules presented in Table I. To evaluate whether the elasticities 

are close to being constant, one can look at the dimension of the point elasticities’ prediction 

interval that indicates in which range an estimated elasticity of substitution obtained from a 

new level of inputs and output quantities should fall 95% of the times.3  

Together with a descriptive analysis, several insights can be derived by observing the 

graphical representation of the elasticities’ distribution. First, the concentration of point 

elasticities around a limited range of values (i.e. a clear peak in the distribution) represents an 

evidence in support of a constant elasticity. Second, narrow prediction intervals suggest that 

point elasticities are well predicted for different levels of inputs and output and not expected to 

vary significantly. Third, the distribution of different partial elasticities peaking around the 

same value provides an indication on which nested structure best fits the data. 

To summarize, the approach proposed in this study consists in the following three steps: 

i) estimation of a translog function4 and the derivation of AES and HES partial elasticities, ii) 

derivation of prediction intervals, iii) descriptive and graphical analysis of the point elasticities’ 
distribution. 

 

3. Monte Carlo setting 
 

In the following, we use a Monte Carlo setting to illustrate the approach proposed and evaluate 

its power in identifying the assumed input-output relationship. We define a data generating 

processes (DGP) based on the 3-input 2-level CES presented in Equation (1). For simplicity, 

we call the three inputs energy (E = ݔଵ), capital (K = ݔଶ), and labour (L = ݔଷ), and ((E;K);L) 
 

where ݔ and ݔ  are two inputs, �,� , � , and �  are the first and second partial derivatives of the production function with 

respect to input ݔand ݔ  respectively, |ܦ|is the determinant of the bordered Hessian matrix D formed by the estimated 

coefficients and |ܦ | represents the cofactor of the ikth term in the Hessian matrix. HES are defined by: σ��ௌ = (�ݔ + �ݔ)ݔݔ ��(ʹ��� − �� − ��ଶ) 

3 For example, suppose to have data on different industrial sectors for the same year: the prediction interval informs on the 

range in which a new observation for a particular sector will fall  95% of the times. It should be noted that it is not possible to  

derive confidence intervals for the translog elasticities because these vary with input and output quantities. 
4
 In the three-input case, the translog function can be written as: ݕ௧்  = ln � + �ଵ ln ଵݔ + �ଶ ln ଶݔ + �ଷ ln ଷݔ + Ͳ.ͷ�ଵଵ lnଶ ଵݔ + Ͳ.ͷ�ଶଶ lnଶ ଶݔ + Ͳ.ͷ�ଷଷ lnଶ ଷݔ + �ଵଶ ln ଵݔ ln ଶݔ + �ଵଷ ln ଵݔ ln ଷݔ + �ଶଷ ln ଶݔ ln  ଷݔ



 

the nesting structure associated with Equation (2). Output is generated according to the 

following specification: 

 �௧ = ௧��ௌݕ + ϵ௧ 

 

where ݕ௧ is the logarithm of output �௧, and ϵ௧ ∼ ln � ሺͲ, σϵሻ. Parameters and inputs’ 
distributions are listed in Table II. 

 
Table II – DGP 

Parameters DGP ܧ, ,ܭ ∽ ܮ ln � ሺͲ,Ͳ.ͷሻ γ 1.5 Ƚ, Ⱦ 0.5 ρ, �ଵ -0.4; 0.1; 0.9; 9 ܶ 1.000 

 

The value of the substitution parameters is determinant in the estimation of the CES 

because it affects its overall curvature, thus we let it vary across a range of values associated 

with high and low levels of substitutability (see Table III). We expect estimation results to 

become less precise the further  ρ deviates from 0, the point in which the linear approximation 

is made. 
 

Table III – Selected values for the substitution parameters and elasticities ρ, ρଵ -0.4 0.1 0.9 9.0 σ, σଵ 1.667 0.909 0.526 0.100 

 

We repeated the simulations altering the remaining CES parameters to evaluate how results 

are affected. As econometric theory suggests, we found an increase in the number of 

observations to improve the estimates as well as a decrease in the error variance. 
 

4. Simulation results 
 

Table IV presents the translog estimated partial elasticities of substitution. Let us consider first 

the three cases highlighted in grey: i) ρ = �ଵ= 0.1 , iiሻ ρ = Ͳ.ͳ and �ଵ = Ͳ.9, iii) � =Ͳ.9 and �ଵ = Ͳ.ͳ. We observe that, in all the cases considered, �ܵܧ�, �ܵܧ and �ܵܧ� 

approximate their assumed DGP values, and that prediction intervals are narrow overall, 

indicating that elasticities are well predicted for different levels of inputs and output and that 

they are not expected to vary much. Furthermore, results show that in case i) all partial 

elasticities range across the same values: this, indeed, is the case in which the nested CES 

reduces to the 1-level non-nested CES described in Equation (4).  In cases ii) and iii), instead, �ܵܧ� and �ܵܧ are very close to each other and their distributions are overlapping.    

These first evidences indicate that, in the three cases considered, the estimated point 

elasticities are indeed following the rules presented in Table 1 and provide good predictions of 

the true value of the CES elasticities.  

 

 

 

 

 

 

 



 

 
Table IV – Estimated median translog HES and AES and prediction intervals 

  ρ=-0.4,  σ =1.667 �=0.1,  � = 0.909 �=0.9,  � = Ͳ.ͷʹ �=9,  � = Ͳ.ͳͲͲ 

  � low up � low up � low up � low up ρଵ=-0.4 σଵ =1.667 

ௌ 1.683 1.634 1.780 0.907 0.887 0.926 0.510 0.497 0.524 0.158 0.984 0.219 �ଵ=0.1 �ଵ��ܮܭ ௌ 1.633 1.587 1.681 0.913 0.894 0.932 0.547 0.534 0.561 0.244 0.176 0.307��ܮܧ ௌ 1.643 1.602 1.686 1.623 1.583 1.662 1.592 1.548 1.636 1.272 1.169 1.379��ܭܧ =0.909 

ௌ 1.657 1.621 1.694 0.909 0.896 0.923 0.532 0.525 0.540 0.206 0.167 0.244 �ଵ=0.9 �ଵ��ܮܭ ௌ 1.672 1.637 1.709 0.909 0.896 0.922 0.528 0.520 0.536 0.251 0.212 0.288��ܮܧ ௌ 0.902 0.891 0.914 0.901 0.889 0.913 0.897 0.885 0.908 0.883 0.828 0.934��ܭܧ =0.526 

ௌ 1.663 1.623 1.704 0.908 0.897 0.919 0.532 0.524 0.540 0.198 0.174 0.224 �ଵ=9 �ଵ��ܮܭ ௌ 1.717 1.676 1.758 0.909 0.898 0.919 0.512 0.514 0.520 0.185 0.158 0.210��ܮܧ ௌ 0.543 0.537 0.549 0.535 0.530 0.540 0.510 0.502 0.518 0.492 0.462 0.522��ܭܧ =0.100 

 ௌ 1.757 1.589 1.920 0.902 0.867 0.936 0.510 0.488 0.530 0.162 0.116 0.209��ܮܭ ௌ 1.841 1.658 2.023 0.922 0.886 0.959 0.504 0.482 0.523 0.144 0.095 0.189��ܮܧ ௌ 0.278 0.263 0.293 0.258 0.244 0.271 0.217 0.204 0.231 0.188 0.165 0.215��ܭܧ

 

Let us now consider three Figures (1-3) illustrating the distribution of the estimated 

translog point elasticities for each of the three cases presented above. In the figures, the three 

rows correspond to the distributions of the �ܵܧ�,  , respectively. For eachܵܧ�  and�ܵܧ�

of them, the first graph shows the point elasticities with the upper and lower bounds of their 

prediction intervals; the second graph represents the distribution of the point elasticities; the 

third graph is a surface plot that combines the previous two graphs.  

Figure 1 refers to the ρ = ρଵ= 0.1 case. The graphs show that the estimated point 

elasticities range across very narrow figures and that prediction intervals are not wider than 

one decimal place. Moreover, distributions clearly peak around the median value, providing a 

further evidence that the estimated partial elasticities are characterized by a very low 

variability. 

 
Figure 1 – Prediction intervals and elasticities distribution in case i) 

 

Figure 2 refers to the ρ = Ͳ.ͳ and ρଵ = Ͳ.9 case. The range of estimated �ܵܧ� and �ܵܧ values is still small and prediction intervals are narrow. Moreover, they both peak close 



 

to the assumed value of the CES elasticities. As anticipated, the three partial elasticities cover 

a wider range of values than in the previous case. Indeed, as we move away from the expansion 

point (ρ,  ρ� = Ͳሻ, the translog ability to approximate the nested CES decreases. However, 

Figure 2 still shows a clear peak in the �ܵܧ� distribution around its assumed value and narrow 

prediction intervals for each point elasticity, which suggests that the expected variation in the 

point elasticities is limited.  
 

 
Figure 2 – Prediction intervals and elasticities distribution in case ii) 

 

Figure 3 refers to the ρ = Ͳ.9 and ρଵ = Ͳ.ͳ case. The graphs show that the estimates 

are less precise than in case i), but the distributions are still peaking around the assumed CES 

elasticities and prediction intervals are narrow. 
 

 
Figure 3 – Prediction intervals and elasticities distribution in case iii) 

 

Thus, the graphical analysis of these three cases confirms that the approach is correctly 

identifying the assumed nested structure.  



 

The remaining cases presented in Table IV show that, as the substitution parameters deviate 

from zero, HES and AES estimates become less accurate and the width of the estimated 

predicion interval increases, especially for values of ρ and ρଵ larger than one. Nonetheless, 

even in those cases, the researcher can identify the underlying nesting structure by: i) looking 

at the median values of the point elasticities: in all the parametrizations considered, when ρ ≠ρଵ, the AES and HES partial elasticities point to the assumed ((E;K);L) structure; ii) evaluating 

graphically the distribution of the point elasticities. 

 

5. Morishima elasticities of substitution 
 

Most of the recent empirical literature estimating substitution elasticities with functions 

composed by three or more inputs has recoursed to Morishima partial elasticities (MES). This 

type of elasticity, originally concived by Morishima (1967) and then revived by Blackorby and 

Russell (1989), informs on the percentage change in a two inputs ratio given a percentage 

change in the price of one of the two inputs.5 Being an asymmetric measure, it delivers more 

information than the Allen and Hichs partial elasticities because it allows looking at two 

degrees of substitutability for each pair of inputs. MES are related to AES by the following 

rule 

 �ெ�ௌ = �ݔ/�ݔ(���ௌ − ���ௌ) 

 

factors that are AES substitutes are MES substitutes, factors that are AES complements might 

become MES substitutes. While Blackorby and Russell (1989) showed that, with non-nested 

CES functions, AES, HES and MES coincide (and are constant), with nested CES fuctions it 

is unknown how MES behave. In the following, we empirically investigate this by looking at 

MES estimates in the three cases presented in section 4. 

Results showed in Table V provide several interesting insights. Firstly, we observe that 

in case i) all MES coincides and equate the AES and HES reported in Table IV, as predicted. 

Secondly, we see that in cases ii) and iii) EKMES and KEMES approximately coincide and equal 

EKHES. Thirdly, we find that in cases ii) and iii) LEMES  equals LKMES and that they differ from 

the corresponding AES. Lastly, we observe that prediction intervals are narrow overall, 

indicating that the point elasticities are not expected to vary much. 

 
Table V – Estimated median translog MES and prediction intervals 

 i) ii) iii) 

 

�=0.1,  � = 0.909 �ଵ=0.1, �ଵ =0.909 

�=0.9,  � = Ͳ.ͷʹ �ଵ=0.1, �ଵ =0.909 

�=0.1,  � = 0.909 �ଵ=0.9, �ଵ = Ͳ.ͷʹ 

 
� low up � low up � low up ܭܧெ�ௌ 0.901 0.889 0.913 0.899 0.887 0.911 0.537 0.531 0.543 ܧܭெ�ௌ 0.901 0.889 0.913 0.898 0.886 0.910 0.536 0.530 0.541 ܮܧெ�ௌ 0.909 0.899 0.919 0.531 0.526 0.536 0.909 0.899 0.918 ܧܮெ�ௌ 0.905 0.895 0.915 0.715 0.708 0.722 0.728 0.721 0.734 ܮܭெ�ௌ 0.909 0.899 0.919 0.533 0.528 0.538 0.908 0.899 0.918 ܭܮெ�ௌ 0.905 0.895 0.915 0.715 0.709 0.724 0.728 0.722 0.736 

 

 

5
 Formally, MES are defined as: σெ�ௌ = �ݔ |ܦ||ܦ| − �ݔ |ܦ||ܦ|  

 



 

6. Conclusions 
 

This paper describes a new empirical approach for discriminating among alternative nested 

structures for CES production functions based on the graphical analysis of translog point 

elasticities and their prediction intervals. Furthremore, it provides some insights on the rules 

followed by Morishima elasticities of substitution in a nested CES framework. A Monte Carlo 

simulation shows that the approach is robust to different parametrizations.  
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