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Abstract
We propose a method for estimating logit regression models in the case that the independent variables are measured at

a finer-scale spatial resolution than the dependent variable. Whereas the traditional approach is to aggregate the fine-

scale data to the resolution of the dependent variable prior to estimation, we propose integrating the aggregation

directly into the regression so as to maximize the value of information contained at the fine-scale resolution. Monte

Carlo simulations show reasonable finite sample performance and that the traditional approach is biased. Our estimator

is applicable in many cases that use remotely sensed or GIS data, such as land use problems.
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1. Introduction 

 

Databases used routinely by researchers in applied economics and social sciences are often 

organized according to a particular spatial structure. Traditional economic data (e.g., output) is 

frequently available only at the level of geopolitical regions (e.g., states, counties, or provinces); 

these geopolitical divisions can generally be referred to as “administrative units” (AUs). Data we 

wish to use as drivers for the economic data may be available at much finer spatial resolutions 

from sources such as satellite imagery or GIS databases. While the detail offered by these fine 

spatial scale data is tremendous, researchers are challenged to maximize the information value 

without sacrificing the data variation that is needed for econometrically identifying the parameters 

or mechanisms of interest. Often, researchers simply aggregate the data to a consistent (or similar) 

spatial unit. The simplest and perhaps most prominent example of the aggregation approach is to 

layer the pixelated independent variable data over the dependent variable AU measurements and 

average the pixelated data to the AU level. Yet, whether averaging the independent variables to 

the AU level eliminates useful information is unclear at best. 

 An example of the empirical problem we have in mind is the prediction of whether a 

particular land pixel will be dedicated to a particular use, such as being planted in a particular crop. 

The model we develop may be used to predict probabilities or shares across multiple uses (e.g. 

Papke and Wooldridge 1996; Mullahy 2015; Song et al. 2018), though for simplicity our example 

focuses on a singular use. A typical dataset might include fine-scale (pixel-level) data for the 

independent variables, such as soil quality or climate, and coarse-resolution (AU-level) data for 

the dependent variable, such as the share of land in the province planted in the crop. One may be 

interested in predicting either the probability that an entire pixel is put into a particular use (e.g., 

entirely planted in corn), or in predicting the share of land in a pixel that is put into the particular 

use (e.g., share of land planted in corn). The traditional approach would be to aggregate the fine-

scale data to the province (e.g., AU) level, and estimate a standard logit regression to predict the 

probability (or share) of land use at the AU level. However, while all data are used, estimation and 

prediction are conducted at the lower spatial resolution, and the information regarding 

heterogeneity within the AU is lost.  

 We propose to re-orient the logit regression model such that the fine-scale resolution is 

more fully used, providing a framework for estimating pixel-level probabilities (or shares). 

Specifically, we integrate the data aggregation step directly into the econometric model, rather 

than prior to parameter estimation. Our approach exploits nonlinearity in the logit model, 

recognizing that logit regression using averaged data is not the same as an averaged logit regression 

using pixelated data. A Monte Carlo experiment demonstrates the excellent finite sample 

performance of our estimator and shows that the traditional averaged approach is, in general, 

biased.  

 

 

2. Estimation Framework 

 

The following notation facilitates the exposition of our estimator and is developed for the general, 

multiple use case:  

 

j the index of AUs 

i the index of pixels within an AU 



 

 

k the index of the use categories (dependent variables) 

Xij the observations of the independent variables for pixel i in AU j  

yjk the observations of the dependent variables for AU j for variable k (fractions that sum to 

one across k) 

W() a transformation function mapping Xij to functions of the independent variables  

βk the vector of coefficients to be estimated for dependent variable k 

Aij area in pixel i within AU j 

 

Using this notation, we define the logistic regression problem. Define the probability that pixel i 

in AU j is of type k by:  

 

,௜௝ሻࢄሺࢃ)௜௝௞ܩ     �௞) = exp⁡ሺࢃሺࢄ೔ೕሻ�ೖሻ∑ exp⁡ሺࢃሺࢄ೔ೕሻ�ೖሻ�ೖ=1 ⁡⁡⁡⁡                                  (1) 

 

where we make the usual normalization β1 = 0 for identification. Here, we use a generic form of 

W() to preserve flexibility. The area-weighted average of these probabilities is: 

 

௝௞ܪ      = ∑ �೔ೕೖ(ࢃሺࢄ೔ೕሻ,�ೖ)�೔ೕ೔∈�ೕ ∑ �೔ೕ೔∈�ೕ  .                                                                  (2) 

 

Estimation proceeds following the quasi-likelihood approach, via the quasi-likelihood function: 

 

     ℒ = ∑ ∑ �௝௞ ln ௝௞௄௞=ଵ௃௝=ଵܪ .                          (3) 

 

 

3. Monte Carlo Experiment 

 

Monte Carlo Design: We conduct a Monte Carlo experiment to demonstrate the properties and 

finite sample performance of our estimator. Following the nature of the empirical problem we 

envision, we artificially construct a land grid of “administrative units” that each consist of a 

number of smaller “pixels”. For simplicity, we restrict all pixels to have the same area; empirically, 

differences in area size across pixels and AUs is both permitted and expected. (The estimation 

framework shown previously allows for this heterogeneity of pixel size.) Given these AUs and 

pixels, we randomly generate two independent variables, from which we construct our dependent 

variable as a share of the total area of each pixel (so as to mimic a share of land devoted to a 

particular use, such as share of land planted with corn). To keep the model transparent and 

straightforward, we assume that each pixel is devoted to only two activities, so that the shares of 

“use” and “non-use” sum to one within each pixel.  

The values of the independent variables are designed following Song et al. (2018), whereby 

the first independent variable we generate mimics temperature patterns across sub-global regions 

and the second independent variable mimics land slope. The key difference between these two 

variables is that temperature has moderate variation within an AU but more substantial variation 

across AUs. Specifically, the first independent variable is created by generating a normal random 

number with mean 15 and standard deviation 4, to which we add a uniform random variable for 

each pixel within the AU on [-2, 2]. The second independent variable, mimicking slope, is drawn 

from a uniform random variable on [0, 1] for all AUs and pixels within those AUs. To be clear, 



 

 

we construct these variables to mimic typical land use variables to create a more realistic 

experimental environment, but there is no theoretical requirement that would render our 

experimental results non-general. 

For these exercises, we fix W() to be the identity, and choose β2 to be [–7, 0.6, –6], in which 

the components correspond to the intercept and coefficients for the first and second independent 

variables, respectively. Using this structure, we generate the pixel-level value of the fractions for 

the two land uses according to (1), and calculate the weighted average of these at the AU level 

according to (2). This “true value” of the use fraction is then multiplied by a randomly generated 

error that is drawn from a beta distribution with mean equal to one and with a support from zero 

to one over the true value of the use fraction variable. The two shape parameters of this beta 

distributed error are chosen so that their minimum is 4. Varying this value alters the signal to noise 

ratio, but does not change the qualitative results of our experiment.  

Finally, the number of observations of our dependent variable is the number of AUs, for 

which the experimental design uses 50, 100, 500, 1,000, and 2,000 AUs as increasing sample sizes. 

Within each AU, the number of pixels is randomly generated as the square of the truncation of a 

uniform random variate on the interval [20, 51] giving a range of pixels per AU of 400 to 2500. 

We conduct 1,000 trials for each of these experiments. 

 

Monte Carlo Results: The Monte Carlo results are displayed in the left panel of Table 1 titled 

“Pixel Data”, indicating that the independent variables are defined at the pixel level as described 

above. For each set of experiments, we report the mean parameter estimate, as well as the standard 

deviation of the estimates and the root mean squared error (RMSE) as a measure of performance. 

We see that the coefficients are converging towards the true values, and both the standard deviation 

and RMSE values are uniformly decreasing, as the sample size (number of AUs) increases. These 

results demonstrate consistency.  

How does this compare with the traditionally-used alternative of averaging the pixel-level 

independent variable observations up to the AU level? We maintain the notation from the 

Estimation Framework section, noting that K = 2 (i.e. k = 1 for non-use and k = 2 for use). To 

examine this question, we re-estimate our simulated model following an a priori averaging of the 

pixel level data to the AU level: 

 

,௝ሻ̅ࢄሺࢃ)௝௞ܩ      �௞) = exp⁡ሺࢃሺ̅ࢄೕሻ�ೖሻ∑ exp⁡ሺࢃሺ̅ࢄೕሻ�ೖሻ�ೖ=1                        (4) 

 

where we again normalize β1 = 0, and Xij is replaced in (1) with the area-weighted average: 

 

௝̅ࢄ      = ∑ ∑೔ೕ�೔ೕ೔∈�ೕࢄ �೔ೕ೔∈�ೕ ⁡.⁡                 (5) 

 

The analogs to (2) and (3) are then given as: 

 

௝௞ܪ      = ∑ �ೕೖ(ࢃሺ̅ࢄೕሻ,�ೖ)�೔ೕ೔∈�ೕ ∑ �೔ೕ೔∈�ೕ = �ೕೖ(ࢃሺ̅ࢄೕሻ,�ೖ) ∑ �೔ೕ೔∈�ೕ∑ �೔ೕ೔∈�ೕ = ,௝ሻ̅ࢄሺࢃ)௝௞ܩ �௞),                  (6) 

 

and 

 



 

 

     ℒ = ∑ ∑ �௝௞ ln ௝௞௄௞=ଵ௃௝=ଵܪ = ∑ ∑ �௝௞ ln ௝௞௄௞=ଵ௃௝=ଵܩ .                  (7) 

 

For comparison purposes, the same data from the pixel level simulations are used for these 

averaged data results, which are displayed in the columns labeled “Averaged Data” in Table 1. 
The mean parameter estimates are much further from the true values than with our proposed 

estimates. While the standard deviations and RMSE values are declining as the sample size 

increases, this estimator appears to be biased even at a relatively large sample size of 2,000 

observations. 

 

Table 1. Monte Carlo Results 

 

 Pixel Data Averaged Data 

No. of AUs �ଶ,଴ = −͹ �ଶ,ଵ = 0.͸ �ଶ,ଶ = −͸ �ଶ,଴ = −͹ �ଶ,ଵ = 0.͸ �ଶ,ଶ = −͸ 

Mean       
  50 -12.1152 1.1765 -14.985 -3.5357 0.3229 -3.6801 

  100 -8.7025 0.7732 -8.3620 -4.0540 0.3557 -3.7370 

  500 -7.2654 0.6304 -6.4875 -4.4253 0.3831 -3.9178 

  1,000 -7.1830 0.6367 -6.8603 -4.3881 0.3816 -3.9447 

  2,000 -7.0741 0.6184 -6.4651 -4.3844 0.3847 -4.0523 

 

Std. Dev.      
  50 7.2139 0.6104 13.4019 4.3441 0.0154 8.6483 

  100 2.9552 0.1835 6.0554 3.7126 0.0115 7.4008 

  500 0.9113 0.0570 1.9835 1.6278 0.0044 3.2567 

  1,000 0.3261 0.0425 0.7645 1.0927 0.0031 2.1836 

  2,000 0.2168 0.0290 0.5362 0.8078 0.0023 1.6119 

 

RMSE       
  50 8.8405 0.8394 16.1295 5.5546 0.2775 8.9498 

  100 3.4092 0.2523 6.4970 4.7380 0.2446 7.7355 

  500 0.9487 0.0646 2.0415 3.0457 0.2170 3.8641 

  1,000 0.3739 0.0561 1.1506 2.8311 0.2184 2.9980 

  2,000 0.2290 0.0343 0.7096 2.7374 0.2153 2.5277 

 

 

4. Conclusion 

 

We propose a method of integrating independent variable data organized at a different spatial 

resolution from the independent variables into a logit regression so as to maximize the value of the 

information contained in the fine-scale spatial data while maintaining econometric tractability. 

Monte Carlo experiments show that our estimator performs well, and that a traditional pre-

averaging approach is generally biased. Our estimator is applicable in many empirical contexts in 

which independent variables are available at a less aggregated level than the dependent variable. 

Finally, our approach provides the wherewithal to predict at the less aggregated level. 
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