Economics Bulletin

Volume 41, Issue 2

Does agricultural mechanization reduce vulnerable employment? Evidence from cross-country panel data

Xiaoshi ZhouWanglin MaSchool of Economics & Management, Nanjing UniversityDepartment of Global Value Chains and Trade, Lincoln
of Science and TechnologyUniversityUniversity

Abstract

Using cross-country panel data from the World Bank and an innovative unbalanced panel fractional response model, we show evidence that agricultural mechanization significantly reduces global vulnerable employment, and the vulnerable employment reduction effects of mechanization for women are larger than that for men. The findings underscore the importance of promoting agricultural mechanization to increase employment stability and mitigate gender gaps.

Xiaoshi Zhou acknowledges the financial support from the National Natural Science Foundation of China (No. 72003089). **Citation:** Xiaoshi Zhou and Wanglin Ma, (2021) "Does agricultural mechanization reduce vulnerable employment? Evidence from crosscountry panel data", *Economics Bulletin*, Vol. 41 No. 2 pp. 294-303. **Contact:** Xiaoshi Zhou – Xiaoshi Zhou@outlook.com, Wanglin Ma – Wanglin.Ma@lincoln.ac.nz.

Submitted: September 07, 2020. Published: April 09, 2021.

1. Introduction

Although the share of vulnerable employment in total employment has been decreasing since 1991, the world continues to experience a high vulnerable employment rate (e.g., 45% in 2019) (World Bank 2019).¹ Meanwhile, the gender gap remains. ILO (2020) estimated that, in 2018, the vulnerable employment rate among women is 10% higher than that of men in developing countries due primarily to the fact that women are more likely to have lower-quality jobs and lower salaries than men because of unequal care responsibilities and discrimination. The high share of workers in vulnerable employment is directly linked to the high share of people living in poverty (Bocquier et al. 2010; ILO 2020; Gammage et al. 2020), which challenges global economic growth and gender equality.

The global trend of agricultural mechanization has the potential to reduce vulnerable employment. Mechanization substitutes farm labours and saves household's farm management time that can be re-allocated to job-related training, which finally increases wage and salaried work opportunities, enhance employment stability and signify advanced economic development. Existing literature has demonstrated a positive impact of mechanization on off-farm employment, farm productivity, women empowerment, and economic development (e.g., Fischer et al., 2018; Ma et al., 2018; Sims et al., 2016; Zhou et al., 2020). However, to the best of our knowledge, no previous studies have investigated whether agricultural mechanization can help reduce vulnerable employment.

This short note adds to the literature in threefold, including (a) investigating the impact of agricultural mechanization on vulnerable employment; (b) accounting for gendered differences, and (c) addressing the endogeneity issue of mechanization variable and unbalanced panel data issue by applying an innovative unbalanced panel fractional response model.

2. Data

We use open data from the World Bank. Because the data for agricultural mechanization were recorded for the period 1961-2009 while the data for vulnerable employment were recorded for 1991-2018 in the World Bank database, in this short note we use an unbalanced dataset for the period 1991-2009 (i.e. 19 years). After data cleaning by dropping variables with missing information, the final dataset we use includes 130 countries and 1,529 observations (see Table A1 in Appendix), covering East Asia & Pacafic region, Europe & Central Asia region, Latin America & North Africa Region, North America region, South Asia region, and Sub-Saharan Africa Region.

Following the World Bank, we define the variables used for this short note and present them in Table 1. Especially, vulnerable employment is the dependent variable, which refers to the share of vulnerable employment in total employment. Agricultural mechanization is the key explanatory variable of our interests, which is measured by the number of agricultural machinery and tractors per 100 km² of arable land. We also include country-specific variables including GDP, rural population, population density and electricity access as control variables.

Table 1 shows that the mean of the total vulnerable employment is 0.376, with a standard deviation of 0.268. The share of vulnerable male employment in total male employment and the share of vulnerable female employment in total male employment are 0.355 and 0.375,

¹ Vulnerable employment is usually featured by inadequate earnings, low productivity and infovorable working conditions of work that undermine workers' dunamental rights, and the workers under vulnerable employment mainly include contributing fammily workers and own-account workers (World Bank 2019).

respectively. The GDP per capita is around 12,267 U.S. dollars. About 77% of the population in our sample have access to electricity.

Variables	Definition	Mean	S.D. ^a
Total vulnerable	The share of vulnerable employment	0.376	0.268
employment	in total employment	0.370	
Vulnerable employment	The share of vulnerable male	0 355	0.250
among men	employment in total male employment	0.555	0.230
Vulnerable employment	The share of vulnerable female		
among women	employment in total female	0.375	0.299
	employment		
Mechanization	The number of agricultural machinery	436 598	782 475
	and tractors per 100 km ² of arable land	+50.570	102.475
GDP	GDP per capita (in constant 2010 U.S.	12 267 191	17 789 344
	dollars)	12,207.171	17,707.544
Rural population	Rural population rate (% of total	44 151	21 768
	population)	44.101	21.700
Population density	Population density (people per km ² of	107 143	150 574
	land area)	107.145	150.574
Electracity access	Access to electricity (% of population)	77.459	32.616

Table 1 Definitions and descriptive statistics of the variables

Note: ^a S.D. refers to the standard deviation; The detailed definitions of variables are available at World Bank (World Bank 2019).

Figures 1A, 1B and 1C illustrate the relationship between agricultural mechanization and vulnerable employment for the full sample, sample for men and sample for women. Graphically, they show that mechanization is negatively associated with vulnerable employment. Hence, in the next section, we provide a better understanding of the effects of agricultural mechanization on vulnerable employment using an appropriate econometric model and controlling for other control variables.

Panel (A) Full sample

Figure 1 The relationship between agricultural mechanization and vulnerable employment

3. Model

We use a fractional response model to estimate the impact of agricultural mechanization on vulnerable employment. Let the vulnerable employment variable be $V_{it} \in [0,1]$, with 0 indicating that there is no vulnerable employment and 1 indicating that all employment is vulnerable employment, the regression model can be specified as:

$$V_{it} = a_i + \beta M_{it} + \gamma X_{it} + \varepsilon_{it} \tag{1}$$

where M_i refers to the agricultural mechanization level of country *i* in year *t*; X_{it} is a vector of observed country-specific variables; a_i is country *i*'s time-invariant unobserved effects; β and γ are the correspondence parameters to be estimated; ε_{it} is the rondom error term.

Following Bluhm et al. (2018), we employ a revised correlated random effects (CRE) model to address the fractional response issue, and the endogeneity issue of the mechanization variable resulted from the unobserved heterogeneities in Equation (1). The CRE model for vulnerable employment can be expressed as:

$$E[V_{it}|M_{it},X_{it}] = \Phi(\varphi_{at} + \beta_a M_{it} + \beta'_a \overline{M}_{it} + \gamma_a X_{it} + \gamma'_a \overline{X}_{it})$$
(2)

where $\Phi(\cdot)$ represents the standard normal cumulative distribution function; φ_{at} is the timespecific intercepts in year t; $\overline{M}_{it} = \frac{1}{T} \sum_{t=1}^{T} M_{it}$ refers to the time-averaged mechanization variable and $\overline{X}_{it} = \frac{1}{T} \sum_{t=1}^{T} X_{it}$ refers to the time-averaged other explanatory variables; β_a , β'_a , γ_a and γ'_a are the coefficients to be estimated, and the subscript a indicates that the coefficients have been rescaled by the factor $(1 + \sigma_a^2)^{-1/2}$. We use the Bernoulli quasi-maximum likelihood estimation (QMLE) approach to obtain robust and scaled coefficients of all time-varying explanatory variables in Equation (2) (Wooldridge 2019; Bluhm et al. 2018).

The estimates of the unbalanced panel data may be biased if the sample selection issue related to the country fixed effects occurs. To address the unbalancedness issue of panel data, we include the time-related dummies and their interaction terms with the time-averaged variables in Equation (2). Let s_{it} be the selection indicators due to the unbalanced panel, and $\lambda_{T_i,\ell}$ be the time-related dummy variables ($\lambda_{T_i,\ell} = 1$ if $T_i = \ell$, and 0 otherwise), with $T_i = \sum_{t=1}^{T} s_{it}$ denoting

the number of time periods observed for country *i* and ℓ representing a given number of time periods ($\ell = 1, 2, ..., 19$). The argument of $\Phi(\cdot)$ can then be scaled by the square root of $Var(a_i) = exp(2\sum_{\ell=2}^{T-1} \lambda_{T_i,\ell} \omega_\ell)$, where $T = max_i T_i$ and ω_ℓ represents the unknown variance parameters. Finally, the heteroscedastic model can be expressed as:

$$E[V_{it}|s_{it}, s_{it}M_{it}, s_{it}X_{it}] = \Phi\left(\frac{\beta M_{it} + \gamma X_{it} + \sum_{\ell=2}^{T} \lambda_{T_{i,\ell}}(\varphi_{h\ell} + \beta' \overline{M}_{it} + \gamma' \overline{X}_{it})}{exp(\sum_{\ell=2}^{T-1} \lambda_{T_{i,\ell}}\omega_{\ell})}\right)$$
(3)

where the subscript *h* denotes the new scale factor. Because the interpretation of the coefficients estimates in Equation (3) is not straightforward, we also calculate the average partial effects (APEs) (Bluhm et al. 2018; Wooldridge 2019). For analytical convenience, we denote the linear predictors inside the cumulative density function in Equation (3) by $k'_{it1}\hat{\zeta}_1$ for the numerator and $k'_{it2}\hat{\zeta}_2$ for the denominator. Then, the APE of mechanization variable on vulnerable employment, for example, can be calculated as:

$$APE_{t}(M) = \hat{\zeta}_{1M} \times \frac{1}{N} \sum_{i=1}^{N} exp(-k'_{it2}\hat{\zeta}_{2}) \phi(\frac{k'_{it1}\hat{\zeta}_{1}}{exp(k'_{it2}\hat{\zeta}_{2})})$$
(4)

4. Empirical results

Table 1 presents the regression results. The estimated APE of mechanization variable in the full sample is negatively and statistically significant, suggesting that a 1% increase in agricultural mechanization reduces global vulnerable employment by 0.013%. The estimated APEs of mechanization variable in the samples for men and women are negative and significant, suggesting that a 1% increase in agricultural mechanization reduces vulnerable employment among men and women by 0.012% and 0.015%, respectively. Although global vulnerable employment appears to be more pervasive among women than men, we find evidence that agricultural mechanization enables to alleviate the gender gap by reducing more vulnerable employment among women than men.

Table 1 Average partial effects of agricultural mechanization on vulnerable employment

01	U		1 2	
Variables	Full sample	Sample for men	Sample for women	
variables	(APEs) ^a	(APEs)	(APEs)	
Mechanization (log)	-0.013**	-0.012**	-0.015**	
	(0.005)	(0.006)	(0.007)	
GDP (log)	-0.072***	-0.080***	-0.062***	
	(0.016)	(0.017)	(0.017)	
Rural population	0.285**	0.373***	0.212	
	(0.125)	(0.133)	(0.151)	
Population density (log)	-0.089**	-0.104**	-0.089	
	(0.044)	(0.043)	(0.056)	
Electricity access	-0.036	-0.064	0.013	
	(0.051)	(0.058)	(0.059)	
CRE ^b	Yes	Yes	Yes	
Time dummies	Yes	Yes	Yes	
Panel size dummies	Yes	Yes	Yes	
Panel size \times CRE	Yes	Yes	Yes	
Scale Factor	0.282	0.292	0.263	
Observations	1,529	1,529	1,529	

Pseudo R^2	0.965	0.963	0.962
Note: Cluster standard errors in t	the parentheses; * $p < 0.1$, **	* p < 0.05, *** p < 0.01.	

^a APEs refers to the average partial effects; ^b CRE refers to correlated random effects.

Other control variables also affect vulnerable employment significantly. For example, the negative and significant APEs of GDP variable suggest that a 1% increase in GDP reduces global vulnerable employment, vulnerable employment among men and women by 0.072%, 0.080% and 0.062%, respectively. The estimated APEs of rural population variable are positive and significant in the full sample and the sample for men. The findings suggest that a 1% increase in rural population increases global vulnerable employment by 0.285% and vulnerable employment among men by 0.373%. The negative and significant APEs for population density variable in columns 2-3 of Table 1 suggest that a 1% increase in population density reduces global vulnerable employment by 0.089% and vulnerable employment among men by 0.104%.

To enrich our understanding, we also estimate the impact of agricultural mechanization on vulnerable employment, respectively, disaggregated by income levels (Table A2 in the Appendix) and by both gender and income levels (Table A3 in the Appendix). The results show that mechanization has a significant impact on vulnerable employment for people in medium-income countries in general and women in particular. We show that a 1% increase in agricultural mechanization reduces vulnerable employment for people in medium-income countries by 0.019% and for women in these countries by 0.022%.

5. Conclusion

This short note provided evidence that agricultural mechanization plays a significant role in reducing global vulnerable employment, and it enables to alleviate gender gap by reducing more vulnerable employment among women than men. The vulnerable employment reduction effects of mechanization are larger in medium-income countries, relative to high- and low-income countries. The promising evidence underscores the importance of developing policies and government programs that help speed up agricultural mechanization, reduce vulnerable employment globally, and mitigate the gender gap.

Due to data unavailability and the issue of insufficient-samples, we are unable to distinguish the types of farm machines that may heterogeneously affect vulnerable employment and to disaggregate the differences of mechanization impacts between poor and rich countries. However, we believe these are promising areas for future studies when required data are available.

References

- Bluhm, R., D. de Crombrugghe, and A. Szirmai (2018) "Poverty accounting." *European Economic Review* 104:237–255.
- Bocquier, P., C. J. Nordman, and A. Vescovo (2010) "Employment Vulnerability and Earnings in Urban West Africa." *World Development* 38(9):1297–1314.
- Fischer, G., S. Wittich, G. Malima, G. Sikumba, B. Lukuyu, D. Ngunga, and J. Rugalabam (2018) "Gender and mechanization: Exploring the sustainability of mechanized forage chopping in Tanzania." *Journal of Rural Studies* 64(September):112–122.
- Gammage, S., N. Sultana, and A. Glinski (2020) "Reducing Vulnerable Employment: Is there a Role for Reproductive Health, Social Protection, and Labor Market Policy?" *Feminist Economics* 26(1):121–153.
- ILO (2020) World Employment And Social Outlook: Trends 2020. International Labour Organization. International Labour Organization.
- Ma, W., A. Renwick, and Q. Grafton (2018) "Farm machinery use, off-farm employment and farm performance in China." *Australian Journal of Agricultural and Resource Economics* 62(2):279–298.
- Sims, B., M. Hilmi, and J. Kienzle (2016) Agricultural mechanization: A key input for sub-Saharan African smallholders. Integrated Crop Management Vol. 23-2016. Vol. 23. FAO.
- Wooldridge, J. M. (2019) "Correlated random effects models with unbalanced panels." *Journal* of *Econometrics* 211(1):137–150.
- World Bank. (2019). "World Bank Data." https://data.worldbank.org.
- Zhou, X., W. Ma, G. Li, and H. Qiu (2020) "Farm machinery use and maize yields in China: an analysis accounting for selection bias and heterogeneity." *Australian Journal of Agricultural and Resource Economics* 64(4):1282–1307.

Appendix

Country Name	Frequences	Country Name	Frequences
Albania	18	Lebanon	9
Algeria	18	Lesotho	5
Argentina	12	Libya	2
Armenia	9	Lithuania	14
Austria	15	Luxembourg	9
Azerbaijan	9	Madagascar	14
Bahamas	6	Malaysia	5
Bangladesh	10	Mali	17
Belarus	18	Malta	12
Belgium	6	Mauritania	16
Benin	8	Mexico	17
Bhutan	10	Moldova	14
Bolivia	10	Mongolia	10
Bosnia and Herzegovina	3	Morocco	9
Botswana	18	Myanmar	10
Brazil	16	Nepal	10
Bulgaria	18	Netherlands	15
Burkina Faso	5	Nicaragua	7
Burundi	2	Niger	8
Cabo Verde	14	Nigeria	17
Cambodia	8	North Macedonia	16
Canada	16	Norway	15
Chile	17	Pakistan	10
China	10	Panama	10
Colombia	7	Papua New Guinea	7
Cote d'Ivoire	11	Paraguay	18
Croatia	8	Peru	5
Cuba	17	Philippines	10
Cyprus	10	Poland	19
Czech Republic	15	Portugal	15
Denmark	15	Puerto Rico	6
Dominican Republic	10	Romania	19
Ecuador	10	Russian Federation	18
Egypt, Arab Rep.	18	Rwanda	12
Eritrea	8	Samoa	11
Estonia	12	Senegal	14
Eswatini	17	Serbia	3
Fiji	17	Sierra Leone	7
Finland	15	Slovak Republic	16
France	15	Slovenia	11
Georgia	9	South Africa	14
Germany	9	Spain	19
Ghana	15	St. Lucia	17
Greece	16	Vincent and the Grenadines	13
Guinea	10	Suriname	18

Table A1 The countries used in the analysis

Guinea-Bissau	6	Sweden	15
Haiti	8	Switzerland	17
Honduras	10	Tajikistan	9
Hungary	15	Tanzania	12
Iceland	14	Thailand	10
India	10	Togo	18
Indonesia	10	Tonga	13
Iran, Islamic Rep.	10	Trinidad and Tobago	14
Iraq	10	Tunisia	18
Ireland	15	Turkey	10
Israel	10	Turkmenistan	2
Italy	12	Ukraine	18
Japan	10	United Arab Emirates	10
Jordan	10	United States	17
Kazakhstan	9	Uruguay	18
Kenya	12	Vietnam	10
Korea, Rep.	6	Virgin Islands (U.S.)	6
Kuwait	6	West Bank and Gaza	7
Kyrgyz Republic	9	Yemen, Rep.	10
Latvia	13	Zimbabwe	7
Total observations	1,529		

High-income	Medium-income	Low-income
countries	countries	countries
APEs	APEs	APEs
0.001	-0.019*	-0.007
(0.012)	(0.010)	(0.005)
-0.044**	-0.065***	-0.107***
(0.019)	(0.020)	(0.021)
0.034	0.424***	0.481**
(0.201)	(0.135)	(0.201)
0.049	-0.146**	-0.182*
(0.064)	(0.064)	(0.108)
0.315*	-0.163**	0.025
(0.171)	(0.068)	(0.037)
Yes	Yes	Yes
0.212	0.325	0.254
546	798	185
0.975	0.970	0.996
	countries APEs 0.001 (0.012) -0.044** (0.019) 0.034 (0.201) 0.049 (0.064) 0.315* (0.171) Yes Yes Yes Yes Yes 0.212 546 0.975	High-IncomeMedulin-IncomecountriesAPEs $APEs$ $APEs$ 0.001 $-0.019*$ (0.012) (0.010) $-0.044**$ $-0.065***$ (0.019) (0.020) 0.034 $0.424***$ (0.201) (0.135) 0.049 $-0.146**$ (0.064) (0.064) $0.315*$ $-0.163**$ (0.171) (0.068) Yes<

Table A2 Impact of agricultural mechanization on vulnerable employment by income levels

Note: Cluster standard errors in the parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01; ^a APEs refers to the average partial effects; ^b CRE refers to correlated random effects.

	High-income		Medium-income		Low-income	
	Men	Women	Men	Women	Men	Women
Variables	APEs	APEs	APEs	APEs	APEs	APEs
Mechanization (log)	0.002	-0.002	-0.015	-0.022**	-0.009	-0.008
	(0.014)	(0.011)	(0.010)	(0.011)	(0.006)	(0.006)
GDP (log)	-0.048**	-0.030	-0.075***	-0.054**	-0.120***	-0.089***
	(0.021)	(0.022)	(0.021)	(0.022)	(0.028)	(0.014)
Rural population	0.120	-0.142	0.505***	0.390*	0.594**	0.388**
	(0.280)	(0.150)	(0.148)	(0.207)	(0.264)	(0.174)
Population density (log)	0.061	0.044	-0.175***	-0.131	-0.146*	-0.316
	(0.065)	(0.079)	(0.061)	(0.082)	(0.085)	(0.195)
Electricity access	0.315*	0.384	-0.198**	-0.104	0.019	0.053
	(0.163)	(0.298)	(0.080)	(0.083)	(0.041)	(0.052)
CRE ^b	Yes	Yes	Yes	Yes	Yes	Yes
Time dummies	Yes	Yes	Yes	Yes	Yes	Yes
Panel size dummies	Yes	Yes	Yes	Yes	Yes	Yes
Panel size \times CRE	Yes	Yes	Yes	Yes	Yes	Yes
Scale Factor	0.226	0.191	0.329	0.309	0.284	0.208
Observations	546	546	798	798	185	185
Pseudo R^2	0.961	0.941	0.961	0.951	0.979	0.979

Table A3 Impact of agricultural mechanization on vulnerable employment by gender and income levels

Note: Cluster standard errors in the parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01; ^a APEs refers to the average partial effects; ^b CRE refers to correlated random effects.