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Abstract
We propose a strategy to identify structural parameters in infinitely repeated games without relying on equilibrium
selection assumptions. We exploit the extreme points of the equilibrium payoff set to construct bounds on the
frequencies of stage game actions, which then impose restrictions on the parameters of interest. To illustrate the
identification strategy, we use an infinitely repeated Prisoners Dilemma to get bounds on a utility parameter and a
common discount factor.
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1 Introduction

Game theoretical models and insights have been critical in capturing strategic interactions
among economic agents in empirical settings. By combining assumptions on agents’ ratio-
nality with an equilibrium concept, empirical researchers can link observed behavior with
underlying model primitives such as agents’ preference, technology, cost and constraints.

Equilibrium multiplicity typically precludes a unique mapping from primitives to ob-
served behavior, making standard inference problematic without additional, often strong,
assumptions. Thus, an important part of the literature on the econometrics of games has
focused on the multiple equilibria problem (De Paula, 2013). While there has been substan-
tial progress in analyzing static games, progress with dynamic games is more limited. One
important class of dynamic games where identification results are virtually unexplored are
infinitely repeated games.

Infinitely repeated games provide an important framework to model long-run relation-
ships that lead to incentives and outcomes not otherwise captured by one-shot interactions.
For example, the theory offers insights into how agents can cooperate in a non-cooperative
environment without formal or explicit contracts. Despite its richness, the theory is often
criticized for the lack of sharp predictions due to the equilibrium multiplicity (Dal Bó and
Fréchette, 2011). The multiplicity problem can be so perverse in some circumstances (e.g.,
when the Folk Theorem holds) that it seems almost any kind of behavior can be rationalized
in the data.

In this note, we derive an identified set for the structural parameters of an infinitely re-
peated game without assuming equilibrium selection or additional restrictions beyond sub-
game perfect Nash equilibrium. Our approach is general enough to accommodate games
beyond two players, discrete or continuous actions, and different types of data available to
the researcher. Data can come from a cross-section of repeated games, time series from a
single game, or a combination of both. Finally, we also take a conservative approach to what
kind of information the researcher has: only the frequencies of action profiles are observed
and not individual histories.

We construct our identified set as follows. Actions chosen by players today, or at a given
history, depend on what players expect to happen in the future. The one-stage deviation
principle allows us to rationalize a given player’s chosen action (conditional on the rival’s)
as an inequality involving the sum of the stage-game and equilibrium continuation payoffs.
Bounds on the frequency of a given action profile can thus be constructed by first taking
the extreme points of the equilibrium payoff set, and then finding necessary and sufficient
conditions such that the given action profile is a Nash equilibrium in a particular normal
form game. Finally, we can get the set of parameter values consistent with the bounds on
the frequency of action profiles, and this is the identified set.



To the best of our knowledge, Lee and Stewart (2016) is the only paper that formally
tackles identification in repeated games without stringent equilibrium selection assumptions.
Their paper shows that payoffs in a repeated game can be point identified up to an affine
transformation if one observes a player’s full best response correspondence or at least the best
response for a particular strategy. A player’s best response correspondence (and strategies
in repeated games in general) is a complicated object and is unlikely observable, since it
involves specifying actions at each possible history, both on and off the equilibrium path.
Our approach only supposes that the econometrician can estimate the frequency of action
profiles that occur in equilibrium and remains agnostic about which actions are chosen off-
equilibrium.

Our paper is related to the literature on equilibrium multiplicity in static games (Tamer,
2003). Conditional on equilibrium continuation payoffs, the game we analyze can be inter-
preted as a static game with multiple equilibria. Rosen (2006) derives an identified set for
the marginal cost parameter in an oligopolistic quantity-setting model. In constructing the
identified set, he summarizes multiple equilibria through a one-dimensional, “equilibrium
selection” variable whose lowest value represents perfect competition and highest value full
collusion. He does not consider dynamic incentives in the model and thus the researcher has
to assume a range of values that the equilibrium selection variable can have. Our approach
generalizes this idea of using a “pseudo” conduct parameter to dynamic (repeated) games
by relying on the extreme points of the equilibrium payoff set to generate bounds.

In dynamic games, methods that rely on Markov perfect Nash equilibrium, e.g., Bajari,
Benkard and Levin (2007), typically assume that the same equilibrium is played across
markets. We depart from the Markovian assumption and instead assume subgame perfect
Nash equilibria and allow different markets to have different equilibria. Using a repeated
game lab experiment, Salz and Vespa (2020) estimate the size of counterfactual prediction
errors arising from the Markovian assumption. We focus on the (partial) identification of
the underlying structural parameters and thus complement their study.

We proceed as follows. In the next section, we use an infinitely repeated, 2×2 Prisoners’
Dilemma to illustrate our identification strategy. We then formalize the identification strat-
egy and characterize the identified set in a general setting in Section 3. Section 4 concludes.

2 Example: Prisoners’ Dilemma

We illustrate the key idea behind our identification strategy using an infinitely repeated,
2× 2 Prisoners’ Dilemma. In each period, players choose whether to cooperate (C) or defect
(D). Each player then receives stage game payoffs given in Figure 1, where α is a utility
parameter to be estimated. For the stage game to be a Prisoners’ Dilemma, α ∈ (0.5, 2).



Players maximize the sum of their present discounted payoffs assuming a common discount
factor δ ∈ (0, 1). The goal of the econometrician is to estimate (α, δ) using data on the
frequencies of various action profiles. Finally, we assume that observed actions (or outcomes)
are a result of subgame perfect Nash equilibrium (SPNE) behavior.

P1

P2

C D

C α, α −1, 2

D 2,−1 0, 0

Figure 1: Prisoners’ Dilemma stage game payoffs with α ∈ (0.5, 2)

We are interested in learning the kinds of restrictions SPNE imposes on the distribution
of observed action profiles. Given these restrictions, what can we learn about the parameters
α and δ? In particular, can we use these restrictions to reduce the identified set to a strict
subset of (0.5, 2)× (0, 1)?

By definition, a strategy profile is a SPNE if it prescribes strategies that constitute a
Nash equilibrium at every history. Thus, if we observe the action profile (C,C) with positive
probability, then there must be some history h and a set of equilibrium continuation payoffs
v(a1,a2)|h, such that (C,C) is a Nash equilibrium of the normal form game with the payoff
matrix given by Figure 2, where ∆C|h ≡ v(C,C)|h − v(D,C)|h and ∆D|h ≡ v(D,D)|h − v(D,C)|h.

1

P1

P2

C D

C (1− δ)(α− 2) + δ∆C|h, (1− δ)(α− 2) + δ∆C|h (1− δ)(−1) + δ∆D|h, 0

D 0, (1− δ)(−1) + δ∆D|h 0, 0

Figure 2: Normal form game using the one-stage deviation principle: Prisoners’ Dilemma

A necessary condition for (C,C) to be a Nash equilibrium in the normal form game
depicted in Figure 2 is that, given equilibrium continuation strategies, C is a player’s best
response to the other player choosing C. If we restrict to pure strategies, this necessary

1To economize on notation, we assume v(D,C)|h = v(C,D)|h.



condition can be written as

(1− δ)(α− 2) + δ∆C|h ≥ 0. (1)

Similarly, a necessary condition for observing (D,D) is that, given equilibrium continuation
strategies, D is a player’s best response to D, which gives

(1− δ)(−1) + δ∆D|h ≤ 0.

Finally, a necessary condition for observing (C,D) or (D,C) is that, given equilibrium con-
tinuation strategies, C is a best response to D, and vice-versa:

(1− δ)(−1) + δ∆D|h ≥ 0.

and
(1− δ)(α− 2) + δ∆C|h ≤ 0

To see how these necessary conditions can be used to create restrictions on α, suppose we
have Pr(C,C) > 0 in the data. If we actually observe the equilibrium continuation payoffs
and the discount factor, then from inequality (1), we have

α ≥ 2−
δ

1− δ
∆C|h.

However, unless we assume additional equilibrium restrictions such as which types of strate-
gies are selected in equilibrium, we actually do not observe ∆C|h and hence cannot use the
above inequality as is.2 What we do know is that these equilibrium continuation payoffs
belong to some equilibrium payoff set V which, in turn, is a subset of the set of feasible
and individually rational stage game payoffs, F∗. In fact, Folk Theorems show that for a
sufficiently large δ, V = F∗ (Fudenberg and Maskin, 1986).

We now show how to derive restrictions implied by the frequencies of action profiles to
construct an identified set for α and δ. Let v(α) and v(α) be the lower and upper bounds of
F∗, which can be functions of the unknown parameter α. In our example, v(α) = 3α

1+α
and

v(α) = 0. The shaded region in Figure 3 illustrates F∗ for our Prisoners’ Dilemma. Thus,
for any history h, ∆C|h ∈

[

∆(α),∆(α)
]

where ∆(α) = v(α)− v(α) and ∆(α) = v(α)− v(α).
The proposition below gives the restrictions for each action profile.

2Notice that despite knowing the equilibrium continuation payoffs (∆C|h,∆D|h), the model is still incom-

plete in that we cannot write the likelihood for (C,C) similar to static entry models (Tamer, 2003). In this
sense, we have a static equilibrium selection problem on top of the dynamic equilibrium selection problem,
i.e., knowing the equilibrium continuation payoffs. Our identification strategy deals with both static and
dynamic equilibrium selection problems.
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Figure 3: Shaded region: Set of feasible and individually rational payoffs F∗ with α ∈ (0.5, 2)

Proposition 1. In an infinitely repeated Prisoner’ Dilemma with the stage game payoffs
given in Figure 1 and a common discount factor of δ ∈ (0, 1), let v(α) = 3α

1+α
and define:

f(∆, α, δ) = (α− 2) +
δ

1− δ
∆

g(∆, α, δ) = −1 +
δ

1− δ
∆.

Observed frequencies of action profiles impose the following restrictions on α and δ:

1. If Pr(C,C) > 0, then f(∆(α), α, δ) ≥ 0.

2. If Pr(C,D) > 0 or Pr(D,C) > 0, then f(∆(α), α, δ) ≤ 0 and g(∆(α), α, δ) ≥ 0.

3. If Pr(D,D) > 0, then g(∆(α), α, δ) ≤ 0.

Proof. Consider observing Pr(C,C) > 0. Then there must be some history h and a set of
equilibrium continuation payoffs v·,·|h such that (C,C) is a Nash equilibrium in this history.
This implies that C is a best response to C and hence there exists a ∆C|h ∈ [∆,∆] such that
f(∆C|h, α, δ) ≥ 0. Since f(∆, α, δ) ≥ f(∆C|h, α, δ), then Pr(C,C) > 0 implies f(∆, α, δ) ≥ 0.

A similar argument can be used to prove the other cases.

The shaded region in Figure 4 gives the combinations of α and δ that satisfy the restric-
tions imposed by Pr(C,C) = 1, e.g., if Grim-Trigger strategies are played in equilibrium.



Figure 4: Shaded region: Identified set for α and δ given Pr(C,C) = 1 in infinitely repeated
Prisoners’ Dilemma

Figure 5: Shaded region: Identified set for α and δ given Pr(C,C) > 0 and Pr(C,D) > 0 in
infinitely repeated Prisoners’ Dilemma



If δ were known, say δ = 0.5, the restrictions would imply that α ∈ [0.7321, 2]. Otherwise,
the restrictions would imply that α and δ must be in the shaded region. Conditional on δ,
the restrictions are more informative (i.e., the identified set is a stricter subset of (0.5, 2))
the lower δ is. This is because for a low discount factor, both the contemporaneous and
continuation payoffs from C (given the other player chooses C) must be sufficiently high for
the action profile (C,C) to occur in the data.

As a second example, the shaded region in Figure 5 gives the identified set for α and δ

when Pr(C,C) > 0 and Pr(C,D) > 0. Except for low values of δ, the identified set coincides
with the identified set under Pr(C,C) = 1. In fact, there are no α < 2 and δ < 1

3
that

would satisfy the restrictions that Pr(C,D) > 0 imposes. Intuitively, for an impatient player
receiving a contemporaneous payoff of −1, even the maximum possible continuation payoff,
which is less than v̄(2) = 2, would yield a total payoff less than 0; the player would be better
off choosing D.

We now proceed to generalize these ideas to formalize our identification strategy.

3 Identification

Consider an infinitely repeated game with perfect monitoring. There are N players. In each
period (stage game), player i chooses an action ai ∈ Ai, which can be discrete or continuous,
and receives a payoff πi(ai, a−i;α) where a−i is the vector of actions for all players except
i, and α is a vector of utility parameters. Players discount payoffs according to a common
discount factor δ ∈ (0, 1).

Suppose we observe the action profile a = (a1, a2, ..., aN) at some history. To rationalize
observed actions, we rely on the one-stage deviation principle, which allows us to focus on
single-stage deviations to fully characterize players’ incentives in choosing specific actions at
a given history. Since a subgame perfect Nash equilibrium (SPNE) of the game prescribes
strategies that are Nash equilibrium at each possible history, there must be some history h

such that for each player i,

(1− δ)πi(ai, a−i;α) + δv(ai,a−i)|h ≥ (1− δ)πi(a
′
i, a−i;α) + δv(a′

i
,a−i)|h (2)

for all a′i ∈ Ai, and where v(ai,a−i)|h is player i’s equilibrium continuation payoffs following
history h and stage game actions (ai, a−i).

For each player, the inequalities given by (2) constitute necessary conditions for observing
the action profile a with positive probability. We can rewrite the inequality as

(1− δ) [πi(ai, a−i;α)− πi(a
′
i, a−i;α)] + δ∆i|h ≥ 0 (3)



where ∆i|h ≡ v(ai,a−i)|h−v(a′
i
,a−i)|h is the vector of player i’s unilateral deviation payoff losses.

We can then define the set of (α, δ) that satisfies these necessary conditions by Ψ(∆h) where
∆h = (∆1|h,∆2|h, ...,∆N |h). Note that Ψ(∆h) ⊆ Ψ(∆′

h) where ∆′
i|h ≥ ∆i|h for all i, because

satisfying the conditions in Ψ(∆h) implies satisfying the conditions in Ψ(∆′
h) in inequalities

like (2). Because the equilibrium payoff set is invariant with respect to history, we use ∆i to
denote the upper bound of ∆i|h from the equilibrium payoff set for i. Then, Ψ(∆h) ⊆ Ψ(∆)
where ∆ = (∆1,∆2, ...,∆N).

We can also derive a set of sufficient conditions for observing a with positive probability.
These sufficient conditions are the incentive compatibility constraints that imply that actions
in a are dominant strategies (conditional on equilibrium continuation strategies). Define the
set of (α, δ) that satisfies these sufficient conditions by Ξ(∆h) where Ξ(·) is increasing in the
components of ∆h. Then, Ξ(∆) ⊆ Ξ(∆h) where ∆ = (∆1,∆2, ...,∆N) is the vector of lower
bounds from the equilibrium payoff set for all players.

The goal of the econometrician is to estimate (α, δ). We assume that the econometri-
cian has access to data on frequencies of stage game action profiles, i.e. Pr(a). The data
can be generated by observations across markets, across time for a given player or multiple
players, or a combination of both. In the Prisoners’ Dilemma example in Section 2, equi-
librium selection is the only source of variation driving equilibrium behavior. For example,
the econometrician might observe 0 < Pr(C,C) < 1 which implies that in some markets,
an equilibrium with less than full cooperation was selected. In constructing the identified
set in the Prisoners’ Dilemma example, we essentially exploited the upper and lower bounds
of the support of the distribution representing equilibrium selection, i.e. a distribution over
equilibrium payoffs. Because we do not have other sources of variation nor additional in-
formation about equilibrium selection, we can only use the fact that either Pr(a) > 0 or
Pr(a) = 0 to generate restrictions on (α, δ); the exact value of Pr(a) was not informative
about (α, δ). In actual empirical applications, there is likely additional variation that influ-
ences observed equilibrium behavior as data are pooled across markets, periods and players.
Our identification strategy in the general setting exploits this additional variation.

We assume that additional variation is captured by vectors of observables x and unob-
servables ǫ, with the joint cumulative distribution function F (x, ǫ). The equilibrium payoff
set and the necessary and sufficient conditions Ψ and Ξ now depend on (x, ǫ).3 We now de-
rive the restriction on Pr(a). Since observing a implies that the set of necessary conditions
that define Ψ(∆) holds, then

Pr(a) ≤

∫

Ψ(∆(x,ǫ); x, ǫ)dF (x, ǫ).

3In practice, one needs to compute the upper and lower bounds of ∆h for each realization of (x, ǫ).



where we have made explicit the dependence on (x, ǫ). Similarly, since conditions that define
Ψ(∆) are sufficient for observing a, then

∫

Ξ(∆(x,ǫ); x, ǫ)dF (x, ǫ) ≤ Pr(a).

Thus, we can use these “worse case bounds” (Manski, 1990) to obtain an identified set for
(α, δ).

We end this section with a proposition that summarizes our identification results.

Proposition 2. Let

Pr(Ψa) ≡

∫

Ψ(∆(x,ǫ); x, ǫ)dF (x, ǫ)

and

Pr(Ξa) ≡

∫

Ξ(∆(x,ǫ); x, ǫ)dF (x, ǫ)

where the necessary and sufficient conditions Ψ and Ξ are tailored to each action profile a.
Suppose we have data on the frequencies of a set of action profiles A. Then

H =
⋂

a∈A

{(α, δ) : Pr(a) ∈ [Pr(Ξa),Pr(Ψa)]}

is an identified set for (α, δ).

4 Concluding remarks

In this note, we propose a strategy to identify the structural parameters of an infinitely
repeated game without relying on equilibrium selection assumptions beyond subgame perfect
Nash equilibrium. The strategy exploits the extreme points of the equilibrium payoff set to
derive bounds on the frequency of actions. These bounds in turn provide restrictions on the
parameters of interest.

The identified set that we have constructed is not sharp. If one can compute the exact
equilibrium payoff set, then one can construct a sharp identified set by examining all the
restrictions for each possible equilibrium payoff. The repeated games literature characterizes
the equilibrium payoff set at given discount factors and provides algorithms to compute this
set (e.g., Abreu et al. (1990); Judd et al. (2003); Abreu and Sannikov (2014); Abreu et al.
(2016)). Although computing all the elements of this set is likely computationally intensive
or even infeasible in most empirical settings, our approach only relies on the extreme points
of this set. To what extent restrictions from our identification strategy yield an informative



identified set will depend on the actual empirical application and the available data. One
important application of our identification strategy is the flexible estimation of firm conduct
to detect collusion.

Finally, empirical settings involve both observed and unobserved state variables. Includ-
ing observed exogenous state variables is theoretically straightforward (and in fact useful
for identification as discussed in Section 3) but can be computationally demanding since
this involves computing the (extreme points) of the equilibrium payoff set for each value
of the state variable. Adding unobserved exogenous shocks is also feasible (but may also
be computationally demanding) as long as one is willing to assume that these shocks come
from a known distribution. Given the ability to accommodate states, it will be interesting
to investigate how to adapt our identification strategy to general dynamic games.
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