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Abstract
We introduce an efficiency concept in matching markets with contracts called contractual efficiency. Contractual

efficiency requires that each student is assigned to a school under her most preferred contractual term. We show that

while in general it is not possible to have stable and contractually efficient matchings; if the preferences of each school

are lexicographic, then there is a contractually efficient and stable matching. Moreover, we provided an algorithm, the

Best-Term Deferred Acceptance (Best-Term DA) algorithm, that produces a contractually efficient and stable

matching whenever schools' preferences are lexicographic. Finally, we turn to the question of whether a contractually

efficient and stable matching can be implemented in dominant strategies. We show that in a two-stage matching

market whereby contractual terms can be interpreted as pre-matching investments -each student first chooses her

investment and then students and schools match according to the School-Optimal Stable Matching-, it is a dominant

strategy for each student to choose the investment associated with the outcome of the Best-Term DA algorithm and

the outcome of the two-stage market is precisely the outcome of the Best-Term DA algorithm.
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1 Introduction

We consider a one-to-one version of the matching with contracts model introduced by Hatfield and

Milgrom (2005). Contracts are a way to model real-world matching markets in which individuals

have preferences not only over their partners, but also over the contractual terms under which they

are hired. Some applications of this model are the assignment of workers to firms when firms pay

(discrete) salaries (Kelso and Crawford, 1982), the matching of U.S. Military Academy graduates to

military branches where contracts differ by term length (Sönmez, 2013; and Sönmez and Switzer,

2013) and the participation of married couples in the market (Hatfield and Kojima, 2009; and Tello,

2016).

We interpret the model as a school choice problem: there are finite sets of students, schools and

contractual terms. Each student can be matched to at most one school under the terms of an available

contract. Each school is endowed with a single position. Each student has strict preferences over

contracts, and each school has a strict priority ranking over the same contracts. Since the model we

consider is one-to-one, there is a symmetry between students and schools, therefore we often refer

to priority rankings as “schools’ preferences”, but it is important to keep in mind the interpretation

of schools as resources that exist primarily to be of use for students and thus they are not considered

neither in welfare nor in strategic notions.

In this note we introduce the concept of contractually efficient matchings. A matching is con-

tractually efficient from the point of view of students, if each student gets the contractual term

she prefers the most among all contractual terms between her and the school she is matched with.

Contractual efficiency emphasizes the notion that schools are passive agents. To the best of our

knowledge this is the first paper dealing with this efficiency concept.

Additionally to contractual efficiency, we focus on stability. Stability is a central concept in the

matching literature. Specifically, a matching is stable if a student is denied a contract only if the

school in question has filled its position with a higher priority contract.

Pakzad-Hurson (2014), introduced a restriction on each schools’ preferences, called lexico-

graphic preferences. Lexicographic preferences restrict the rankings within each school. A school’s

preferences are lexicographic if it orders all contracts associated with each student consecutively

on its preference list. In this note we show that: if each school’s preferences are lexicographic, then

there is always a stable and contractually efficient matching. Our proof is constructive, we provide a

new algorithm, the Best-Term Deferred Acceptance (Best-Term DA) algorithm that produces such a

matching whenever schools’ preferences are lexicographic. This algorithm reduces to the Gale and

Shapley (1962) School-Proposing Deferred Acceptance algorithm when there is a single contract

between each student and school.

Pakzad-Hurson (2014) argues that while restrictive there are real life examples of lexicographic

preferences. His main example are admission processes in the United States, Canada and Scotland

where students often declare an intended major in their applications, only to have the option to

choose any desired major once enrolled.

Our second main result regards the possibility of implementing a stable and contractually ef-

ficient matching via a game form. Consider a two-stage game in which students first choose their

contractual term, and then students and schools are matched according to the Gale and Shapley

(1962) School-Optimal Stable Matching. Here we interpret contractual terms as investments that

take place before a matching stage, so that the game has the interpretation of a prematching in-



vestment game. Our results state that (i) for each student, it is a dominant strategy to choose the

investment prescribed by the matching produced by the Best-Term DA algorithm, and (ii) the out-

come of the game coincides with such a matching.

Several authors have studied the conflict between stability and “efficiency” in several types of

matching markets. Without contracts, Ergin (2002) shows that stability and efficiency are incom-

patible when school priorities have cycles between students which result in one student blocking a

“trade” between two others. It is the domain of acyclic priorities that ensures stability, efficiency,

and group strategy-proofness for Deferred Acceptance (Ergin, 2002). Unfortunately, this acyclicity

condition is very restrictive, as cycles are often present in real-world priority structures.

Haeringer and Klijn (2009) show that acyclicity is a necessary and sufficient condition for De-

ferred Acceptance to result in stable and efficient equilibrium outcomes when students cannot list

all schools in their submitted preferences. Pakzad-Hurson (2014) generalizes the results of Ergin

(2002) to the many-to-one matching with contracts model, giving the maximal domain of priorities

over which Deferred Acceptance is stable, efficient and group strategy-proof. This domain is given

by priority structures that satisfy a generalization of Ergin acyclicity and lexicographicity.

To properly place our paper with respect to the close literature described above, we remark that

our concept of efficiency (contractual efficiency) is weaker than Pareto efficiency, as we only require

that any student gets the best contract at the school she gets admitted. Therefore, the trade off is

only within the school not across schools. This points to the fact that in order to obtain stability

and contractual efficiency we do not need to impose acyclicity restrictions a là Ergin that prevent

“conflicts” across schools, but only a lexicographic restriction a là Pakzad-Hurson that prevents

“conflicts” within each school.

2 Model

Let J and S be two disjoint sets of students and schools. There is a finite set T that contains all

possible contractual terms that may exist between each student j ∈ J and each school s ∈ S. Let

N = J ∪ S denote the set of agents. A contract specifies a partnership between a student and a

school under some contractual term. Formally, a contract is a triplet (j, s, t) = x ∈ X where

X ⊆ X ≡ J × S × T.

Additionally, there is a “null contract” which represents the prospect of holding no contract (or

some outside option), and is denoted by ∅.

We only consider sets of contracts that contain at least one contract between each student and

each school. Moreover, we assume that no agent (student or school) is assigned more than one

contract.

Let X ⊆ X be a set of contracts. We write j(x), s(x) and t(x) to denote the student, school

and contractual term associated with contract x ∈ X , respectively. For each X ⊆ X ,

X(j) ≡ {x ∈ X : j(x) = j} and X(s) ≡ {x ∈ X : s(x) = s}

denote the sets of contracts within X involving student j and school s, respectively.

For any X ⊆ X , each agent i ∈ N has a complete, transitive and strict preference relation Pi

over the set X(i) and the null contract ∅. For simplicity we refer to schools’ priority rankings as



schools’ preferences. For x, x′ ∈ X(i) ∪ {∅} we write xPi x
′ if agent i prefers x to x′ (x ̸= x′),

and xRi x
′ if i finds x at least as good as x′, i.e., xPi x

′ or x = x′. If x ∈ X(i) is such that xPi ∅,

then we call x an acceptable contract for agent i. We denote profiles of students’ and profiles of

schools’ preferences by PJ = (Pj)j∈J and PS = (Ps)s∈S , respectively. Let P = (PJ , PS) be

a preference profile. We represent agents’ preferences by ordered lists of contracts; for example,

Ps : (j, s, t), (j′, s, t′), ∅ . . . means that (j, s, t) is s’s most preferred contract, (j′, s, t′) is s’s

second most preferred contract and any other contract is unacceptable to s.

We fix J , S and T . Therefore, a market is completely described by a non-empty set of contracts

X ⊆ X and a preference profile P . We denote a market by a pair (X,P ).
A matching µ for (X,P ) is a mapping from N to X such that

(i) for each i ∈ N, µ(i) ∈ X(i),

(ii) for each j ∈ J and each s ∈ S, if x ∈ X(j)∩X(s), then µ(j) = x if and only if µ(s) = x.

A matching µ is individually rational if no agent would be better off by breaking a current

contract. Formally, a matching µ is individually rational if for each i ∈ N, µ(i)Ri ∅. A matching

µ is blocked by j ∈ J, s ∈ S and x ∈ X(j)∩X(s) if (1) xPj µ(j) and (2) xPs µ(s). A matching

is stable if it is individually rational and it is not blocked.

Finally, a matching µ is contractually efficient, if for each student j ∈ J, µ(j) is an acceptable

contract for j and it is the best contract for j among all contracts between j and s(µ(j)).
The next example illustrates that in general stable matchings are not contractually efficient.

Example 1 (Tension between Stability and Contractual Efficiency). Consider a market with J =
{j1, j2}, S = {s1, s2}, T = {t1, t2}, and preferences P given by the columns in Table 1. Vertical

dots mean that preferences can be arbitrary.

Table 1: Preferences P in Example 1

Ps1 Ps2 Pj1 Pj2

(j1, s1, t1) (j2, s2, t2) (j1, s1, t2) (j2, s1, t2)

(j2, s1, t1)
... (j1, s1, t1) (j2, s1, t1)

(j1, s1, t2) (j1, s2, t2) (j2, s2, t2)

(j2, s1, t2) (j1, s2, t1) (j2, s2, t1)

There is a unique stable matching at (X , P ) given by

j1 j2
| |

µ : s1 s2
| |
t1 t2

which is the boxed matching in Table 1. This can be verified by running the student and the school

proposing DA algorithms with input (X , P ) and observing that the outcome of both algorithms is



the same1. However, matching µ is not contractually efficient. The reason being that student j1 can

be better off by going to s1 under contractual term t2, this is shown with the boldface matching in

Table 1.

3 Results

We assume that the preferences of each school are lexicographic, that is, each school ranks the

contracts involving some student consecutively. Formally, the preferences of a school s ∈ S are

lexicographic if for each acceptable student j ∈ J and any two contracts x, y ∈ X(j)∩X(s) with

xPs y, there is no z ∈
{

X ∪ {∅}
}

\X(j) such that xPs z Ps y.

We present an algorithm that, under lexicographic preferences, is well defined and always pro-

duces a matching that is both stable an contractually efficient.

First we describe the algorithm, then we will present a series of lemmas that complete the proof.

3.1 Best-Term Deferred Acceptance algorithm

We proceed to describe the Best-Term DA algorithm. Let X ⊆ X be a non empty set of contracts.

For each i ∈ N , let Chi(X,Pi) be i’s most preferred contract in X(i), i.e.,

Chi(X,Pi) = {x ∈ X(i) | xPix
′ for all x′ ∈ X(i) \ {x}}.

When it is clear from the context we suppress the dependence of Chi on Pi.

Best-Term DA Algorithm

Input: A market (X,P ) such that Ps is lexicographic for each s ∈ S.

Step 1: An arbitrary school s1 ∈ S proposes her most preferred contract in X(s1). This contract

involves some student say j1 ∈ J . Let student j1 hold her most preferred contract among contracts

involving j1 and s1 and the null contract ∅. Denote such contract by x1. Set y2(j1) = x1 and

y2(j) = ∅ for each j ̸= j1.

Step k: Let Ik be the set of schools involved in a contract which is held by any student after Step

k− 1. An arbitrary school sk ∈ S \ Ik proposes her most preferred acceptable contract x′ ∈ X(sk)
which she has not proposed in a previous step. This contract involves some student jk ∈ J . Let

student jk hold the contract

xk = Chjk

(

∅ ∪
{

yk(jk)
}

∪
{

X(jk) ∩ X(sk)
}

)

,

and reject the other (if any). All other j ̸= jk continue to hold the contract they held at the end of

Step k − 1. Set yk+1(jk) = xk and set yk+1(j) = yk(j) for each j ̸= jk.

The algorithm terminates at some step K when no school proposes any new contract. The func-

tion µ(j) = yK(j) gives the final matching.

Lemma 1. The Best-Term DA algorithm finishes in a finite number of steps.

1A description of the DA algorithm can be found in the Appendix.



Proof. At each step of the algorithm a school proposes a contract that she has not proposed yet.

Since there is a finite number of schools and a finite number of contracts, the algorithm must finish

in a finite number of steps. □

Lemma 2. The Best-Term DA algorithm always produces a matching.

Proof. By construction no student holds more than one contract. Then by the definition of a match-

ing, this implies that also no school holds more than one contract. □

Lemma 3. The matching produced by the Best-Term DA algorithm is stable.

Proof. Let µ be the matching resulting from the algorithm. First, we show that µ is individually

rational. Suppose that at some step of the algorithm a school s proposes some contract involving a

student j. Since s’s preferences are lexicographic the contract chosen by j must also be acceptable

to s. Clearly such contract would also be acceptable to j. Now we show that µ cannot be blocked.

Suppose there are a student j ∈ J, a school s ∈ S and a contract x ∈ X(j) ∩X(s) such that (1)

xPj µ(j) and (2) xPs µ(s). Since xPs µ(s), there is some step in the algorithm in which s proposed

x. Now we analyze two cases:

Case 1: µ(j) involves s. This contradicts that j chose her most preferred contract inX(j)∩X(s).
Case 2: µ(j) does not involve s. Since xPs µ(s), there is some step k in the algorithm in which

s proposed x. Thus we have yk(j)Rj xPj µ(j). Since the welfare of student j weakly increases at

each step of the algorithm, we have that at the end of the algorithm (step K), yK(j)Pj µ(j) which

is a contradiction. □

Lemma 4. The matching produced by the Best-Term DA algorithm is contractually efficient for

students.

Proof. By construction of the algorithm. □

Proposition 1. If the preferences of each school are lexicographic, then there is a stable and con-

tractually efficient matching.

Proof. Lemmas 1 to 4 imply that if the preferences of each school are lexicographic, then there is

a matching that is contractually efficient and stable.

3.2 An investment game

Consider a two-stage market where students first choose their contractual term, and then students

and schools match according to the School-Optimal Stable Matching. Here we can think of ele-

ments of T as pre-matching investments or training taken prior to (the realization of) the matching.

Following this interpretation we will refer to contractual terms as investments.

An investment profile t = {tj}j∈J induces a set of contracts

X(t) ≡ {(j, s, tj) ∈ X : j ∈ J and s ∈ S}.

We say that (X(t), P ) is the market induced by the investment profile t. In this market all available

contracts for a student j involve the same investment tj . Therefore, this market represents a situation

where students’ investments are fixed in the matching stage.

In the second stage, students and schools are matched according to the School-Optimal Stable

Matching µS . Formally, for any matching market, µS is the stable matching that is weakly preferred



for each school to any other stable matching and strictly preferred for some school to any other

stable matching (Gale and Shapley, 1962). Students, in anticipation to the matching stage, choose

investments strategically. Formally, they play a complete information normal form game Γ(P ) =
(J, T, P ) where J is the set of players and T is the set of strategies for each player. Given an

investment (strategy) profile t the outcome of this game is the School-Optimal Stable Matching for

market (X(t), P ). Each student j evaluates the outcome according to her true preferences Pj.

For each student j ∈ J the investment tj is a best response to the investments of all other

students tJ\{j} if µ′(j)Pj µ(j), where µ is the School-Optimal Stable Matching at (X(t), P ) and µ′

is the School-Optimal Stable Matching at (X(t′j, tJ\{j}), P ). For each student j ∈ J an investment

tj ∈ T is a dominant strategy in the game γ(P ) if tj is a best response to any profile tJ\{j}.

In what follows we introduce and fix the following notation. Fix a market (X,P ). Let µ∗

denote the matching produced by the Best-Term DA algorithm for input (X,P ), and let t∗ =
{

t
(

µ∗(j)
)

}

j∈J
be the investment profile associated with matching µ∗.

Proposition 2. Suppose each school has lexicographic preferences. If students choose t∗ in the first

stage, then the outcome of the two-stage market is µ∗.

Proof. Since investments were sunk in the first stage, there is a single contract between any student

and school. Since schools’ preferences are lexicographic, the way each school orders students is

independent of the investment chosen by each student in the first stage. Therefore, the Best-Term

DA algorithm reduces to the standard School-Proposing Deferred Acceptance algorithm, which

delivers the School-Optimal Stable Matching. Thus the partnership between students and schools

must be the same under the Best-Term DA algorithm than under the two-stage market.

Proposition 3. Suppose each school has lexicographic preferences. Then, it is a dominant strategy

for each student j ∈ J to choose the investment associated with the matching µ∗.

Proof. Since schools preferences are lexicographic, changing investment in the first stage does not

change the match in the second stage. Therefore, each student can anticipate the school she will

match in the second stage. This implies that for a given student, independently of the investments

of all other students, the best she can do is to choose the investment she likes the most given the

school she will be matched with.

4 Conclusions

The matching with contracts model is capable to describe the problem of matching students and

schools at the same time it takes into account the more realistic feature of several possible contrac-

tual terms between each student and each school.

One of the most important contributions in this note is the introduction of a new efficiency

concept: contractual efficiency. A matching is contractually efficient, if each student gets the con-

tractual term she prefers the most among all contractual terms between her and the school she is

matched with.

Taking stability as another critical desiderata, we are concerned with the possibility of assign-

ing students (workers, doctors) to schools (firms, hospitals) in a stable way at the same time we

make sure that each student is admitted under her most preferred contractual term. An example for

medical students arises when at a given hospital there are several specialties and we wish that each



medical student is hired by the hospital to her specialty of expertise. In this paper we show that while

in general, it is not possible to have stable and contractually efficient matchings; if the preferences

of each school are lexicographic (Pakzad-Hurson, 2014), then there is a stable and contractually ef-

ficient matching. Moreover, we provided an algorithm, the Best-Term DA algorithm, that produces

a contractually efficient and stable matching, whenever each school’s preferences are lexicographic.

Finally, we show that a contractually efficient and stable matching can be implemented via a game

form in dominant strategies. We show that in a game where contractual terms can be interpreted

as prematching investments -each student first choose her investment and then students and schools

are matched according to the School-Optimal Stable Matching-, it is a dominant strategy for each

student to choose the investment associated with the outcome of the Best-Term DA algorithm, and

the outcome of the game is precisely the outcome of the Best-Term DA algorithm.
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Appendix

Deferred acceptance

We describe a Student-Proposing Deferred Acceptance algorithm which is a generalization of Gale

and Shapley’s (1962) Deferred Acceptance algorithm to markets with contracts. Fleiner (2003)

and Hatfield and Milgrom (2005) show that this algorithm produces a stable matching that Pareto

dominates any other stable matching from the point of view of students. For the School-Proposing

Deferred Acceptance one just have to reverse the order of schools and students. While in our paper

we just need the description of the algorithm for one-to-one markets, here we give a more general

description for many-to-one markets. The description of the algorithm below is based on Pakzad-

Hurson (2014).

The Student-Proposing Deferred Acceptance (DA) algorithm

Input: A market (X,P ).
Step 1: An arbitrary student j1 ∈ J proposes her most preferred contract in X(j1). This contract

involves some school say s1 ∈ H . Let school s1 hold contract x1. Set y2(h1) = x1 and set

y2(h) = ∅ for each s ̸= s1.

Step k: Let Ik be the set of students involved in a contract which is held by any school after Step

k− 1. An arbitrary student jk ∈ J \ Ik proposes her most preferred contract xk ∈ X(jk) which he

has not proposed in a previous step. This contract involves some school sk ∈ H . school sk holds

the contract x ∈ Chs

(

{yk(sk)} ∪ {xk}
)

, and rejects the other (if any). All other s ̸= sk continue to

hold the contract they held at the end of Step k − 1. Set yk+1(sk) = Chs({yk(sk)} ∪ {xk}) and set

yk+1(s) = yk(s) for each s ̸= sk.

The algorithm terminates at some step K when no student proposes any new contract. The

function µ(s) = yK(s) gives the final matching and this matching is called the Student-Optimal

Stable Matching at (X,P ).
The School-Proposing DA algorithm is defined symmetrically by exchanging the roles of stu-

dents and schools in the Student-Proposing DA algorithm. Hatfield and Milgrom (2005) show that

the School-Proposing DA algorithm produces a stable matching at (X,P ) that is Pareto dominated

from the point of view of students by any other stable matching at (X,P ) i.e., the School-Optimal

Stable Matching for market (X,P ).
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