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Abstract

Stock total market value forecasting is a significant issue for policy makers and investors. This study explores
usefulness of the nonlinear autoregressive neural network for this forecasting problem in a dataset of the daily total
market value of A shares traded in the Shenzhen Stock Exchange during January 4, 2016 — August 23, 2021. Through
examining various model settings across the algorithm, delay, hidden neuron, and data splitting ratio, the model leading
to generally accurate and stable performance is reached. Usefulness of the machine learning technique for the total
market value forecasting problem of the A shares is illustrated. Results here might be used on a standalone basis as
technical forecasts or combined with fundamental forecasts to form perspectives of total market value trends and
perform policy analysis.
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1. Introduction

Stock total market value forecasting is a significant issue for policy makers and investors.
Because of irregular volatilities (Xu, 2017a, 2020), great influences on decision making pro-
cesses, and hence on resource allocation and economic welfare (Xu, 2019a,c), significance of
their forecasts to the society might need little motivation.

A great amount of previous studies (Arouri et al., 2012; Awokuse and Yang, 2003; Babula
et al., 2004; Bessler, 1982, 1990; Bessler and Babula, 1987; Bessler and Brandt, 1981, 1992;
Bessler and Chamberlain, 1988; Bessler and Hopkins, 1986; Bessler and Kling, 1986; Bessler
et al., 2003; Brandt and Bessler, 1981, 1982, 1983, 1984; Chen and Bessler, 1987, 1990; Huang
etal., 2018; Kling and Bessler, 1985; McIntosh and Bessler, 1988; Wang and Chen, 2013; Wang
and Bessler, 2004; Xu, 2017c, 2018e, 2019a,c; Xu and Zhang, 2022b; Yang and Awokuse, 2003;
Yangetal., 2001; Yang and Leatham, 1998; Yang et al., 2021, 2003; Zhang and Sun, 2017; Zhou
et al., 2019) have concentrated on a wide variety of (time series) econometric models, expert
forecasts, commercial services, and so forth for price forecasts. Econometric models often seen
in the literature include the autoregressive moving average (Bessler, 1982, 1990; Bessler and
Babula, 1987; Bessler and Brandt, 1981; Bessler and Chamberlain, 1988; Brandt and Bessler,
1981, 1982, 1983, 1984; Kling and Bessler, 1985; McIntosh and Bessler, 1988; Yang et al.,
2001), vector autoregressive (Awokuse and Yang, 2003; Babula et al., 2004; Bessler, 1990;
Bessler and Babula, 1987; Bessler and Brandt, 1992; Bessler and Hopkins, 1986; Bessler and
Kling, 1986; Bessler et al., 2003; Brandt and Bessler, 1982, 1984; Chen and Bessler, 1987, 1990;
Kling and Bessler, 1985; Wang and Bessler, 2004; Xu, 2019a,c; Yang et al., 2003), vector error
correction (Bessler et al., 2003; Wang and Bessler, 2004; Xu, 2019a,c; Yang and Awokuse,
2003; Yang and Leatham, 1998; Yang et al., 2021), and a diverse variety of their variations.
Recently, machine learning methods have shown their potential for stock price forecasting (Long
etal., 2019; Lu and Li, 2017; Ning, 2020; Sun et al., 2015; Wang et al., 2016; Yang and Cheng,
2015; Yao et al., 2018). In addition to the price, another important aspect related to the stock
total market value is the trading volume. In the line of research on forecasting trading volumes
of financial indices and instruments, machine learning models have also proven themselves as
promising tools (Alvim et al., 2010; Bordino et al., 2014; Brownlees et al., 2011; Chen et al.,
2016, 2011; Gharehchopogh et al., 2013; Joseph et al., 2011; Kaastra and Boyd, 1995; Ma and
Li, 2021; Nasir et al., 2019; Oliveira et al., 2017; Satish et al., 2014; Ye et al., 2014).

Among different machine learning methods, previous studies have shown that the neural
network technique has great potential for forecasting economic and financial time series, which
generally tend to be highly noised and chaotic (Karasu et al., 2020; Wang and Yang, 2010; We-
gener et al., 2016; Xu, 2014b, 2015b, 2018a,b,d; Xu and Zhang, 2022j; Yang et al., 2010, 2008).
Previous research has also shown that the neural network technique could lead to high accuracy
under different forecast settings (Karasu et al., 2017a,b; Wang and Yang, 2010; Wegener et al.,
2016; Yang et al., 2010, 2008). This can benefit from capabilities of self-learning of the neural
network for forecasting (Karasu et al., 2020; Xu and Zhang, 2022g) and capturing nonlinearities
(Altan et al., 2021; Xu and Zhang, 2022a) often inhabiting in economic and financial time se-
ries data (Xu and Zhang, 2022h). One greatest advantage of the neural network as compared to
other nonlinear methods for time series data is that a class of multilayer neural networks could
well approximate a large class of functions (Wang and Yang, 2010; Yang et al., 2010, 2008).
The present study will concentrate on the neural network for forecasting the stock total market
value.

To facilitate analysis, the forecasting problem in a dataset of the daily total market value of
A shares traded in the Shenzhen Stock Exchange during January 4, 2016 — August 23, 2021
is investigated via the nonlinear autoregressive neural network. By examining various model



Table |
Summary statistics of the daily total market value of A shares traded in the Shenzhen Stock Exchange

Series Minimum Mean Median Maximum Standard  Skewness Kurtosis Jarque—Bera
deviation p—value

Market value 158693.0000 242102.9694 226620.5000 377627.0000 53772.3319  1.0236 3.0170 <0.001
First difference  —20350.0000 113.5834 264.0000 11157.0000  3487.0956 —0.7779  6.4596 <0.001

settings across the algorithm, delay, hidden neuron, and data splitting ratio, the model leading
to generally accurate and stable performance is arrived at. Results here could be used on a stan-
dalone basis as technical forecasts or combined with fundamental forecasts to form perspectives
of the total market value trend and perform policy analysis. The forecasting framework might
also be generalized to related forecasting problems in other different economic sectors.

2. Data

A shares are stock shares of companies based in mainland China that are traded on the Shang-
hai Stock Exchange and Shenzhen Stock Exchange, as well as the National Equities Exchange
and Quotations. A shares were only available to mainland citizens given China’s restrictions
on foreign investments until 2003 when selected foreign institutions were able to participate
in trading through the Qualified Foreign Institutional Investor system. A shares have grown
along with the Chinese economy. With substantially increased demand over the years, stock
exchange regulators in China continue their efforts in making A shares more broadly available
to international investors and have them recognized by the global investing community. The
total market value of A shares was only about 0.5% of the Chinese gross domestic product back
in 1991, which has grown to more than 80% as of 2021. There are more than 4,600 publicly
traded companies covered by A shares in 2021.

The daily total market value (unit: one million RMB) of A shares traded in the Shenzhen
Stock Exchange during January 4, 2016 — August 23, 2021 for analysis is sourced from Wind
Information Co., Ltd. and plotted on the top panel of Figure 1, together with its first differ-
ences. The bottom panel of Figure 1 also visualizes the daily total market value and its first
differences with histograms of fifty bins and kernel estimates to present the distributions. Table
I reports summary statistics of the data, where one could see that they are not normally dis-
tributed, as generally expected for financial series (Xu, 2015a, 2017b, 2018c, 2019b; Xu and
Zhang, 2021c,d, 2022¢).

3. Method

The nonlinear autoregressive neural network model is investigated here for forecasting the
daily total market value of A shares traded in the Shenzhen Stock Exchange. The model can
be expressed as y, = f(¥,_;,.... ¥,_4), Where y is the daily total market value to be forecasted,
t indexes time, d is the number of delays, and f represents the function. The current study
concentrates on one-day ahead forecasts. And the model based upon a two-layer feedforward
network is employed.

The two-layer feedforward network contains a sigmoid transfer function for hidden layers
and a linear transfer function for the output layer. It is worth noting that the output y, is fed
back through delays to the input of the network and model training would be in the form of
open loops for efficiency, in which the true output is utilized rather than feeding back the one
estimated. In particular, adopting the open loop could ensure that the input to the feedforward
network is more accurate and the resultant network would possess an architecture that is pure
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Figure 1: The daily total market value (black line) and its first differences (grey line) of A shares
traded in the Shenzhen Stock Exchange (top panel) and histograms with fifty bins and kernel estimates
of the daily total market value (bottom left panel) and its first differences (bottom right panel)

feedforward.

Different algorithms can be considered for model training. Here, the Levenberg-Marquardt
(LM) algorithm (Levenberg, 1944; Marquardt, 1963) and scaled conjugate gradient (SCG) algo-
rithm (Mgller, 1993) are examined. These two algorithms have been adopted widely in different
fields (Doan and Liong, 2004; Kayri, 2016; Khan et al., 2019; Selvamuthu et al., 2019; Xu and
Zhang, 2021a,b,e.f, 2022c,k,I). Comparative research of these algorithms might be found from
the literature (Al Bataineh and Kaur, 2018; Baghirli, 2015; Xu and Zhang, 2022d,1).

The LM algorithm approximates the second-order training speed for avoiding expensive
computing of the Hessian matrix, H (Paluszek and Thomas, 2020). The approximation can

be expressed as H = JTJ, where J = [ % g—zfz ] for a nonlinear function f (zl, zz) with
a0

H = gzzj, a‘glzafzz g = JTe reflects the gradient and e the error vector. The rule of
02,0z, 0z3

Zi = 2 — [JTT + ;41]_1 JTe is adopted for updating weights and biases, where I is the
identity matrix. The algorithm is similar to Newton’s approach when y = 0 and it is gradient
descent with small step sizes when u is large. u will be decreased if faster gradient descent is
less needed after successful steps. The LM algorithm not only has desired attributes of steepest-
descent algorithms and Gauss-Newton approaches but also avoids many of their limitations.
Specifically, it is capable of efficiently dealing with the slow convergence problem (Hagan and
Menhaj, 1994).

Backpropagation algorithms conduct adjustments of weights in the steepest descent as the
performance function will rapidly decrease in the direction, which however, does not always
represent the fastest convergence. Conjugate gradient algorithms conduct searches along the
conjugate direction, which, in general, lead to faster convergence than the steepest descent.



Most algorithms utilize learning rates to determine the length of the updated weight step size.
For conjugate gradient algorithms, step sizes are modified during iterations. Thus, the search is
conducted along the conjugate gradient direction for determining the step size for reducing the
performance function. Besides, for avoiding time-consuming line searches in conjugate gradient
algorithms, the SCG algorithm could be used, which is fully-automated and supervised and is
quicker than the LM backpropagation.

Finally, in arriving at our final model, different model settings over delays, hidden neurons,
and data spitting ratios, in addition to algorithms, are examined. Specifically, delays of two,
three, four, five, and six, hidden neurons of two, three, five, and ten, and data spitting ratios of
60% vs. 20% vs. 20%, 70% vs. 15% vs. 15%, and 80% vs. 10% vs. 10% for training, validation,
and testing are explored. We note that the time series of the daily total market value of A shares
is used directly and no particular data treatment has been made before applying neural network.
Table II shows all investigated model settings, where the setting #117 is utilized to build our
final chosen model. The setting #117 is based on five delays and ten hidden neurons and is
constructed with the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) and
a data splitting ratio of 80% vs. 10% vs. 10% for training, validation, and testing phases.

4. Result

All model settings listed in Table II are run for the daily total market value of A shares traded
in the Shenzhen Stock Exchange. For a given model setting, the relative root mean square error
(RRMSE) is calculated as the performance metric across training, validation, and testing phases,
and the results are shown in Figure 2. Balancing model performance and stability, the setting
#117 is chosen.

With the chosen setting, sensitivities of performance to different settings are analyzed by
changing one setting each time and the results are presented in Figure 3, where RRMSEs for
training, validation, and testing based on each setting are shown. The comparison between
the settings #117 and #118 tests the sensitivity to the algorithm, between the setting #117 and
settings #111, #113, #115, and #119 the sensitivity to the delay, between the setting #117 and
settings #87, #97, and #107 the sensitivity to the hidden neuron, and between the setting #117
and settings #37 and #77 the sensitivity to the data splitting ratio. These results support the
setting #117 as the final choice, leading to RRMSEs of 1.41%, 1.37%, and 1.38% for the training,
validation, and testing phases, respectively, and the overall RRMSE of 1.40%.

Detailed visualization of forecasted results and forecast errors based on the chosen setting
for the training, validation, and testing phases are shown in Figure 4. Overall, the chosen set-
ting results in accurate and stable performance, suggesting usefulness of the neural network for
forecasting the daily total market value of A shares traded in the Shenzhen Stock Exchange.
One could also observe that forecast errors are relatively larger during several sub-periods with
elevated price volatilities. This might not be surprising and the model generally still captures
the trends during these sub-periods.



Table 11
Explored model settings for the daily total market value of A shares traded in the Shenzhen Stock
Exchange

Setting Algorithm Delay Hidden Training vs. Validation Setting Algorithm Delay Hidden Training vs. Validation

neuron vs. Testing neuron vs. Testing
#1 LM 2 2 70% vs. 15% vs. 15% #61 LM 2 5 60% vs. 20% vs. 20%
#2 SCG 2 2 70% vs. 15% vs. 15% #62 SCG 2 5 60% vs. 20% vs. 20%
#3 LM 3 2 70% vs. 15% vs. 15% #63 LM 3 5 60% vs. 20% vs. 20%
#4 SCG 3 2 70% vs. 15% vs. 15% #64 SCG 3 5 60% vs. 20% vs. 20%
#5 LM 4 2 70%vs. 15% vs. 15%  #:65 LM 4 5 60% vs. 20% vs. 20%
#6 SCG 4 2 70% vs. 15% vs. 15% #66 SCG 4 5 60% vs. 20% vs. 20%
#7 LM 5 2 70% vs. 15% vs. 15% #67 LM 5 5 60% vs. 20% vs. 20%
#8 SCG 5 2 70% vs. 15% vs. 15% #68 SCG 5 5 60% vs. 20% vs. 20%
#9 LM 6 2 70% vs. 15% vs. 15% #69 LM 6 5 60% vs. 20% vs. 20%
#10 SCG 6 2 70% vs. 15% vs. 15% #70 SCG 6 5 60% vs. 20% vs. 20%
#11 LM 2 3 70% vs. 15% vs. 15% #71 LM 2 10 60% vs. 20% vs. 20%
#12 SCG 2 3 70% vs. 15% vs. 15% 72 SCG 2 10 60% vs. 20% vs. 20%
#13 LM 3 3 70% vs. 15% vs. 15% #73 LM 3 10 60% vs. 20% vs. 20%
#14 SCG 3 3 70% vs. 15% vs. 15% #74 SCG 3 10 60% vs. 20% vs. 20%
#15 LM 4 3 70% vs. 15% vs. 15% #75 LM 4 10 60% vs. 20% vs. 20%
#16 SCG 4 3 70% vs. 15% vs. 15% #76 SCG 4 10 60% vs. 20% vs. 20%
#17 LM 5 3 70% vs. 15% vs. 15% #77 LM 5 10 60% vs. 20% vs. 20%
#18 SCG 5 3 70% vs. 15% vs. 15% #78 SCG 5 10 60% vs. 20% vs. 20%
#19 LM 6 3 70% vs. 15% vs. 15% #79 LM 6 10 60% vs. 20% vs. 20%
#20 SCG 6 3 70% vs. 15% vs. 15% #80 SCG 6 10 60% vs. 20% vs. 20%
#21 LM 2 5 70% vs. 15% vs. 15% #81 LM 2 2 80% vs. 10% vs. 10%
#22 SCG 2 5 70% vs. 15% vs. 15% #82 SCG 2 2 80% vs. 10% vs. 10%
#23 LM 3 5 70% vs. 15% vs. 15% #383 LM 3 2 80% vs. 10% vs. 10%
24 SCG 3 5 70% vs. 15% vs. 15% #84 SCG 3 2 80% vs. 10% vs. 10%
#25 LM 4 5 70% vs. 15% vs. 15% #85 LM 4 2 80% vs. 10% vs. 10%
#26 SCG 4 5 70% vs. 15% vs. 15% #86 SCG 4 2 80% vs. 10% vs. 10%
#27 LM 5 5 70%vs. 15% vs. 15%  #87 LM 5 2 80%vs. 10% vs. 10%
#28 SCG 5 5 70% vs. 15% vs. 15% #88 SCG 5 2 80% vs. 10% vs. 10%
#29 LM 6 5 70% vs. 15% vs. 15% #389 LM 6 2 80% vs. 10% vs. 10%
#30 SCG 6 5 70% vs. 15% vs. 15% #90 SCG 6 2 80% vs. 10% vs. 10%
#31 LM 2 10 70% vs. 15% vs. 15% #91 LM 2 3 80% vs. 10% vs. 10%
#32 SCG 2 10 70% vs. 15% vs. 15% #92 SCG 2 3 80% vs. 10% vs. 10%
#33 LM 3 10 70% vs. 15% vs. 15% #93 LM 3 3 80% vs. 10% vs. 10%
#34 SCG 3 10 70% vs. 15% vs. 15% #94 SCG 3 3 80% vs. 10% vs. 10%
#35 LM 4 10 70% vs. 15% vs. 15% #95 LM 4 3 80% vs. 10% vs. 10%
#36 SCG 4 10 70% vs. 15% vs. 15% #96 SCG 4 3 80% vs. 10% vs. 10%
##37 LM 5 10 70% vs. 15% vs. 15% #97 LM 5 3 80% vs. 10% vs. 10%
#38 SCG 5 10 70% vs. 15% vs. 15% #98 SCG 5 3 80% vs. 10% vs. 10%
#39 LM 6 10 70% vs. 15% vs. 15% #99 LM 6 3 80% vs. 10% vs. 10%
#40 SCG 6 10 70% vs. 15% vs. 15% #100 SCG 6 3 80% vs. 10% vs. 10%
41 LM 2 2 60% vs. 20% vs. 20% #101 LM 2 5 80% vs. 10% vs. 10%
42 SCG 2 2 60% vs. 20% vs. 20% #102 SCG 2 5 80% vs. 10% vs. 10%
#43 LM 3 2 60% vs. 20% vs. 20% #103 LM 3 5 80% vs. 10% vs. 10%
44 SCG 3 2 60% vs. 20% vs. 20% #104 SCG 3 5 80% vs. 10% vs. 10%
#45 LM 4 2 60% vs. 20% vs. 20% #105 LM 4 5 80% vs. 10% vs. 10%
#46 SCG 4 2 60% vs. 20% vs. 20% #106 SCG 4 5 80% vs. 10% vs. 10%
47 LM 5 2 60% vs. 20% vs. 20% #107 LM 5 5 80% vs. 10% vs. 10%
#48 SCG 5 2 60% vs. 20% vs. 20% #108 SCG 5 5 80% vs. 10% vs. 10%
#49 LM 6 2 60% vs. 20% vs. 20% #109 LM 6 5 80% vs. 10% vs. 10%
#50 SCG 6 2 60% vs. 20% vs. 20% #110 SCG 6 5 80% vs. 10% vs. 10%
#51 LM 2 3 60% vs. 20% vs. 20% #111 LM 2 10 80% vs. 10% vs. 10%
#52 SCG 2 3 60% vs. 20% vs. 20% #112 SCG 2 10 80% vs. 10% vs. 10%
#53 LM 3 3 60% vs. 20% vs. 20% #113 LM 3 10 80% vs. 10% vs. 10%
#54 SCG 3 3 60% vs. 20% vs. 20% #114 SCG 3 10 80% vs. 10% vs. 10%
#55 LM 4 3 60% vs. 20% vs. 20% #115 LM 4 10 80% vs. 10% vs. 10%
#56 SCG 4 3 60% vs. 20% vs. 20% #116 SCG 4 10 80% vs. 10% vs. 10%
57 LM 5 3 60% vs. 20% vs. 20% #117 LM 5 10 80% vs. 10% vs. 10%
#58 SCG 5 3 60% vs. 20% vs. 20% #118 SCG 5 10 80% vs. 10% vs. 10%
#59 LM 6 3 60% vs. 20% vs. 20% #119 LM 6 10 80% vs. 10% vs. 10%
#60 SCG 6 3 60% vs. 20% vs. 20% #120 SCG 6 10 80% vs. 10% vs. 10%
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Figure 2: RRMSEs across all model settings for the daily total market value of A shares traded in
the Shenzhen Stock Exchange

1.80%
1.70%
1.60%
1.50%
1.40%
1.30%
1.20%
1.10%
1.00%

RRMSE

(c:llzn) #118 #111 #113 #115 #119 #87 #97 #107 #37 #77

O Training 1.41% 1.53% 1.42% 1.40% 1.37% 1.42% 1.40% 1.42% 1.41% 1.39% 1.41%
Validation  1.37% 1.30% 1.22% 1.22% 1.24% 1.40% 1.50% 1.37% 1.49% 1.55% 1.46%
Testing 1.38% 1.62% 1.50% 1.59% 1.73% 1.45% 1.47% 1.41% 1.32% 1.32% 1.38%
Overall 1.40% 1.52% 1.41% 1.41% 1.40% 1.42% 1.42% 1.41% 1.41% 1.40% 1.41%

Setting

Figure 3: Sensitivities of model performance (the RRMSE) to different model settings for the daily
total market value of A shares traded in the Shenzhen Stock Exchange
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for the daily total market value of A shares traded in the Shenzhen Stock Exchange

5. Benchmark analysis

We conduct benchmark analysis by comparing our final neural network model with the lin-
ear autoregressive model, in terms of forecast performance across the training, validation, and
testing phases. The lag of the linear autoregressive model is determined by the Bayesian in-
formation criterion (Schwarz et al., 1978). We use a modified Diebold-Mariano (Diebold and
Mariano, 1995) test (Harvey et al., 1997) to compare forecast performance, which helps mitigate
several shortcomings in the original test, including the over-sized problem. The modified test is
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based on d, = <errorf\ll> — <errorf42> for the horizon h (h = 1 for our case), where errorf”‘
and errorfw2 are forecast errors from model M, and model M, indexed at time 7. The fore-
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where T is the length of the sample period, d the sample mean of d,, y, = T~ Z,TZI (a', —d )2 is

the variance of d,, and y, = T~! ZIT:H] (dt - J) (d,_k - d_) is the kth auto-covariance of d, for

k=1,...,h—1and h > 2. Under the null hypothesis that mean squared errors generated by
two models are equal, the M DM test follows a ¢ — distribution with T" — 1 degrees of freedom.

We find that, for the training, validation, and testing phases, our final neural network model
leads to better performance, i.e. lower root mean square errors, than the linear autoregressive
model. p-values of the M DM tests across the training, validation, and testing phases are all
nearly 0, specifically, 0.0016, 0.0011, and 0.0008, respectively. Therefore, performance of our
final neural network model is statistically significantly different from that of the linear autore-
gressive model.

It might be worth nothing that a model not performing as well than another model does not
necessarily mean that it could not contribute to forecasting. Many forecast combination studies
aim at weighting different forecasts for better and more stable performance. One interesting
direction in forecast combinations is to combine linear models and nonlinear models for better
results. Some previous studies (Blake and Kapetanios, 1999; Stock and Watson, 1998) provide
good examples in this direction.

6. Conclusion

Stock total market value forecasting is a significant issue for policy makers and investors
(Xu and Thurman, 2015a,b). In the present study, this forecasting problem is investigated in a
dataset of the daily total market value of A shares traded in the Shenzhen Stock Exchange during
January 4, 2016 — August 23, 2021. The nonlinear autoregressive neural network is considered
as the forecasting tool and is explored over different model settings, leading to generally accu-
rate and stable performance. In particular, the chosen model with five delays and ten hidden
neurons is constructed with the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt,
1963) and a data splitting ratio of 80% vs. 10% vs. 10% for training, validation, and testing
phases. It leads to relative root mean square errors (RRMSEs) of 1.41%, 1.37%, and 1.38%
for the training, validation, and testing phases, respectively, and the overall RRMSE of 1.40%.
Results here might be used on a standalone basis as technical forecasts or combined with funda-
mental forecasts for forming perspectives of the total market value trend and conducting policy
analysis. The forecasting framework here should not be difficult to implement, which is an im-
portant consideration to many decision makers (Brandt and Bessler, 1983; Xu, 2014a). Future
research of interest might be investigating the potential of combining time series approaches and
graph theory from machine learning for time series forecasting (Bessler and Wang, 2012; Kano
et al., 2003; Shimizu et al., 2006, 2011; Shimizu and Kano, 2008; Xu and Zhang, 2022f). Inves-
tigating economic significance of adopting neural network modeling for forecasting might also
be a worthwhile avenue for future research (Wang and Yang, 2010; Yang et al., 2010, 2008). It
might be of interest to researchers to explore the forecasting problems based on B shares and H
shares as well using the neural network. While there are previous studies finding that neural net-
works are capable of modeling seasonality directly and prior deseasonalization is not necessary,
there is other research concluding just the opposite (Zhang and Qi, 2005). Empirical evidence
tends to be mixed on this issue and future work taking detrending and/or deseasonalization into
consideration might be worth pursuing.
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