
   

 

 

 

Volume 42, Issue 4

 

The evolution of inventory dynamics in a post-crisis economy

 

Corey J.M. Williams 

West Virginia University

Abstract
Inventories are of historical importance when describing business cycles and production volatility. While research in

inventories is relatively mature, the growing attention to global value chains and commodity shortages in recent

quarters warrants a return and critical reassessment of inventories as a business cycle feature. Herein, we estimate the

persistence, volatility, and adjustment rates of inventories over different subsamples, paying particular attention to the

period following the Financial Crisis. We find through the estimation of a flexible accelerator model that inventories

continue to exhibit strong persistence while the persistence of sales has simultaneously diminished. Using standard

volatility metrics within the literature, we illustrate that production volatility relative to sales volatility over long

subsamples is highest from 2007 onward. Finally, we uncover evidence from several vector error correction models

that the adjustment speed and cointegrating relationship between inventory and sales has deteriorated in the years

following the Financial Crisis. This evidence suggests the need for a structural model that can identify the mechanisms

underlying these critical changes in inventory dynamics during the post-crisis era.
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1 Introduction

Inventories are by definition unsold units of production. More formally known as inventory investment, the
identity ∆Ht = Qt − St links a firm’s inventory growth (∆Ht) to their production levels (Qt) less their
current period sales (St). Much of the attention that inventories have received historically was due to their
relationship with the business cycle. Unsold goods held as inventories tend to move procyclically with the
business cycle and move with close correspondence to GDP.1

It is important to highlight that critical research on macroeconomic inventory investment is at a fairly
mature state. Therefore, inventories have not received significant attention in some time. However, given
that the Global Financial Crisis and Covid-19 have disrupted global value chains and the production side of
the economy altogether, there is an opportunity to reexamine inventory dynamics with new data. We pay
particular attention to the persistence of inventories, the relative volatility of inventories, production, and
sales as well as the rates of inventory adjustment from the short-run to the long-run.

The organization of this paper begins with an overview of key literature pieces and the setting for the
data we utilize in our analysis. We estimate and interpret how inventory persistence has evolved over specific
US recessions and longer subsample periods. For the same recessions and subsamples, we then proceed to
tabulate all key volatility metrics related to inventories, sales, and production paying particular attention
to the period of 2007:1–2022:1. Finally, we construct several vector autoregressive (VAR) and vector error
correction (VEC) models over different subsamples and quantify the evolution of the inventory adjustment
rate. We have three main results worth highlighting. Firstly, inventories are highly persistent through the
present, but sales persistence has weakened considerably. Secondly, the relative volatility of production-
to-sales is highest from 2007 onward. Finally, the cointegrating relationship and stationarity of inventory
growth have deteriorated from 2007 onward. The decoupling of inventory and sales in recent decades presents
a new empirical finding warranting more expansive investigation.

2 Literature & Data Setting

The importance of inventories and their role in describing the business cycle was originally discussed at
length in Abramovitz (1950) who noted that changes in inventories correspond very closely to changes in
output. Figure 1 summarizes the seminal finding of Abramovitz (1950) quite succinctly.

Figure 1: Comparison of Growth Rates

1Depending on the environment, inventories can either be seen as a means to smooth production when demand is uncertain
or as highly volatile due to the accelerator principle as noted in Ramey & West (1999).



The explanation for the relationship described by Figure 1 was that during times of economic expansion,
firms accelerate their inventory positions to meet heightened demand, and liquidate inventories during times
of economic contractions to mitigate carrying costs of excess inventories. Ten years later, Holt (1960)
introduced the first iteration of the linear-quadratic model (LQ), which has been a staple for empirical work
within the inventories literature. While the LQ model is somewhat ad hoc, it conveniently captures two key
features of inventories: the first being that at a micro-level, inventories act as a stabilizing force to smooth
production and secondly, at a macro-level inventories can be destabilizing due to the accelerator principle.
Beyond the benchmark LQ model, several slight variations exist such as M. Lovell (1961) and M. C. Lovell
(1962), which introduce a variation of the LQ model known as the buffer-stock model motivated by the
notion that some firms will voluntarily hold inventories to dampen the effect of backlogged sales.

The relationship between inventories and sales will be discussed at length throughout our analysis, how-
ever, the strong linear relationship between the two motivated a considerable amount of research within this
literature. Consider Figure 2 which highlights this relationship.

Figure 2: Inventories Versus Sales

Several other key papers have contributed to inventories once being a mainstay of many macroeconomic
research agendas. Ramey & West (1999) in the Handbook of Macroeconomics chapter exclusively dedicated
to inventories acts as an important primer on the topic alongside Blinder & Maccini (1991), which acts as
the best existing survey of the literature to this point. Blinder & Maccini (1991) concisely summarizes the
declining interest in inventories despite their macroeconomic relevance to the business cycle.2

Beyond the role of inventories in describing the business cycle, other developments in the literature such
as Ramey (1989) have considered inventories as a factor of production much like labor or capital. A natural
evolution of Ramey (1989) would be papers such as Humphreys et al. (2001) and Iacoviello et al. (2011),
which disaggregate inventories down to input and output inventories allowing one to parse out differences in
persistence, volatility and adjustment rates in inventories that act as factors of production from inventories
that are sold as final goods.

In the same vein as input-output inventories, it is sometimes important to delineate between upstream
versus downstream inventories. While most of inventories work has focused on upstream inventories (man-
ufacturers, nonfarm inventories), key works like Arrow et al. (1951) and Khan & Thomas (2007) focus on
trade inventories or downstream (retailer) inventories and optimal inventory policies under average demand,
inventory carrying costs, and ordering costs. More recent contributions to the structural relationship be-
tween dynamics and the business cycle come from works like Alovokpinhou et al. (2022) who utilize a New

2Blinder & Maccini (1991) notes in particular that at the beginning of the 1990’s, 87% of inventories are held in the
manufacturing sector and around 8% are held as farm inventories, thus the application of many empirical approaches in the
literature and their subsequent findings are usually within a manufacturing sector setting.



Keynesian model to show how inventories drive persistence across several key macroeconomic aggregates.
In terms of key empirical contributions, Blanchard (1983) is a premier piece testing the assumptions

and stylization of inventories using data from the US automobile industry. His findings highlight both the
importance of an industry’s cost structure and demand process in assessing the degree to which inventories
act as a stabilizing or destabilizing force. More recent empirical contributions include works such as Bils &
Kahn (2000) who conclude that the sluggishness of inventory adjustments over the business cycle is largely
attributable to countercyclical markups. Complementary pieces to Bils & Kahn (2000) are ones such as
Crouzet & Oh (2016) and Jones & Tuzel (2013). Additionally, there is a renewed interest in inventories
through the lens of total factor productivity (TFP) and “news shocks.” Pieces like Görtz et al. (2022) and
Görtz & Gunn (2018) in particular examine the interesting and positive comovement between TFP and
inventories in response to news about speculative TFP growth.

Finally, across the literature, there are several important inventory puzzles. Maccini et al. (2015) details
these quite well including the Wen (2011) puzzle, the variance ratio puzzle, the input cost puzzle and the
slow adjustment puzzle. The Wen (2011) puzzle impresses that differences in production volatility relative to
sales volatility can be explained by the horizons they are measured across wherein short-horizon production
is less volatile than long-horizon production. The variance ratio puzzle articulates the oddity that in an
infinite-horizon setting, the variance of production to sales tends to lie precisely at one in spite of production
smoothing efforts that firms can pursue. The slow adjustment puzzle shows that, in optimality, firms are
exceedingly slow to adjust their current period inventories to their optimum level. Finally, the input cost
puzzle illustrates that firms reduce their inventory holdings in light of higher input costs to production.

For our analysis, we focus on four primary data series described in Table I. All data are in quarterly
buckets starting in 1947:1 and ending in 2022:1. All units are converted to real terms using the GDP
deflator. The inventory aggregate we use is known as private nonfarm inventories. This inventory aggregate
is common for analysis as its length extends as far back as 1947. The sales aggregate we use is known as
final sales of domestic business, which is commonly utilized within the literature for its length, which also
extends as far back as 1947.

Table I: Data & Descriptive Statistics

Series Notation Units Mean Std. Dev. Source

Real Inventories Ht Billions of USD 1300.86 624.372 BEA
Real Sales St Billions of USD 521.554 301.715 BEA
Real Production Qt Billions of USD 530.89 306 Qt = St +∆Ht

Real GDP Yt Billions of USD 8996.68 5374.95 BEA
Inventory Growth ∆log(Ht) Percent 0.67% 1.56%
Sales Growth ∆log(St) Percent 0.72% 1.33%
Production Growth ∆log(Qt) Percent 0.74% 4.16%
GDP Growth ∆log(Yt) Percent 0.76% 1.16%

3 Persistence

To illustrate the concept of persistence, we turn to a variation of the LQ model known as the flexible
accelerator (FA) model. First penned by M. Lovell (1961), the FA model considers a representative firm who
seeks to optimize their inventory stock, Ht, to balance the costs of adjusting inventory levels with the costs
of deviations from their optimal target, H∗

t . The explicit inclusion of an inventory target in the objective
function is what makes this model slightly different from the traditional LQ models discussed at length in
Ramey & West (1999) and West (1993). However, under certain assumptions, the model’s solution collapses
to a solution identical to the LQ model. The representative firm’s objective function is described by equation
(3.1).

arg min
Ht

{

1

2
(Ht −H∗

t )
2 +

1

2
µ(Ht −Ht−1)

2 + εtHt

}

(3.1)



µ > 0 is the weight of the second cost term relative to the first and εt is a disturbance term.3 The
first-order condition (FOC) yields equation (3.2).

Ht −Ht−1 = [1/(1 + µ)](H∗

t −Ht−1)− [1/(1 + µ)]εt (3.2)

The coefficient 1
1+µ

represents the gap between the target and starting inventory levels within a given
period. To operationalize this model, H∗

t must be defined. Typically, it is common to assume in an optimal
setting with no cost shifters that inventories are some θ proportion of sales or H∗

t = θSt where St are sales
in the current period. Additionally, St must be given an explicit law of motion, the easiest being a simple
autoregressive representation such as St = St−1 + et. Plugging these back into the model and simplifying
once more, we have:

Ht −Ht−1 = [1/(1 + µ)](θSt−1 + θet)− [1/(1 + µ)]Ht−1 − [1/(1 + µ)]εt

Further algebraic manipulation leads to:

Ht = [1/(1 + µ)]θSt−1 + [1/(1 + µ)]θet − [1/(1 + µ)]Ht−1 +Ht−1 − [1/(1 + µ)]εt

After collecting similar terms, we arrive at equation (3.3).

Ht = [θ/(1 + µ)]St−1 + [µ/(1 + µ)]Ht−1 + [1/(1 + µ)](θet − εt) (3.3)

With these simplifications, we can express (3.3) in a reduced form described by equation (3.4).

Ht = πSSt−1 + πHHt−1 + ut (3.4)

In essence, the reduced form solution for Ht is a simple autoregressive distributed lag model of order
one or an ARDL(1,1). Note that we can map our reduced form parameters to the following structural
parameters: πS = θ

1+µ
, πH = µ

1+µ
and with ut =

1
1+µ

(θet− εt) as the disturbance term. The solution to this
model can be thought of as the “traditional” rule to follow for choosing current period inventories; however,
if one were to consider a just-in-time (JIT) inventory system wherein H∗

t = 0, then equation (3.2) becomes
(3.5).

Ht −Ht−1 = [1/(1 + µ)](−Ht−1)− [1/(1 + µ)]εt (3.5)

This further simplifies to:

Ht = [µ/(1 + µ)]Ht−1 − [1/(1 + µ)]εt (3.6)

In its reduced form, equation (3.6) can be expressed as:

Ht = πHHt−1 + vt (3.7)

In this instance, πH still has the same structural mapping as it did in equation (3.4), but as a result of
setting H∗

t = 0, the model solution collapses to an AR(1) rather than an ARDL(1,1). While our structural
model described by equation (3.4) is an ARDL(1,1), in reality, we must be wary of potential autocorrelation
in our error term. Alongside this concern, it is likely that the lagged dynamics of both inventories and
sales are more complex than singular lags. To remedy this in our estimation procedure, we use the Akaike
information criterion (AIC) to estimate a more appropriate ARDL(p, q) model and ensure that our error
terms are heteroscedastic and autocorrelation consistent (HAC). Table II presents estimation results in real
units for an ARDL(3,2) over select subsamples.4

3For practical purposes, this is simply a mean zero error term, but in the context of the model, it serves as a scaler or shifter
for inventories and is stochastic in nature.

4In our appendix, we include estimations of both equations (3.4) and (3.7) in log levels with a constant to match the exact
structural model’s structure. As noted in Ramey & West (1999) and Blinder & Maccini (1991), it is common to estimate flexible
accelerator models in real units or in natural logs.



Table II: Estimated Flexible Accelerator Models: ADRL(p, q)

Dependent Variable: Ht

Constant 5.12266 4.70152. 45.43967*** -15.1529 134.48767** 123.91908***
(3.40799) (2.72837) (13.00776) (81.0120) (37.44923) (33.92073)

Ht−1 1.63583*** 1.33214*** 1.47075*** 1.6050*** 1.00160*** 1.38291***
(0.08596) (0.09882) (0.08221) (0.1395) (0.16789) (0.10247)

Ht−2 -0.81642*** -0.32150* -0.48313** -0.9436** -0.09251 -0.43438**
(0.24496) (0.15269) (0.14936) (0.3188) (0.21855) (0.16148)

Ht−3 0.16298 -0.12245 -0.05062 0.2090 -0.10909 -0.11489
(0.16739) (0.07806) (0.08490) (0.1952) (0.10469) (0.09725)

St−1 0.13202 0.71686* 0.96081** 0.1368 0.36140 1.00433***
(0.18302) (0.31400) (0.29867) (0.3182) (0.66440) (0.28349)

St−2 -0.09032 -0.41659 -0.88058** 0.1796 -0.03967 -0.79860**
(0.17682) (0.32865) (0.31076) (0.1228) (0.65735) (0.28120)

N 298 99 136 61 40 85
Adj. R2 0.99 0.99 0.97 0.97 0.98 0.99
Range 1947:4-2022:1 1947:1-1972:2 1973:1-2006:4 2007:1-2022:1 2010:1-2019:4 1981:1-2006:1
Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05. We first present our full sample (1947:4-2022:1), the beginning of our sample up until the
productivity slowdown (1947:1-1972:2), the productivity slowdown up until the Financial Crisis (1973:1-2006:4), and the Financial Crisis
through the end of the sample period (2007:1-2022:1). We present results for a window of time that is the post-Financial Crisis, but
pre-Covid 19 pandemic (2010:1-2019:4) in consideration of bias that might arise from both Covid-19 and the Financial Crisis. We also
present results for the Great Moderation (1981:1-2006:1) where inventories are of particular importance relative to other subsamples as
highlighted in Camacho et al. (2011).

We observe that the autoregressive coefficients of Ht−1 over all subsamples are highly persistent. We
note that the coefficients associated with St−1 carry significant statistical and economic relevance during
the productivity slowdown era and the Great Moderation; however, we note that after the Financial Crisis,
sales relative economic importance is not statistically different from zero. This is a stark contrast to the
traditional importance of sales in the flexible accelerator model.

4 Relative Volatility

Ramey & West (1999) highlights two universally accepted stylized facts about inventories: their procyclical
nature and extreme persistence. Given that we have discussed persistence at length, we follow the literature,
which points out that relative volatility of inventory, sales and production can be identified from their time
series characteristics. In general, inventories tend to trend positively during economic expansions and fall or
stagnate during economic contractions. The idea is that as an expansion is occurring, aggregate demand is
rising, thus firms are accelerating their inventory positions to meet demand; however, during contractions,
firm seek to liquidate their inventory positions to avoid the carrying costs of inventory during periods of low
demand. Evidence of recent developments in inventory dynamics can be gleaned from the inventory-to-sales
ratio (ISR) described in Figure 3.



Figure 3: Inventory-to-Sales Ratio

The ISR is typically countercyclical peaking during recessions and falling during expansions.5 While the
level of the ISR has fallen considerably over time, it is still well above unity. During recent recessions like
the Financial Crisis and Covid-19, we have seen the ISR reach its highest levels since the early 1990’s. This
raises several puzzles. The first is the speed of inventory adjustment over recent recessions versus earlier
sample periods. The second is the relative volatility of sales during recent economic crises compared to
earlier eras. We will address the first puzzle in-depth later. To address the second puzzle, however, there
are several standard metrics in the inventories literature used to capture relative inventory volatility. Table
III expresses these metrics over various subsamples.

5The intuition is straightforward: given the persistence of inventories, upon an economic contraction, demand tends to fall
sharply while inventories adjust sluggishly to economic conditions.



Table III: Relative Importance of Inventories (Ht) & Production (Qt) Volatility

Period (∆Ht/∆Yt)× 100 cor(St,∆Ht) var(Qt)/var(St) var(∆Qt)/var(∆St) mean(Ht/St)

1948:4–1949:4 82.7 -0.76 44.83 70.66 2.84
1954:3–1954:2 35.16 0.65 45.70 36.27 2.99
1957:3–1958:2 31.67 0.90 8.1 7.82 2.93
1960:2–1961:1 298.86 -0.33 413.59 108.65 2.81
1969:4–1970:4 4.66 0.29 39.12 34.18 2.86
1973:4–1975:1 -64.91 0.59 77.9 79.92 3.19
1980:1–1980:3 2.55 0.78 20.81 13.11 3.39
1981:3–1982:4 56.05 0.66 11.91 7.37 3.31
1990:3–1991:1 35.49 0.99 41.04 121.33 2.71
2001:1–2001:4 -158.81 0.13 24.3 6.57 2.20
2007:4–2009:2 32.51 0.71 27.06 120.5 2.33
2020:1–2020:2 2.27 -0.99 0.89 0.22 2.29
1948:1–1972:4 14.09 0.17 1.06 9.85 2.84
1973:1–2006:4 10.76 0.02 1.02 12.15 2.69
2007:1–2022:1 19.17 0.26 1.47 5.49 2.26
1948:1–2022:1 13.57 0.16 1.03 6.24 2.65
1985:1–2006:1 7.18 0.22 1.08 11.44 2.45
2010:1–2019:4 14.71 -0.29 0.92 30.72 2.25
1948:1–1958:2 15.58 -0.11 1.19 10.61 2.93
1958:3–1973:4 16.52 0.35 1.15 14.54 2.77
1974:1–1985:2 15.87 -0.07 1.21 12.69 3.16
1985:3–1996:3 6.62 0.18 1.21 12.39 2.63
1996:4–2022:1 14.36 0.20 1.18 5.74 2.25
Note: This table is divided into three segments. The first are US recessions as identified by the NBER. The second are select subsamples
including the pre-productivity slowdown, the post-productivity slowdown up until the Financial Crisis, and the Financial Crisis through
the end of our sample. Finally, we utilize a Chow Test to identify multiple structural breaks in the ISR. Our final segment looks across
subsamples specific to the break dates generated from our structural break tests.

(∆Ht/∆Yt) × 100 describes the endpoint-to-endpoint change in real inventories (Ht) as a fraction of
the endpoint-to-endpoint change in real GDP (Yt) over various subsamples. cor(St,∆Ht) describes the
relationship between real sales (St) and real net inventories (∆Ht). var(Qt)/var(St) describes the volatility
of real production (Qt) relative to the volatility of real sales where Qt is linked in the data by a standard
convention in the literature: Qt = St+∆Ht. This variance ratio in particular is a proxy for the supply chain
phenomena known as the Bullwhip Effect.6 var(∆Qt)/var(∆St) is the variance ratio of net real production
(∆Qt) to net real inventories and mean(Ht/St) is the average ISR over each respective subsample.

The relative change in inventories versus GDP varies highly with ∆Ht being almost 300% higher than ∆Yt

during the 1960-1961 recession to almost -160% during the dot-com boom. Clearly, the relative magnitude
of these measurements are subject to the idiosyncracies of each recessionary period they are measured in;
however, if one were to evaluate this same metric over longer time periods, one would see that the era
encompassing the Financial Crisis through the present expresses the highest relative proportion of inventory
change to GDP change at around 20% compared to roughly 14% for the full sample. If one were to look at the
correlation over long periods, one would see that the correlation between inventories and sales is particularly
strong between 2007:1–2022:1 relative to the full sample. Whether the strengthening of this linkage is simply
spurious or the result of changes in firm behavior is unclear and warrants a deeper empirical treatment.

We note that over recessionary periods, the Bullwhip Effect is highly amplified, however, over long
samples, it is relatively close to unity. It would seem the relative volatility of production has increased
considerably in recent decades relative to the full sample. A direct consequence of a high Bullwhip Effect
is excess inventory investment. Finally, the volatility of the change in production relative to the change in
sales, var(∆Qt)/var(∆St), tends to weakly correspond to the Bullwhip Effect’s magnitude over the same

6The Bullwhip Effect ordinarily is the ratio of new orders to sales, however, when data on orders is unavailable, it is
common to utilize production as noted in Blinder & Maccini (1991). The Bullwhip Effect proxy has a simple interpretation,
if var(Qt)/var(St) < 1, firms are production smoothing, however, if var(Qt)/var(St) > 1, firms are experiencing demand
amplification (Bullwhip Effect).



periods. We note, however, that this metric is relatively muted in the 2007:1–2022:1 subsample relative to
the full sample and the productivity slowdown subsample. These findings in part echo the inventory puzzles
posed in Maccini et al. (2015), particularly the variance ratio puzzle and Wen (2011) puzzle.

5 Adjustment Speeds

The speed of adjustment between inventories and sales was a point of constant analysis in the inventories
literature with findings often characterizing inventories as being relatively sluggish in their adjustment to
sales. A quick illustration of this can be shown from a simple VAR model. Consider the unrestricted bivariate
VAR of Zt = β0 +

∑8
i=1 βiZt−i + εt where Zt = [Ht, St]

T estimated using data from 1947:1–2021:1.7 The
vector of data is in their levels and utilizes eight lags in accordance with the AIC criteria. Post-estimation,
we can generate the following impulse-response functions (IRFs) described by Figure 4 and Figure 5.

Figure 4: Responses from VAR to a Sales Shock

We observe from Figure 4 that a sales shock has an immediate “jump” impact on sales. We note that
it takes time for firms to accumulate necessary inventories for meeting demand, thus, the adjustment of
inventories to meet sales is somewhat sluggish. As demand is met, inventories are subsequently depleted
settling at a level close to its pre-shock equilibrium.

7We refrain from imposing formal restrictions (such as a Choleski decomposition) as our VAR results serve to illustrate
a simplistic view of the adjustment rates of inventories and sales to motivate a more conventional vector error correction
framework.



Figure 5: Responses from VAR to an Inventory Shock

From Figure 5, an inventory equation shock dramatically increases the stock of inventories held by firms
with a high degree of persistence as well. Sales on the other hand exhibits a weakly positive and transitory
response to an inventory equation shock. In reality, demand generally drives production decisions (thus
creating inventories), however, the presence of unsold production (inventories) does not necessarily create
demand. However, in theory, firms could endogenously price their inventories in such a way to ensure
they are always liquidated, but in the aggregate, the evidence suggests this is not the case. This empirical
result is somewhat of a contrast to studies like Bils & Kahn (2000), Görtz & Gunn (2018) and Görtz et
al. (2022) who assume inventories lead or create sales. One possible explanation for this dichotomy is that
in the manufacturing sector, new orders are generated in advance of production. Orders signal the start of
the production process whereafter some lead time passes, inventories are created, and then shipped (sold).
At the retailer level, however, a prospective customer need only pick an item off the shelf (an inventory)
and purchase it. Ultimately, the timing of inventory creation relative to demand signal generation is quite
different between retailers and manufacturers. Given that the majority of nonfarm inventories are held in
manufacturing, the result described by Figure 5 is not completely surprising.

While this illustrative evidence shows some characteristics of inventory adjustment speeds, it ignores the
possibility that inventories and sales are both cointegrated. Papers like Hamilton (2002) and West & Wilcox
(1994) discuss the nature of cointegration in the context of the LQ model and its implications extensively.
We first opt to evaluate importance of the possible cointegrated relationship in a more straightforward way
by examining the inventory-to-sales relationship (Ht − θSt) and its response to inventory and sales shocks.
To do this, we follow the form of Ramey & West (1999) and first estimate a dynamic OLS model (DOLS)
using the methodology described in Stock & Watson (1993). Equation (5.1) describes the structure of this
econometric approach.

log(Ht) = β0 + β1log(St) +
8

∑

i=1

γi∆log(St+i) +
8

∑

i=1

τi∆log(St−i) + εt (5.1)

Equation (5.1) is estimated with a constant along with eight leads and lags. The Bartlett kernel is used
for calculating the long-run variance of the cointegrating relationship. We pay special attention to the β1

coefficient, which captures the long-run inventory-to-sales relationship. With this in mind, we construct a
second bivariate VAR model identical to the one generated earlier, but in log levels rather than real quantities.
We construct IRF plots that adjust inventory responses to shocks by netting out its linearly cointegrated
relationship with sales.8 This adjustment produces Figure 6 and Figure 7.

8Practically speaking, we adjust a response from Ht such that it is Ht − β1St where St is the sales response to the same
shock scaled by the cointegrating relationship, β1 = 1.12, estimated from equation (5.1).



Figure 6: Inventory-to-Sales Relationship: Response to Inventory Shock

Figure 6 provides visual evidence that a surge in inventory levels generally tends to inflate the inventory-
to-sales relationship suggesting sales do not respond quickly to such a shock. Additionally, the reversion to
the equilibrium is exceedingly slow.

Figure 7: Inventory-to-Sales Relationship: Response to Sales Shock

Figure 7 illustrates the pattern that a sales shock has a disproportionate effect on inventories and sales.
The immediate fall in the inventory-to-sales relationship suggests that inventories rise in response to a sales
shock, but much more sluggishly than sales. Note in both the cases of Figure 6 and Figure 7 that the
inventory-to-sales relationship does not revert completely back to the zero line suggesting that there is still
strong persistence in the inventory-to-sales relationship.

A final, more contemporary approach to formally identify and quantify each respective adjustment speed
is via a vector error correction model (VECM). We utilize the Johansen (1995) methodology to identify
our cointegrating relationships and error correction model (ECM) simultaneously. The basic framework is
described by equation (5.2).



∆Zt = A0 +ΠZt−1 +

8
∑

i=1

Γi∆Zt−1 + εt (5.2)

From the Π matrix, the reduced form rank condition can be obtained such that Π = αβT . This allows
us to redefine our reduced form VECM as ∆Zt = A0 + αβTZt−1 +

∑8
i=1 Γi∆Zt−1 + εt. If we have one

cointegrating vector (r = 1) in a bivariate model such as equation (5.2), then we can decompose αβT

further:

ΠZt =

[

π11 π12

π21 π22

] [

z1t
z2t

]

=

[

α11

α21

]

[1− β]

[

z1t
z2t

]

=

[

α11

α21

] [

1
−β

]T [

z1t
z2t

]

= αβT =

[

α11

α21

]

[z1t − βz2t] = αECTt

ECTt is our error correction term and identifies the rate of adjustment in the short-run of each endogenous
variable to a common shared stochastic long-run trend. To proceed, we must test the stationarity of our
variables over each period as well. The ADF test statistics and corresponding p-values are reported in Table
IV.

Table IV: Augmented Dickey Fuller Tests

Period/Variable Ht ∆Ht St ∆St

Full Sample -1.608 (0.742) -6.78 (0.01) -1.524 (0.777) -5.865 (0.01)
1948:1–1972:4 -1.44 (0.809) -4.866 (0.01) -1.071 (0.923) -4.003 (0.0117)
1973:1–2006:4 -2.842 (0.226) -4.192 (0.01) -1.606 (0.741) -3.936 (0.0144)
2007:1–2022:1 -2.054 (0.553) -2.95 (0.189) -1.831 (0.644) -4.512 (0.01)
1985:1–2006:1 -2.261 (0.469) -3.787 (0.0235) -2.16 (0.51) -2.586 (0.336)
2010:1–2019:4 -3.287 (0.088) -4.045 (0.0183) -3.971 (0.0209) -3.857 (0.0261)
1948:1–1958:2 -2.463 (0.39) -4.213 (0.0104) -1.744 (0.675) -4.176 (0.0119)
1958:2–1973:4 -3.129 (0.118) -2.08 (0.542) -3.001 (0.17) -3.283 (0.083)
1974:1–1985:2 -1.507 (0.77) -2.728 (0.285) -1.986 (0.58) -2.567 (0.349)
1985:3–1996:3 -2.436 (0.401) -2.527 (0.365) -1.723 (0.684) -2.03 (0.562)
1996:4–2022:1 -3.235 (0.0862) -4.577 (0.01) -2.32 (0.444) -3.062 (0.137)

Note: The ADF test statistic is reported with the corresponding p-value in parentheses. The null hypothesis
of the ADF tests is that the data is non-stationary. To rectify this, we first-difference our data and retest for
each subsample. If the data is non-stationary in their levels, but stationary in first differences, the data is said
to be integrated at order one or I(1).

Our results are mixed. Over the full sample, we find that both Ht and St are I(1). The same is true
for the subsample stemming from the productivity slowdown up until the Financial Crisis and from the
Financial Crisis through the end of the sample. The subsamples based on our estimated structural breaks
and the subsamples associated with the Great Moderation and our crisis-free subsample (2010:1–2019:4)
are all mixed in some way or another. Despite this, we still proceed to test for cointegration over these
same subsamples. We formally test for cointegration using the Johansen (1995) method. Results for these
cointegration are listed in Table V.



Table V: Johansen Tests of Cointegration

Vector: Zt = [Ht, St]
T

T. Stat 10% CV 5% CV 1% CV

Full Sample 34.56 17.85 19.96 24.60
1948:1–1972:4 19.92 17.85 19.96 24.60
1973:1–2006:4 29.66 17.85 19.96 24.60
2007:1–2022:1 13.66 17.85 19.96 24.60
1985:1–2006:1 17.56 17.85 19.96 24.60
2010:1–2019:4 17.10 17.85 19.96 24.60
1948:1–1958:2 18.95 17.85 19.96 24.60
1958:2–1973:4 15.13 17.85 19.96 24.60
1974:1–1985:2 18.43 17.85 19.96 24.60
1985:3–1996:3 33.23 17.85 19.96 24.60
1996:4–2022:1 9.26 17.85 19.96 24.60
Note: Given that we are testing bivariate vectors, a rejection of the
null hypothesis of no cointegrating equations (r = 0) allows us to favor
an alternative hypothesis that there are r > 0 cointegrating vectors.

We observe that over the full sample and the Great Moderation, in particular, we strongly reject the null
hypothesis that there is no cointegration. Across other subsamples and structural breaks, we observe a fair
degree of heterogeneity in the strength of cointegration between inventories and sales.

With these diagnostics in mind, we still proceed to estimate distinct VEC models with eight lags of the
endogenous variables. Each model is estimated over each subsample period described in Tables IV and VI.
In Table VI, we report coefficient estimates for each individual equation of ∆Zt as well as the β long-run
coefficient. It should be noted that the mixed results from our ADF and cointegration tests will likely present
some results that will be difficult to interpret.



Table VI: VECM Results

Panel A
Full Sample 1948:1–1972:4 1973:1–2006:4 2007:1–2022:1

∆log(Ht) ∆log(St) ∆log(Ht) ∆log(St) ∆log(Ht) ∆log(St) ∆log(Ht) ∆log(St)

Long-Run β 0.598904 0.915813 0.494673 0.949386
A0 0.0218 0.0397* 0.1522* 0.1368* 0.1915** 0.0680 0.3050. -0.1932

(0.0146) (0.0161) (0.0576) (0.0652) (0.0618) (0.0612) (0.1605) (0.2036)
ECTt−1 -0.0059 -0.0092* -0.1005** -0.0829. -0.0464** -0.0146 -0.2584. 0.1720

(0.0042) (0.0046) (0.0380) (0.0429) (0.0148) (0.0147) (0.1385) (0.1756)
∆log(Ht−1) 0.5339*** 0.1578* 0.4870*** 0.2649* 0.5027*** -0.0972 0.7470*** 0.3550

(0.0607) (0.0670) (0.1107) (0.1252) (0.0876) (0.0868) (0.1759) (0.2230)
∆log(St−1) 0.2052*** -0.0319 0.2236* 0.0214 0.2308* 0.0468 -0.0409 -0.2005

(0.0550) (0.0607) (0.1114) (0.1260) (0.0921) (0.0913) (0.1574) (0.1996)

Panel B
1985:1–2006:1 2010:1–2019:4 1948:1–1958:2 1958:2–1973:4

∆log(Ht) ∆log(St) ∆log(Ht) ∆log(St) ∆log(Ht) ∆log(St) ∆log(Ht) ∆log(St)

Long-Run β 0.492815 0.753061 0.814435 1.06772
A0 0.5536. 0.2865 0.3276 -0.4028 0.7097** 0.4056 0.1367. 0.1669.

(0.3100) (0.2552) (0.4386) (0.2475) (0.2231) (0.3466) (0.0803) (0.0976)
ECTt−1 -0.1335. -0.0679 -0.1255 0.1714 -0.3517** -0.1990 -0.2042. -0.2358

(0.0744) (0.0612) (0.1759) (0.0993) (0.1125) (0.1747) (0.1175) (0.1427)
∆log(Ht−1) 0.5192*** -0.0417 -0.0988 0.0076 0.4140. 0.3559 0.1667 -0.1833

(0.1320) (0.1086) (0.2615) (0.1475) (0.1977) (0.3071) (0.1786) (0.2169)
∆log(St−1) 0.3965* -0.0884 -0.7521. -0.0330 0.1251 -0.0949 -0.1134 0.0044

(0.1711) (0.1409) (0.3874) (0.2186) (0.1890) (0.2935) (0.2101) (0.2552)

Panel C
1974:1–1985:2 1985:3–1996:3 1996:4–2022:1

∆log(Ht) ∆log(St) ∆log(Ht) ∆log(St) ∆log(Ht) ∆log(St)

Long-Run β 0.950798 0.313754 1.09388
A0 0.3644 1.2727*** 1.5129. 1.6679* 0.0214* -0.0029

(0.2356) (0.2928) (0.8581) (0.7088) (0.0105) (0.0123)
ECTt−1 -0.2466 -0.8485*** -0.2860. -0.3128* -0.1112. 0.0417

(0.1578) (0.1962) (0.1616) (0.1334) (0.0622) (0.0726)
∆log(Ht−1) 0.6964* 0.7683* 0.6121* 0.0019 0.5689*** 0.3178*

(0.2583) (0.3211) (0.2258) (0.1865) (0.1278) (0.1491)
∆log(St−1) -0.2269 -1.2091** 0.2834 -0.4809. 0.0530 -0.2776*

(0.2677) (0.3328) (0.3039) (0.2510) (0.1169) (0.1365)
Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; .p < 0.10. Despite estimating our model with eight lags, we opt to conserve on space and present
results for the constant, first lag and our lagged ECT. After one lag, economic and statistical significance diminish greatly.

The results for the lagged endogenous variables are largely as expected with the first lagged differences
of both Ht and St carrying the highest degree of significance and persistence compared to all other lags.
Secondly, we note that the long-run coefficients vary quite significantly over each model. For the full sample,
the β coefficient is around 0.60 and we see that inventories do not seem to adjust at a rate different from zero,
however, sales exhibits a very slow and marginally significant adjustment speed to the shared long-run trend.
Over the various subsamples, despite estimation risk, we see that the signs of each ECTt are either zero or
negative, which is appropriate. Finally, we note from Panel A of Table VI that our crisis subsample exhibits
a statistically weak adjustment rate for inventories and an adjustment rate of zero for sales. Both pose a
sharp contrast to other longer subsamples including the full sample, the productivity slowdown era, and the
era before the productivity slowdown. The results herein also the echo a combination of findings from Wen
(2011) and Maccini et al. (2015) wherein shorter subsamples tend to exhibit faster adjustment speeds (albeit
at a weaker level of significance) while other longer subsamples all pose exceedingly slow adjustment speeds.
Given the precariousness of St as an I(1) variable along with varying evidence of cointegration depending on
the subsample, these results are not too surprising.



6 Conclusion

The aim of this paper was to revisit the fairly mature literature of inventories and assess the degree to which
inventory dynamics have evolved with particular attention given to the period of time after the Financial
Crisis through the beginning of 2022. We find that inventory levels estimated from a conventional flexible
accelerator model are still persistent in recent decades, but the reverse is true for sales. This underscores
the present deterioration of the link between inventories and sales.

Secondly, we find that the relative change in inventories as a percent of the change in GDP is considerably
higher from the Financial Crisis onward when compared to the full sample period. This suggests changes
in inventory levels over this period are on magnitude considerably higher than changes in GDP. We further
uncover that the proxy Bullwhip Effect over long subsamples is strongest from the Financial Crisis onward
when compared to the full sample. This suggests that domestic value chains have become less efficient,
rather than more efficient in recent decades. We also find that the correlation between the level of sales and
inventory growth is the highest during the era following the Financial Crisis, however, this correlation could
very well be spurious, particularly when evaluating the results from our VEC models.

Finally, our analysis of the results from our cointegrated and VEC models illustrate that adjustment
speeds are quite heterogeneous over different subsamples. Furthermore, we discover that the cointegrating
relationship and stability of inventory growth deteriorate considerably after the Financial Crisis. Further
research beyond this paper would do well to focus on the structural relationship between inventories, sales
and output after the Financial Crisis and through the present day.



References

Abramovitz, M. (1950). Inventories and business cycles, with special reference to manufacturers’ inventories

(No. abra50-1). National Bureau of Economic Research.

Alovokpinhou, S. A., Malikane, C., & Mokoka, T. (2022). Inventory dynamics and endogenous persistence
in a new keynesian model. Applied Economics, 54 (17), 1957–1973.

Arrow, K. J., Harris, T., & Marschak, J. (1951). Optimal inventory policy. Econometrica: Journal of the

Econometric Society , 250–272.

Bils, M., & Kahn, J. A. (2000). What inventory behavior tells us about business cycles. American Economic

Review , 90 (3), 458–481.

Blanchard, O. J. (1983). The production and inventory behavior of the american automobile industry.
Journal of Political Economy , 91 (3), 365–400.

Blinder, A. S., & Maccini, L. J. (1991). Taking stock: a critical assessment of recent research on inventories.
Journal of Economic perspectives, 5 (1), 73–96.
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A Appendix

Additional Flexible Accelerator Model Results

Table VII: Estimated Flexible Accelerator Models

Dependent Variable: log(Ht)
Eq. (3.4) Eq. (3.7) Eq. (3.4) Eq. (3.7) Eq. (3.4) Eq. (3.7) Eq. (3.4) Eq. (3.7)

Constant 0.067*** 0.027** 0.2101*** 0.03245 0.4364*** 0.15114** -0.0803 -0.1546
(0.021) (0.011) 0.0562 0.03942 0.0791 0.04944 0.2279 0.2223

log(Ht−1) 0.974*** 0.997*** 0.8538*** 0.99618*** 0.8973*** 0.97998*** 0.9055*** 1.0209***
(0.010) (0.002) 0.0347 0.00621 0.0197 0.00682 0.0915 0.0289

log(St−1) 0.020** 0.1368*** 0.0501*** 0.1182
(0.009) 0.0329 0.0113 0.0890

N 300 300 101 101 136 136 61 61
Adj. R2 0.99 0.99 0.997 0.996 0.994 0.994 0.955 0.954
Period 1947:1–2022:1 1947:1–2022:1 1947:1–1972:4 1947:1–1972:4 1973:1–2006:4 1973:1–2006:4 2007:1–2022:1 2007:1–2022:1
Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Structural Break Tests

Table VIII: Chow-Test Results

Break Dates Via Chow Tests

Break Date 1958:2 1973:4 1985:2 1996:3
F-Statistic 40.3565 554.15 728.182 128.272
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